Announcements

- HW 5 Due Sunday
- Please let me know if you need to take exam 2 not-during class hours

Last Time

- Chromatic number = minimum number of colors needed to color G.
- Brook's Theorem: $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})$ unless G is an odd cycle or complete graph.
- Not regular: greedy coloring ending at v.
- Not 3-connected: Break into parts, color parts inductively, recolor to make them match.
- 3 -connected, find v with non-adjacent neighbors u, w. Greedily color so that u,w assigned same color first, v assigned color last.

Question: Algorithm

Does the proof of Brook's Theorem give an algorithm to produce a $\Delta(\mathrm{G})$-coloring of G ?
A) Yes
B) No

Today

Coloring Planar Graphs

- Setup
- Five Color Theorem
- Four Color Theorem

Coloring Planar Graphs

A particularly interesting and practical problem is how many colors are needed to color a planar graph.
In other words, given a map with connected regions, how many colors do you need to ensure that neighboring regions are different colors?

Map Coloring

Can color US map with 4 colors.

Map Coloring II

Can't color even these western states with fewer than 4 colors.

Chromatic number of the US is 4.

What about other maps?

Warmup

Theorem: Every planar graph is 6-colorable.
Idea: We know that G has a vertex of degree at most 5 . Use a greedy coloring.
Proof: By induction on number of vertices.

- If $|\mathrm{V}| \leq 6$, can color trivially.
- If we can color all smaller graphs
$-v$ a vertex with $d(v)<6$
- Color G-v inductively
- Give v color not used by neighbors

The 5-Color Theorem

Theorem 1.47 (Kemp): Every planar graph is 5colorable.
Idea: Induction as before.
(There will be some complications)

Proof

- Induct on $|\mathrm{V}|$
- Base case easy
- Take v with $\mathrm{d}(\mathrm{v}) \leq 5$
- Color G-v
- OK unless v's neighbors use all 5 colors
- Try to recolor them

- Can swap two colors
- Doesn't help
- Consider subgraph of red \& blue vertices
- Can recolor single component
- Works unless A \& B in same component

Kemp Chains

- Can recolor unless red-green chain from A to C
- Can recolor unless blue-yellow chain from B to D
- Cannot have both!
- Always a way to recolor and add v

Proof Summary

- Pick v of degree at most 5
- Color G-v
- If v's neighbors don't include all 5 colors, complete coloring
- Otherwise, pick neighbor and recolor, then recolor it's neighbors, etc. trying to free up a color for v
- There's always a way to do this

The Four Color Map Theorem

Theorem 1.46: Every planar graph is 4-colorable.
Notes:

- Optimal
- Proof along the same lines as above- add one vertex by recoloring some nearby ones
- Too many cases to check by hand. All known proofs are computer assisted.

