Announcements

- HW 5 Due Sunday
- Please let me know if you need to take exam 2 not-during class hours

Last Time: Colorings

Definition: A (vertex) coloring of a graph G is an assignment of a color to each vertex of G so that no two adjacent vertices have the same color. This is an n-coloring if only n different colors are used.
Definition: The Chromatic Number, $\chi(\mathrm{G})$, of a graph G is the smallest number n so that G has an n -coloring.

Today

- Basic facts about chromatic numbers
- Greedy colorings
- Brook's Theorem

Question: Paths

What is $\chi\left(P_{n}\right)$?
A) 1
B) 2
C) 3
D) 4

Actually, any tree is bipartite.
E) n

Question: Cycles

What is $\chi\left(\mathrm{C}_{n}\right)$?
A) 1
B) 2
C) 3
D) 2 or 3 depending on n
$\chi\left(C_{n}\right)$ is 2 for n even,
3 for n odd.
E) n

Question: Complete Graphs

What is $\chi\left(\mathrm{K}_{\mathrm{n}}\right)$?
A) 1
B) 2
C) 3
D) $n-1$

Each vertex must be a different color.
E) n

Cliques

Definition: The clique number, $\omega(G)$, of a graph G is the largest n so that K_{n} is a subgraph of G.
Corollary: For any graph $\mathrm{G}, \chi(\mathrm{G}) \geq \omega(\mathrm{G})$.
Note: This bound is far from tight.

Upper Bound

Lemma: For G a graph on n vertices, then $\chi(\mathrm{G}) \leq$ n .

Proof: Give each vertex a different color.

Greedy Coloring

Coloring Strategy: Color vertices one at a time, giving each a color that doesn't conflict.

Greedy Coloring II

If a vertex v has $d(v)$ neighbors, it is enough to have $\mathrm{d}(\mathrm{v})+1$ colors to choose from.

Max Degree

Definition: For a graph G, let $\Delta(G)$ denote the maximum degree of any vertex of G.
Lemma: For any graph $\mathrm{G}, \chi(\mathrm{G}) \leq \Delta(\mathrm{G})+1$.
Proof: Use the greedy coloring.
Note: This bound is again often far from tight.
e.g: $\chi\left(K_{n, n}\right)=2$, but $\Delta\left(K_{n, n}\right)=n$.

Two Cases Where $\chi(\mathrm{G})=\Delta(\mathrm{G})+1$

C_{n} for n odd

- $\chi(\mathrm{G})=3$
- $\Delta(\mathrm{G})=2$
K_{n} for $\mathrm{n}>1$
- $\chi(\mathrm{G})=\mathrm{n}$
- $\Delta(\mathrm{G})=\mathrm{n}-1$

That's it!

Theorem 1.43 (Brook's Theorem): If G is a finite connected graph that is neither an odd cycle nor a complete graph, $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})$.

$\Delta(\mathrm{G}) \leq 2$

$\Delta(G)=0$ or 1

- Only graph is complete graph.
$\Delta(G)=2$. Possibilities are:
- $P_{n}: \chi(G)=2$
- C_{n}, n even: $\chi(G)=2$
- $\mathrm{C}_{\mathrm{n}}, \mathrm{n}$ odd: Odd cycle

Non-Regular Graphs

If G not regular

- Some v, d(v) < $\Delta(G)$
- If you can color G-v, greedily color v
- But v's neighbors in Gv have smaller degree

- Recurse

Regular Graphs

Idea: Want vertex v where two neighbors u, w have the same color.

- Find v with two non-adjacent neighbors (can unless G is
complete graph)
- Try to color G-v with u, w the same color.

Not a Cut Set

If $\{u, w\}$ is not a cut set, we can do our recursive coloring, assigning colors to u and w first.

What if $\{u, w\}$ is a Cutset?

- Split graph into two parts
- Color each half inductively
- Change colors so that they match.

Case 1: Single Cut Vertex

Suppose v is a cut vertex.

- Inductively color each component of G-v.
- For each component can change colors in that component.
- Arrange so two neighbors of v are same color
- Color v

Case 2: Two Cut Vertices

Idea:

- Color comp $1+\{u, w\}$
- Color comp $2+\{u, w\}$
- Swap colors so they
 match.
- Combine

Case 2a

Try to make u, w different colors on both sides.

- Use greedy coloring, choosing colors for u and w last.
- Unless they each connect to $\Delta(\mathrm{G})-1$ vertices on same side, can pick different colors.
- Make colors on top same as on bottom.

Case 2b

Suppose that u, w can only be the same in any coloring of top component.

- Must each connect to $\Delta(\mathrm{G})-1$ on top
- Only connect to 1 each on bottom.
- Color bottom component, can pick u, w same color (only 2 disallowed options).

