Announcements

- HW 5 Due Sunday
- Please let me know if you need to take exam 2 not-during class hours

Last Time: Colorings

<u>**Definition:</u>** A (vertex) *coloring* of a graph G is an assignment of a color to each vertex of G so that no two adjacent vertices have the same color. This is an *n*-*coloring* if only n different colors are used.</u>

<u>Definition</u>: The *Chromatic Number*, χ(G), of a graph G is the smallest number n so that G has an n-coloring.

Today

- Basic facts about chromatic numbers
- Greedy colorings
- Brook's Theorem

Question: Paths

What is $\chi(P_n)$?

- A) 1
- B) 2
- C) 3
- D) 4
- E) n

Actually, any tree is bipartite.

Question: Cycles

What is $\chi(C_n)$?

- A) 1
- B) 2
- C) 3

D) 2 or 3 depending on nE) n

 $\chi(C_n)$ is 2 for n even, 3 for n odd.

Question: Complete Graphs

- What is $\chi(K_n)$?
- A) 1
- B) 2
- C) 3
- D) n-1
- E) n

Each vertex must be a different color.

Cliques

<u>Definition</u>: The *clique number*, ω(G), of a graph G is the largest n so that K_n is a subgraph of G.
 <u>Corollary</u>: For any graph G, χ(G) ≥ ω(G).
 <u>Note</u>: This bound is far from tight.

Upper Bound

<u>Lemma:</u> For G a graph on n vertices, then χ(G) ≤ n.

<u>Proof</u>: Give each vertex a different color.

Greedy Coloring

<u>Coloring Strategy:</u> Color vertices one at a time, giving each a color that doesn't conflict.

Greedy Coloring II

If a vertex v has d(v) neighbors, it is enough to have d(v)+1 colors to choose from.

Max Degree

<u>Definition</u>: For a graph G, let Δ(G) denote the maximum degree of any vertex of G.
<u>Lemma</u>: For any graph G, $\chi(G) \le \Delta(G)+1$.
<u>Proof</u>: Use the greedy coloring.
<u>Note</u>: This bound is again often far from tight.
<u>e.g</u>: $\chi(K_{n,n}) = 2$, but $\Delta(K_{n,n}) = n$.

Two Cases Where $\chi(G) = \Delta(G)+1$

- C_n for n odd
- χ(G) = 3
- ∆(G) = 2
- K_n for n > 1
- χ(G) = n
- ∆(G) = n-1

That's it!

<u>Theorem 1.43 (Brook's Theorem)</u>: If G is a finite connected graph that is neither an odd cycle nor a complete graph, $\chi(G) \leq \Delta(G)$.

$\Delta(G) \leq 2$

 $\Delta(G) = 0 \text{ or } 1$

• Only graph is complete graph.

 $\Delta(G) = 2$. Possibilities are:

- P_n: χ(G) = 2
- C_n, n even: χ(G) = 2
- C_n, n odd: Odd cycle

Non-Regular Graphs

If G not regular

- Some v, $d(v) < \Delta(G)$
- If you can color
 G-v, greedily color v
- But v's neighbors in Gv have smaller degree
- Recurse

Regular Graphs

Idea: Want vertex v where two neighbors u, w have the same color.

- Find v with two non-adjacent neighbors (can unless G is complete graph)
- Try to color G-v with u, w the same color.

Not a Cut Set

If {u,w} is not a cut set, we can do our recursive coloring, assigning colors to u and w first.

What if {u,w} is a Cutset?

- Split graph into two parts
- Color each half inductively
- Change colors so that they match.

Case 1: Single Cut Vertex

Suppose v is a cut vertex.

- Inductively color each component of G-v.
- For each component can change colors in that component.
- Arrange so two neighbors of v are same color
- Color v

Case 2: Two Cut Vertices

Idea:

- Color comp 1 + {u,w}
- Color comp 2 + {u,w}
- Swap colors so they match.
- Combine

Case 2a

Try to make u, w different colors on both sides.

- Use greedy coloring, choosing colors for u and w last.
- Unless they each connect to Δ(G)-1 vertices on same side, can pick different colors.
- Make colors on top same as on bottom.

Case 2b

Suppose that u, w can only be the same in any coloring of top component.

- Must each connect to $\Delta(G)$ -1 on top
- Only connect to 1 each on bottom.
- Color bottom component, can pick u, w same color (only 2 disallowed options).