Announcements

- Homework 4 Due on Sunday

Last Time

Basic Facts about Planar Graphs

- $\mathrm{e} \leq 3 \mathrm{v}-6$
- Every planar graph has a vertex of degree at most 5
- K_{5} and $K_{3,3}$ not planar
- Every planar graph can be triangulated (i.e. you can add edges until all faces are triangles)

Today

- Fary's Theorem
- Polyhedra

Fary's Theorem

Theorem (V. 7.4.2): Any finite (simple) planar graph G has a plane embedding where all of the edges are straight line segments.

Proof Strategy

- Induct on v.
- If $v \leq 3$, easy to draw.
- Assume G is connected (ow/ draw each component separately)
- Find a vertex v of low degree.
- Draw G-v with straight lines.
- Re-insert v into drawing.

Idea

- G triangulated and $d(v) \leq 5$
- Draw G-v w/ lines.
- Find a place for v with straight lines to
 neighbors.

Lemma

Lemma: Given any polygon P in the plane with at most 5 sides, there is a point v inside of P with straight line paths to each of P's vertices.

Idea: Consider cases based on the locations of the non-convex (i.e. > 180 degree) angles.

Case 1: No non-convex angles

Any point on the interior works.

Case 2: One non-convex angle

Place v just inside the non-convex angle.

Case 3: Two adjacent non-convex angles

Place v near opposite vertex.

Case 4: Two non-adjacent non-convex angles

Place v near the far wall where it can see the hidden vertex.

Case 5: More than two non-convex angles

Not possible! Sum of angles is $180(\mathrm{n}-2)$ degrees for an n-gon.

Question: Hexagons?

Is this lemma true for hexagons?
A) Yes
B) No

Proof of Fary's Theorem

- G connected, planar graph.
- If $v \leq 3$ can draw.
- Triangulate G.

Claim: Any such G will have an interior vertex of degree at most 5.

Proof of Claim

Handshake Lemma:

$$
\Sigma d(v)=2 e=6 v-12
$$

Rearrange:

$$
\Sigma(6-d(v))=12
$$

The three boundary vertices each contribute at most 3. So some other vertex must have 6-d(v) positive.

Low Degree v

- By Inductive Hypothesis, can draw G-v with straight lines.
- Neighborhood of va polygon with at most 5 sides.
- By Lemma, can insert v somewhere where it has straight line paths to its neighbors.
- Using this location we can draw G with straight line edges.

Polyhedra

Definition: A polyhedron is a 3 dimensional figure bounded by finitely many flat faces.
Two faces meet at an edge and edges meet at vertices.

A polyhedron is convex if for any two points in the polyhedron the line segment connecting them is also contained in the polyhedron.

Examples

Polyhedral Graphs

Given a convex polyhedron, can turn it into a planar graph by projecting vertices/edges onto a sphere (which can then be flattened onto a plane).

