Announcements

- Exam 1 Solutions online
- HW 4 Due on Sunday

Last Time

- Planar graphs
- Can draw in the plane without crossing edges
- Faces
- Regions bounded by edges
- One infinite face
- Euler's Formula
- For connected graphs, v-e $+\mathrm{f}=2$.

Sides to a Face

If G is a connected planar graph, any face (including the infinite one) will be bounded by a loop of edges.

The number of sides of the face is the number of edges in this loop.

Example

You can have weird examples like this:

Note that sides $1 / 17,4 / 8$, and 10/15 are really the same edge listed twice.

Today

- Dual Handshake Lemma
- Applications of Euler's Formula
- Edge Bounds
- Non-planarity of K_{5} and $\mathrm{K}_{3,3}$
- Fary's Theorem

Face Bounds

To really make use of Euler's Formula, it is important to get an idea of how many faces there are.

There is a way of counting these that is somewhat dual to the Handshake Lemma.

Dual Handshake Lemma

Lemma: For a connected, planar graph,

$$
\operatorname{Sides}(f)=2|E| .
$$

Faces f

- Note similarity to Handshake Lemma. Sides of faces instead of degrees of vertices.
- Proof similar.

Proof

- Count the number of pairs of an edge as a side of a face (be careful to count edges that are double sides twice).
- Each edge on two faces (or one face twice).
- Each face f has $\operatorname{Sides}(f)$ edges.

A Key Observation

Every face has at least three sides.

$2 e=\sum \operatorname{Sides}(f) \geq 3 f$.
Faces f

More Generally,

If G only has faces with at least k sides then

$$
e \geq k f / 2
$$

Edge Bound

Theorem (1.33): If G is a connected planar graph with $|\mathrm{V}| \geq 3$, then

$$
|E| \leq 3|V|-6 .
$$

Proof

We know:

- $v-e+f=2$.
- $e \geq 3 f / 2$.

So:

$$
2=v-e+f \leq v-e+2 e / 3=v-e / 3
$$

Rearranging, we find:

$$
e \leq 3 v-6
$$

Question: Side Bound

If each face has at least k sides, what is the maximum number of edges?
A) $v /(1-2 / k)-6$
B) $\mathrm{k}(\mathrm{v}-2)$
C) $(v-2) /(1-2 / k)$

$$
\text { D) } 3 \mathrm{v}-6
$$

$$
\begin{aligned}
2 & =v-e+f \\
& \leq v-e+2 e / k \\
& =v-e(1-2 / k)
\end{aligned}
$$

K_{5} Non-Planar

Theorem (1.34): The K_{5} is non-planar. Proof: If it were, we would have

$$
e \leq 3 v-6=9
$$

But $\mathrm{e}=10$. Contradiction!

$K_{3,3}$ Non-Planar

Theorem (1.32): $K_{3,3}$ is non-planar.
Proof: $K_{3,3}$ is bipartite, so it has no odd cycles. Therefore, if planar any face has at least 4 sides.
If planar,

$$
\mathrm{e} \leq 2 \mathrm{v}-4=8
$$

But e=9. Contradiction!

Minimum Degree

Theorem (1.35): If G is a finite, connected planar graph, its vertices have minimum degree at most 5.
Proof: Otherwise, each vertex has degree 6 or more.
Handshake Lemma implies

$$
2 \mathrm{e}=\Sigma \mathrm{d}(\mathrm{v}) \geq 6 \mathrm{v} .
$$

But then

$$
3 v-6 \geq e \geq 3 v .
$$

Contradiction!

Triangulations

We note that our edge bound of $3 \mathrm{v}-6$ has an equality case if and only if all faces are triangles.
We can always ensure that this is the case if we add more edges.
Lemma: For any planar embedding of a graph G there is a way to add more edges to G to get a new planar graph G^{\prime} in which all faces are triangles.

Proof

- Add edges until triangulated.
- Consider a face F with at least 4 sides.
- Add edge between nonadjacent vertices.
- Cannot if already outside edge.
- Cannot have on both ends.

Fary's Theorem

Theorem (V. 7.4.2): Any finite (simple) planar graph G has a plane embedding where all of the edges are straight line segments.

Proof Strategy

- Induct on v.
- If $v \leq 3$, easy to draw.
- Assume G is connected (ow/ draw each component separately)
- Find a vertex v of low degree.
- Draw G-v with straight lines.
- Re-insert v into drawing.

