Announcements

- Exam 1 Solutions online
- HW 4 Due on Sunday

Last Time

- Planar graphs
 - Can draw in the plane without crossing edges
- Faces
 - Regions bounded by edges
 - One infinite face
- Euler's Formula

- For connected graphs, v - e + f = 2.

Sides to a Face

If G is a connected planar graph, any face (including the infinite one) will be bounded by a loop of edges.

The number of *sides* of the face is the number of edges in this loop.

Example

You can have weird examples like this:

Note that sides 1/17, 4/8, and 10/15 are really the same edge listed twice.

Today

- Dual Handshake Lemma
- Applications of Euler's Formula
 - Edge Bounds
 - Non-planarity of K_5 and $K_{3,3}$
- Fary's Theorem

Face Bounds

To really make use of Euler's Formula, it is important to get an idea of how many faces there are.

There is a way of counting these that is somewhat dual to the Handshake Lemma.

Dual Handshake Lemma

Lemma: For a connected, planar graph,

$$\sum_{\text{Faces } f} \text{Sides}(f) = 2|E|.$$

- Note similarity to Handshake Lemma. Sides of faces instead of degrees of vertices.
- Proof similar.

Proof

- Count the number of pairs of an edge as a side of a face (be careful to count edges that are double sides twice).
- Each edge on two faces (or one face twice).
- Each face f has Sides(f) edges.

A Key Observation

Every face has *at least three* sides.

(unless |V| =2)

 $\operatorname{Sides}(f) \ge 3f.$ 2e =Faces f

More Generally,

If G only has faces with at least k sides then

$$e \ge kf/2.$$

Edge Bound

<u>Theorem (1.33)</u>: If G is a connected planar graph with $|V| \ge 3$, then $|E| \le 3|V| - 6$.

Proof

We know:

- v e + f = 2.
- $e \ge 3f/2$.

So:

$$2 = v - e + f \le v - e + 2e/3 = v - e/3$$

Rearranging, we find:

 $e \leq 3v-6$.

Question: Side Bound

If each face has at least k sides, what is the maximum number of edges?

A) v/(1-2/k)-6

- B) k(v-2) 2 = C) (v-2)/(1-2/k) = D) 3v-6
- 2 = v e + f $\leq v - e + 2e/k$ = v - e(1-2/k)

K₅ Non-Planar

Theorem (1.34): The K_5 is non-planar. **Proof:** If it were, we would have $e \le 3v-6 = 9$

But e = 10. Contradiction!

K_{3,3} Non-Planar

Theorem (1.32): $K_{3,3}$ is non-planar.

Proof: K_{3,3} is bipartite, so it has no odd cycles. Therefore, if planar any face has at least 4 sides.

If planar,

 $e \le 2v-4 = 8$.

But e=9. Contradiction!

Minimum Degree

- Theorem (1.35): If G is a finite, connected planar graph, its vertices have minimum degree at most 5.
- <u>**Proof:</u>** Otherwise, each vertex has degree 6 or more.</u>

Handshake Lemma implies

 $2e = \Sigma d(v) \ge 6v.$

But then

```
3v-6 \ge e \ge 3v.
```

Contradiction!

Triangulations

- We note that our edge bound of 3v-6 has an equality case if and only if all faces are triangles.
- We can always ensure that this is the case if we add more edges.
- Lemma: For any planar embedding of a graph G there is a way to add more edges to G to get a new planar graph G' in which all faces are triangles.

Add edges until triangulated.

- Consider a face F with at least 4 sides.
- Add edge between nonadjacent vertices.
- Cannot if already outside edge.
- Cannot have on both ends.

Fary's Theorem

Theorem (V. 7.4.2): Any finite (simple) planar graph G has a plane embedding where all of the edges are straight line segments.

Proof Strategy

• Induct on v.

- If $v \leq 3$, easy to draw.

- Assume G is connected (ow/ draw each component separately)
- Find a vertex v of low degree.
- Draw G-v with straight lines.
- Re-insert v into drawing.