Announcements

- Exam 1 Friday
- No Homework this week
- Exam Instructions due before exam

Last Time

Menger's Theorem: If k is the minimum number of vertices you need to remove to separate u and v, then there are k vertex-disjoint paths from u to v.

What About Edge Cuts?

Theorem 4.5.2: The minimum number of edges you need to remove from G to separate u and v is the same as the maximum number of edge disjoint paths from u to v.
We'll prove this later when we talk about flows, under the much catchier name "The MaxflowMincut Theorem".

Today

Planar Graphs

- Introduction
- Faces and Euler's Formula

Ch 1.5: Planar Graphs

- Planarity Definition
- Faces and Euler's Formula
- Platonic Solids
- Straight Line Embeddings
- Non-Planar Graphs

Graph Drawings

- When drawing a graph, it is convenient to draw it so that no two edges cross.
- When is this possible?

Planar Embeddings

Definition: A planar embedding of a graph G is a drawing of G so that

- Each vertex of G corresponds to a point in the plane.
- Each edge of G corresponds to a curve connecting its endpoints.
- No two edge-curves cross except at endpoints.

Planar Graphs

Definition: A graph is planar if it has a planar embedding.

Question: Planarity

Which of the graphs below are planar?

Notes

- Whether or not a graph is planar might depend on finding the right embedding.
- It is always possible to find a planar embedding of a planar graph with straight line edges (we'll show this later).
- Planarity game: http://planarity.net/

Application: Electrical Circuits

A circuit can be thought of as a graph with gates as vertices and wires as edges. With some technologies it is important to lay out circuits with few or no crossed wires.

Application: Maps

Given a map with simply connected regions, the adjacency graph on regions is planar.

Faces

A planar embedding of a graph divides the plane into regions. These are called faces.

Question: Faces

How many faces does the graph below have?
A) 1
B) 2
C) 3
D) 4
E) 5

Examples

- Tree: $\mathrm{v}=\mathrm{n}$

$$
e=n-1 \quad f=1
$$

- Cycle: v=n

$$
e=n f=2
$$

- Wheel: $v=n+1$

$$
e=2 n \quad f=n+1
$$

- Grid: $\quad v=n^{2}$

$$
e=2 n(n-1) \quad f=(n-1)^{2}+1
$$

$v-e+f$ is always 2 !

Euler's Formula

Theorem (1.31): For any planar embedding of a connected graph G with v vertices, e edges and f faces (including the infinite face)

$$
v-e+f=2
$$

Trees

We begin by proving our result for trees. There $e=v-1$, so we need only show $f=1$.

- Use induction on v.
- If $v=1$, clearly true.
- For $v>1$, contracting a leaf into the tree doesn't change number of faces.

General Graphs

- Use induction on e.
- Base case: G is a tree.
- Otherwise, G has a cycle
- Cycle separates plane into inside and outside.
- Remove an edge of cycle, decreases f by 1 .

- $I H=>v-(e-1)+(f-1)=2$

Question: Euler's Formula

How many faces does a connected, planar graph with 12 vertices and 30 edges have?
A) 12
B) 15
C) 20

$$
12-30+20=2
$$

D) 25
E) 30

Sides to a Face

If G is a connected planar graph, any face (including the infinite one) will be bounded by a loop of edges.

The number of sides of the face is the number of edges in this loop.

Example

You can have weird examples like this:

Note that sides $1 / 17,4 / 8$, and 10/15 are really the same edge listed twice.

