Announcements

- No HW Due this week
- Exam 1 on Friday
- Please complete exam 1 instructions assignment on gradescope before the exam.
- Exam Review Video on Course Webpage.

Last Time

- Structure of Blocks

Today

- Menger's Theorem
- Introduction to Planar Graphs (Ch 1.5)

More Vertices to Cut

We've studied when a graph can be disconnected by removing a single vertex. What about k vertices?

Definition: Given a connected graph G and vertices u and $v, k(u, v)$ is the minimum number of vertices that one needs to remove from G to disconnect u and v.

Question: к Example

What is $\mathrm{k}(\mathrm{u}, \mathrm{v})$ in the graph below?
A) 1
B) 2
C) 3
D) 4
E) 5

How Small Can $k(u, v)$ be?

- If k vertex-disjoint paths from u to $v, k(u, v)$ is at least k.
- Is this tight?

Menger's Theorem

Theorem 4.5.1: There exist $\kappa(u, v)$ vertex-disjoint paths between u and v for any pair of vertices in any graph G.

Proof Strategy

- Use induction on the number of edges (assume true for all graph with fewer edges)
- Let W be a cut set of size $\mathrm{k}=\mathrm{k}(\mathrm{u}, \mathrm{v})$.
- Find k vertex-disjoint paths.

Cut

- Removing W splits graph into $\mathrm{H}_{4}, \mathrm{H}_{v}, \mathrm{H}_{0}$.
- Create G_{u} replacing H_{u} by single vertex.
$-k$ still $=k$.
- IH => k vertex-disjoint paths.
- Do same for G_{v}
- Combine Paths

Doesn't Quite Work!

- Inductive hypothesis requires that G_{u} and G_{v} smaller than G.
- Need H_{u} and H_{v} to have more than one vertex.
- True unless W $\supset N(u)$ or $W \supset N(v)$.
- Note that $N(u), N(v)$ are cutsets. Only happens if $W=N(u)$ or $N(v)$.
- Done unless $W=N(u)$ or $N(v)$.
$-w \log W=N(u)$.

Case 1: Common Neighbor

$N(u) \cap N(v)$ non-empty.

- Assume x in intersection.
- IH on G-x
- cannot be ($k-2$)-cut
- (k-1) disjoint paths
- Add u-x-v and done.

Case 2: No Common Neighbor

$N(u) \cap N(v)=\emptyset$

- Let $\mathrm{e}=(\mathrm{a}, \mathrm{b})$ be an edge out of W.
- IH on G-e
- If $\mathrm{k}=\mathrm{k}$, find k paths
- If $k=k-1, W^{\prime}+a, W^{\prime}+b$ another cut set. One won't consist of just $\mathrm{N}(\mathrm{u})$ or $\mathrm{N}(\mathrm{v})$
- Apply result here

Summary

- If $N(u)$ and $N(v)$ overlap, recurse.
- If W is neither $N(u)$ nor $N(v)$, induct on each side and glue together.
- If $\mathrm{W}=\mathrm{N}(\mathrm{u})$, push off $\mathrm{N}(\mathrm{u})$ to find new W that isn't.

Question: Algorithm

Does this proof of Menger's Theorem naturally lead to an algorithm for finding these k disjoint paths?
A) Yes
B) No

Algorithm would require
finding this set W .

