Announcements

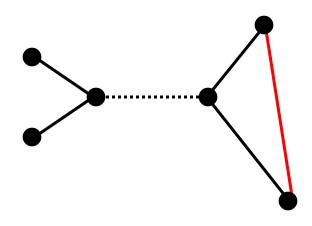
- Homework 3 Due Sunday
- Exam 1 Instructions
 - 4Qs in 1hour
 - During class time (problems released at 3, due at 4)
 - Material through the end of this chapter
 - No cooperation
 - Instructions on webpage & gradescope assignment

HW2 Q1

- Most people got that given T you could get a bipartition of T.
- However, you need to show that this is *also* the bipartition for G.

HW2 Q3

 Common mistake: If you have a tree T and remove an edge and add a new one, it does not always create a new tree.



Last Time

- Block: Maximal Subgraph of G with no cut vertex.
- Block Graph: A tree describing how G can be decomposed into blocks.

Today

Structure of Blocks:

- Ear Decomposition
- Theta-less graphs
- Vertex Cycles

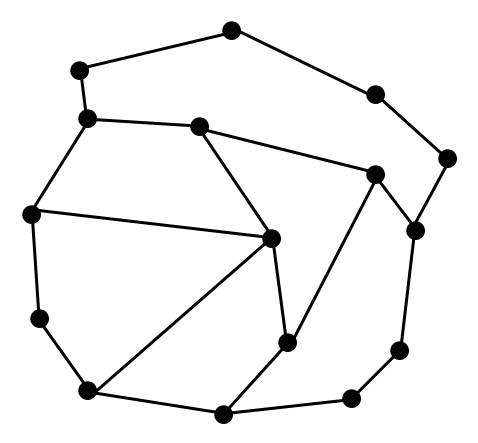
What Does a Block Look Like?

Lemma: Any block is either a K₂ or contains a cycle.

Proof:

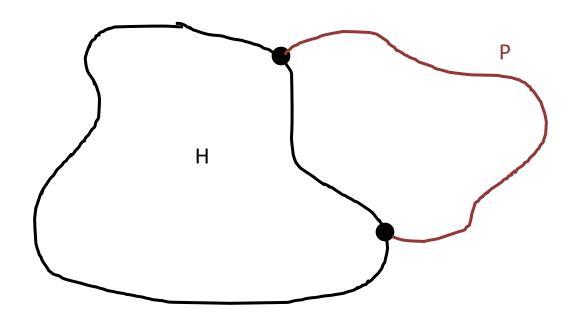
- If it doesn't have a cycle, it's a tree.
- Any non-leaf would be a cut vertex.
- All vertices degree-1
- Handshake Lemma => |V|=2|E|.
- Can only happen with two vertices.

Build off a Cycle



Ears

Definition: Given a subgraph H of G an *ear* is a path P in G starting and ending at vertices of H but with no intermediate vertices in H.



Decomposition

Theorem 4.2.1: Any block is either a K₂ or can be obtained by starting with a cycle and adding ears.

Proof

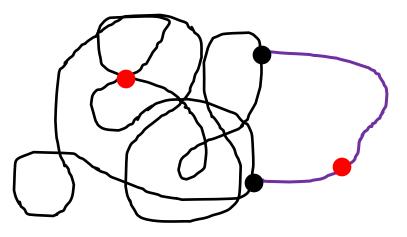
- Start with a cycle
- If all of block, done.
- Some edge e=(u,v) leading out.
 - u is not a cut vertex
 - Some path from v
 back
 - Add ear
- Repeat

\bigcap		\sum
		\sim
	u	e
		>

Question: If and only if?

Is every graph with such an ear decomposition free of cut vertices?

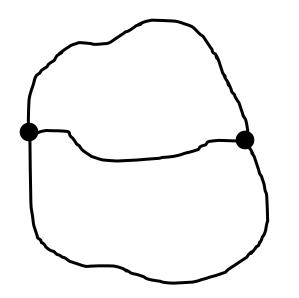
A) YesB) No



Adding an ear can't create cut vertices.

Theta Graphs

<u>**Definition:</u>** A *theta* in a graph is a pair of vertices with three vertex-disjoint paths between them.</u>



Theta-Less Blocks

Lemma: Any block without a theta as a subgraph is either a K₂ or a cycle.

Proof:

- Either a K_2 or cycle + ears.
- Adding an ear to a cycle gives a theta!
- Either a K2 or a cycle.

Conclusion

Proposition 4.1.2: Any connected, theta-less graph G is a tree of cycles and K₂s.

Another Theorem on Blocks

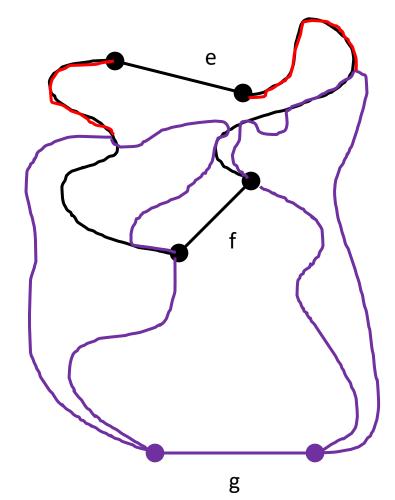
- **Theorem 4.2.4:** For a finite graph G with at least 3 vertices, the following are equivalent:
- 1) G is a single block
- 2) Any two edges of G are in a common cycle
- 3) Any two vertices of G are in a common cycle

Proof Strategy

- Show (1) => (2) => (3) => (1).
- For (1) => (2)
 - Want to know when two edges have common cycle
 - Say e ~ f if e and f have common cycle
 - Claim: ~ is an equivalence relation.
 - In particular if e ~ f and f ~ g then e ~ g.

Equivalence Relation

- e and f have common cycle
- f and g have common cycle
- Want cycle for e and g.
- Could be more complicated.
- Connect from first intersections



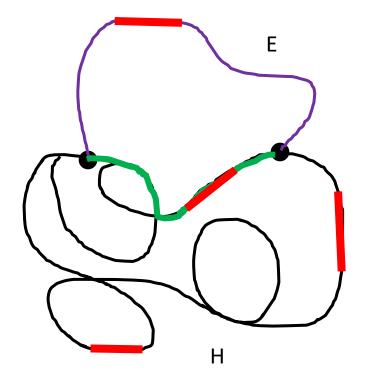
(1) => (2)

Recall, we want to show that if G is a single block that any two edges share a cycle (i.e. e ~ f).

- Prove by induction on the number of ears.
 - Base Case: G is a cycle: all edges in same cycle.
 - Inductive step: G = H + ear. Any two edges of H share a cycle.

Inductive Step

- G = H + ear E
- Any two edges of H share cycle.
- Show e~f for any e,f.
 - Both in H by IH.
 - e in E in cycle.
 - $-e \sim f$ for some f in H.
 - $-f \sim g$ for all g in H.
 - e ~ g by transitivity.
 - Any two share a cycle.



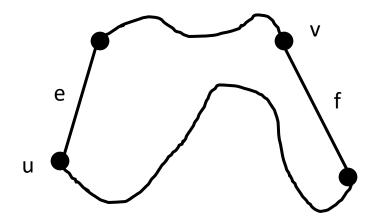
(2) => (3)

Any two *edges* share a cycle. Want same for any two *vertices*.

Vertices u and v.

On edges e and f.

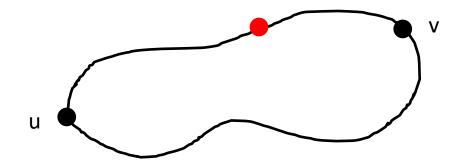
Edges share cycle, so vertices do too.



(3) => (1)

Any two vertices share a cycle. Show that there are no cut vertices.

- Show no cut vertex separates u and v.
- Share a cycle.
- Single cut vertex cannot disconnect cycle.



Summary

The following are equivalent:

- 1) G has no cut vertices
- 2) Any two edges share a cycle
- 3) Any two vertices share a cycle.