Announcements

- Homework 3 Due Sunday
- If you cannot make exam 1 during class time, please email me by tomorrow.

Today

Hamiltonian Graphs

- Definition
- Complexity
- Some conditions

Hamiltonian Graphs

Definition: A Hamiltonian path/cycle in a graph G is a path/cycle that uses every vertex of G exactly once.
A graph is Hamiltonian if it has a Hamiltonian cycle

Question: Hamiltonian Cycles

Which of the following graphs has a Hamiltonian cycle?
A) C_{21}
B) P_{20}
C) K_{5}
D) $\mathrm{K}_{7,9}$

E) The graph shown

Comparison

Eulerian Graphs:

- Is there a circuit that uses every edge exactly once?
- Easy characterization based on number of odd degree vertices
- Simple algorithms to construct

Hamiltonian Graphs:

- Is there a circuit that uses every vertex exactly once?
- No characterization
- NP-Hard to construct

Focus on partial characterizations.

More Edges

Adding more edges to a graph might make it either easier or harder to find an Eulerian circuit.

More edges can only make it easier to find a Hamiltonian cycle.
Idea: Any graph with enough edges should be Hamiltonian.

How many is "enough"?

Minimum Degrees

Theorem (1.22): If a graph G on $\mathrm{n}>2$ vertices has minimum degree at least $n / 2$, it is Hamiltonian.

Warmup

How do we even know that G is connected?
Lemma: If a graph G on n vertices has minimum degree $\delta(G) \geq(n-1) / 2$, then G is connected.

Proof

NTS can get between any vertices u, w.

- If edge (u, w), done.
- Else, each has (n-1)/2 edges to the other $n-2$ vertices
- Must both connect to some common vertex v.
- Have path $u \rightarrow v \rightarrow$ w

Longest Path

Back to our main proof. Let $\delta(G) \geq n / 2$.
Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ be the longest path in G .

Note that v_{1} and v_{k} cannot connect to vertices outside of this path.
Claim: G has a cycle of length k .

Cycle

To get a cycle, we want to find an i so that there is an edge from v_{1} to v_{i+1} and an edge from v_{k} to v_{i}.

Counting

- There are $\geq n / 2$ i's so that v_{k} connects to v_{i}.
- There are $\geq n / 2$ i's so that v_{1} connect to v_{i+1}.
- There are only k-1 < n total i's.
- The two lists must have some index in common.

Cycle

Have a cycle of length k.
G is connected so either:

- $k=n$.
- Cycle is Hamiltonian
- k<n
- Some vertex in cycle
 connects to some other vertex.
- We have a longer path.

In Summary

Given any path, can either:

- Extend path \Rightarrow longer path.
- Turn into cycle that connects to another vertex \Rightarrow longer path.
- Turn into Hamiltonian cycle.

If we start with the longest path, it must lead to a Hamiltonian cycle.

Question: Algorithm

Does the proof we've presented give an algorithm for finding Hamiltonian cycles in graphs with $\delta(G) \geq n / 2$?
A) Yes
B) No

Generalization

Actually, you can get slightly more out of the same argument.

Theorem (1.23): If G is a graph on at least 3 vertices and if $d(u)+d(v) \geq n$ for all pairs of non-adjacent vertices u and v, then G is Hamiltonian.

Counting

- Either v_{1} adjacent to v_{k}, can use edge between them
- Or $\#\left\{i: v_{k}\right.$ adjacent to $\left.v_{i}\right\}+\#\left\{i: v_{1}\right.$ adjacent to $\left.v_{i+1}\right\} \geq n$
- So there must be some i for which both hold.

