Announcements

- Homework 3 Due Sunday
- If you cannot make exam 1 during class time, please email me by tomorrow.

Today

Hamiltonian Graphs

- Definition
- Complexity
- Some conditions

Hamiltonian Graphs

<u>**Definition:</u>** A *Hamiltonian path/cycle* in a graph G is a path/cycle that uses every vertex of G exactly once.</u>

A graph is *Hamiltonian* if it has a Hamiltonian cycle

Question: Hamiltonian Cycles

Which of the following graphs has a Hamiltonian cycle?

- A) C₂₁
- B) P₂₀
- C) K₅
- D) K_{7,9}
- E) The graph shown

Comparison

Eulerian Graphs:

- Is there a circuit that uses every *edge* exactly once?
- Easy characterization based on number of odd degree vertices
- Simple algorithms to construct

Hamiltonian Graphs:

- Is there a circuit that uses every vertex exactly once?
- No characterization
- NP-Hard to construct

Focus on partial characterizations.

More Edges

Adding more edges to a graph might make it either easier or harder to find an Eulerian circuit.

- More edges can only make it easier to find a Hamiltonian cycle.
- Idea: Any graph with enough edges should be Hamiltonian.

How many is "enough"?

Minimum Degrees

Theorem (1.22): If a graph G on n > 2 vertices has minimum degree at least n/2, it is Hamiltonian.

Warmup

How do we even know that G is connected? Lemma: If a graph G on n vertices has minimum degree δ(G) ≥ (n-1)/2, then G is connected.

Proof

NTS can get between any vertices u, w.

- If edge (u,w), done.
- Else, each has (n-1)/2 edges to the other n-2 vertices
- Must both connect to some common vertex v.
- Have path $u \rightarrow v \rightarrow w$

Longest Path

Back to our main proof. Let $\delta(G) \ge n/2$. Let $v_1, v_2, ..., v_k$ be the *longest* path in G.

Note that v_1 and v_k cannot connect to vertices outside of this path. **Claim:** G has a cycle of length k.

Cycle

To get a cycle, we want to find an i so that there is an edge from v_1 to v_{i+1} and an edge from v_k to v_i .

Counting

- There are $\geq n/2$ i's so that v_k connects to v_i .
- There are $\geq n/2$ i's so that v_1 connect to v_{i+1} .
- There are only k-1 < n total i's.
- The two lists must have some index in common.

Cycle

Have a cycle of length k. G is connected so either:

• k=n.

- Cycle is Hamiltonian
- k<n
 - Some vertex in cycle connects to some other vertex.
 - We have a longer path.

In Summary

Given any path, can either:

- Extend path \Rightarrow longer path.
- Turn into cycle that connects to another vertex ⇒ longer path.
- Turn into Hamiltonian cycle.
- If we start with the *longest* path, it must lead to a Hamiltonian cycle.

Question: Algorithm

Does the proof we've presented give an algorithm for finding Hamiltonian cycles in graphs with δ(G) ≥ n/2?

A) Yes

B) No

Generalization

Actually, you can get slightly more out of the same argument.

Theorem (1.23): If G is a graph on at least 3 vertices and if d(u)+d(v) ≥ n for all pairs of non-adjacent vertices u and v, then G is Hamiltonian.

Counting

- Either v₁ adjacent to v_k, can use edge between them
- Or
 #{i:v_k adjacent to v_i} + #{i:v₁ adjacent to v_{i+1}} ≥ n
 So there must be some i for which both hold.

