
Final Exam Review 

Math 154 



Note 

This review will only cover material beyond what 
was on the two midterm review videos. If you 
want a comprehensive review of all course 
material that may be on the final, make sure 
to review the old videos as well. 



Matchings and Flows (Ch 1.7) 

• Bipartite Matching 

– Hall’s Theorem 

– Konig’s Theorem 

• Flows 

– Maxflow-Mincut & Applications 

• Perfect Matchings in General 

– Tutte’s Theorem 



Matchings 

Definition: A matching in a graph G is a set of 
edges of G no two of which share an endpoint. 
The size of a matching is the number of edges. 
A matching is maximum if its size is as large as 
possible. 



The Marriage Lemma 

Theorem (1.51): Let G be a bipartite graph with 
parts X and Y. There is a matching of G using 
all the vertices in X if and only if for every 
subset S ⊆ X, |N(S)| ≥ |S|, where N(S) is the 
set of neighbors of elements of S. 



Easy Direction 

Suppose there is an S with |N(S)| < |S|. 

Each element of S can only match to an element 
of N(S), and there are not enough for each to 
get a different one. 

X Y 

S N(S) 



Augmenting Paths 
• Consider paths starting 

at u that take any edge 
of the graph from X to 
Y, and take matching 
edges back. 

• If you can reach an 
unmatched vertex, can 
increase matching. 

u 



Set S 
If you cannot find one 

ending on unmatched 
vertex: 

• Consider all vertices 
you can reach with 
such a path. 

• Let S be the set of X-
vertices you can reach.  

• T set of Y-vertices. 
u 

S T 



Application: Regular Bipartite Graphs 

Proposition (1.57): Any regular, bipartite graph 
has a perfect matching (i.e. a matching that 
uses all of the vertices). 



Bipartite Graph Degrees 

Note that every edge of a bipartite graph 
attaches to each side of the graph. 

Lemma: Let G be a bipartite graph with parts X 
and Y, then 

Σ d(x) = |E| = Σ d(y) 

Corollary: For regular bipartite G, |X| = |Y|. 



Application: Edge Coloring Bipartite 
Graphs 

Recall, that given a graph G, the edge coloring 
number was either Δ(G) or Δ(G)+1. 

Theorem (V 6.1.1): Every finite bipartite graph G 
can be edge colored with Δ(G) colors. 



Proof Idea 

• Find a matching M which includes all of the 
vertices of G of maximum degree. 

• Color all edges in M one color, inductively 
color G-M. 

– Since M includes an edge from each vertex of max 
degree Δ(G-M)=Δ(G)-1, can be colored with Δ(G)-1 
colors. 



In General 
• Consider all degree k 

vertices 

• Find matching M1 among 
max degree vertices. 

• Remaining degree k 
vertices don’t connect. 

• Match degree k vertices 
on each side. 



Vertex Cover 

Definition: A vertex cover is a set C of vertices so 
that every edge is incident on some vertex of 
C. 

Lemma: The size of the maximum matching is at 
most the size of the minimum vertex cover. 

Proof: Each edge of M uses different vertex of C. 

Is this tight? 



Konig’s Theorem 

Theorem (1.53): For any finite, bipartite graph G 
the size of the maximum matching equals the 
size of the minimum vertex cover. 

Note: This is a generalization of Hall’s Theorem. 



Definitions 

A network is a directed graph G with designated 
source and sink vertices s and t. 

A flow is a subgraph of G so that for each vertex 
v other than s and t din(v) = dout(v). 

The size of a flow is dout(s) – din(s). 



Augmenting Paths 

Definition: Given a graph G and flow F an 
augmenting path is an s-t path that uses 
either edges of G unused by F in the forwards 
direction, or edges used by F in the backwards 
direction. 

Lemma: Given an augmenting path, you can add 
it to F to get a path with 1 more unit of flow. 



Cuts 

Definition: A cut is a partition of the vertices 
into two sets S and T, which contain s and t, 
respectively. 

The size of a cut is the total number of edges 
from vertices in S to vertices in T. 



Cuts and Flows 

Lemma (V 8.3.1): For a network G a flow F and a 
cut (S,T) it is the case that 

Size(F) = #{edges in F from S to T} - #{edges in F 
from T to S} 



Proof 

Consider the sum over all v in S of 
dout(v)-din(v). 

On the one hand this is 0 except for v = s, where 
it is Size(F). 

On the other hand, each edge contributes to 
one in degree and one out degree. This makes 
its total contribution 0 unless it crosses the 
cut. This gives 1 for each edge from S to T and 
-1 for each edge from T to S. 



Maxflow-Mincut 

Theorem (V. 8.3.2): For any network G the size 
of a maximum flow in G is the same as the size 
of a minimum cut. 



Maxflow ≤ Mincut 

Let F be a flow and C be a cut. 

By Lemma: 

Size(F) = #{edges in F from S to T} - #{edges in F 
from T to S} ≤ Size(C) 

Any flow is smaller than any cut, so the 
maximum flow size is at most than the 
minimum cut size. 



Maxflow ≥ Mincut 
• Let F be a maximum flow. 

• No augmenting paths. 

• Let S be the set of vertices v you can reach 
from s using unused forward edges or used 
backwards edges. 

• F uses all edges out of S, no edges into S. 

• Lemma says: Size(F) = Number of edges out of 
S = Size(C). 

• Maxflow ≥ Mincut. 



Perfect Matchings 

• Given graph G 

• Find a set of edges 
that uses each vertex 
once. 



In General 

Odd vs. Even is important. 

Definition: For a graph G let Ω(G) denote the 
number of connected components of G with 
an odd number of vertices. 

Lemma: If there is a set S of vertices of G with 
|S| < Ω(G-S), then G has no perfect matching. 



Tutte’s Theorem 

Surpsingly, this is the only thing that can go 
wrong. 

Theorem (1.59): If G is a finite graph so that for 
every set S of vertices |S| ≥ Ω(G-S), then G has 
a perfect matching. 



A Lemma 

Lemma: If G has an even number of vertices, 
then S-Ω(G-S) is always even. 

Note: If G has an odd number of vertices, then 
for S = ∅, |S| < Ω(G-S). 

Proof: The number of vertices of G equals |S| 
plus the sum of the sizes of the connected 
components of G-S. If a collection of numbers 
adds to an even number, it must contain an 
even number of odd numbers. 



Proof Overview 

• Let S be maximal so that |S| = Ω(G-S). 

• Claim 1: All components of G-S are odd. 

• Claim 2: For any component C of G-S and v in C, 
C-v has perfect matching. 
– Use IH and maximality of S. 

• Claim 3: There is a perfect matching between 
points in S and components of G-S 
– Use Hall’s Theorem 

• Match S and components. Then find perfect 
matching of remaining. 



Ramsey Theory (Ch 1.8) 

• Introduction 

• Definitions 

• Existence of Ramsey Numbers 

• Derivation of Small Ramsey Numbers 

• Lower Bounds 

• Other Ramsey Problems 



Ramsey’s Theorem 

Theorem: For any positive integers p and q 
there exists a number N so that for any  
n ≥ N and any red-blue coloring of the edges 
of a Kn, there is either a red Kp or a blue Kq. 

Definition: The smallest such number N is called 
the Ramsey Number, R(p,q). 

Furthermore: R(p,q) ≤ R(p-1,q)+R(p,q-1). 



Proof I 

• Take n ≥ R(p-1,q)+R(p,q-1). Color Kn. 

• Consider vertex v, has at least  
R(p-1,q)+R(p,q-1)-1 edges out of it. 

• Either has R(p-1,q) red edges or R(p,q-1) blue 
edges. 

• WLOG v has R(p-1,q) red edges to other 
vertices S. 



Proof II 

• Have v, S 

– All edge v to S red. 

– |S| ≥ R(p-1,q). 

• IH: Color of S has either: 

– Red Kp-1. 

• v + clique is red Kp 

– Blue Kq 

• Gives blue Kq 

• Either way we’re done. 

v 

S 



Known Ramsey Numbers 

• R(1,n) = 1 
• R(2,n) = n 
• R(3,3) = 6 
• R(3,4) = 9 
• R(4,4) = 18 
• R(3,5) = 14 
• R(3,6) = 18 
• R(3,7) = 23 
• R(3,8) = 28 
• R(3,9) = 36 
• R(4,5) = 25 



Upper Bound 

Theorem: R(p,q) ≤ 2p+q. 

Proof: By induction on p+q. 

• If p=1 or q=1, R(p,q) = 1 < 2p+q. 

• Assume the inequality holds for smaller p+q. 

– R(p,q) ≤R(p-1,q)+R(p,q-1)  
           ≤2p+q-1+2p+q-1 ≤2p+q. 



Lower Bound 

Theorem (1.66): If n ≥ 3, R(n,n) ≥ 2n/2. 



Random Construction 

Color the edges of a KN randomly. On average 
how many monochromatic Kns? 

• ≈ Nn many collections of n vertices. 

• Each has a ≈ 2-n(n-1)/2 probability of being 
monochromatic 

• Average number of monochromatic Kns is 
roughly Nn/(2n(n-1)/2) ≈ [N/2(n-1)/2]n. 

• If N much smaller than 2n/2, this is less than 1, 
so some coloring must have none. 

 



Graph Ramsey Numbers 

Definition: For graphs G and H, we define the 
graph Ramsey number R(G,H) to be the 
minimum n so that any red-blue coloring of Kn 
has either a red copy of G or a blue copy of H. 



Finiteness 

Note that G and H are contained in complete 
graphs, so this is finite. 

Theorem (1.67): 
R(G,H) ≤ R(|VG|, |VH|) 

Proof: Let m = R(|VG|, |VH|). Any red-blue 
coloring of Km has either a monochromatic 
complete red graph on |VG| or monochromatic 
blue complete graph on |VH|. These contain a 
red copy of G or blue copy of H. 



Example 

Theorem (1.70): If m and n are integers with m-
1 dividing n-1 and Tm is a tree with m vertices 
then 

R(Tm,K1,n) = m+n-1. 



Coloring 

• Blue Km-1s connected by red edges. 

• No Red Tm: All but CCs size m-1. 

• No Blue K1,n:Each vertex has blue degree 
(m+n-3) – (m-2) = n-1. 

Km-1 

Km-1 

Km-1 

Km-1 

Km-1 



Upper Bound 

• Need to show that any red-blue coloring of a 
Kn+m-1 has either a red Tm or a blue K1,n. 

• If any vertex has n or more blue edges, have 
blue K1,n. 

• Otherwise, consider Gr, graph of red edges. 

– Note that δ(Gr) ≥ m-1. 



Lemma 

Lemma (1.16): Let T be any tree on k vertices 
and G a graph with δ(G) ≥ k-1. Then G contains 
a copy of T. 

 

Apply to Gr and Tm to get final result. 



Proof by Induction on k 
• Base case: k = 1 

– Can embed single point 

• Assume can embed any tree on k-1 vertices. 

• Let v be a leaf of T. Removing edge (u,v) gives 
T’ 

• By IH, embed T’ in G. 

• Need new neighbor of u to be v. 

• u has k-1 neighbors, only k-2 are used. 


