Final Exam Review

Math 154

Note

This review will only cover material beyond what was on the two midterm review videos. If you want a comprehensive review of all course material that may be on the final, make sure to review the old videos as well.

Matchings and Flows (Ch 1.7)

- Bipartite Matching
- Hall's Theorem
- Konig's Theorem
- Flows
- Maxflow-Mincut \& Applications
- Perfect Matchings in General
- Tutte's Theorem

Matchings

Definition: A matching in a graph G is a set of edges of G no two of which share an endpoint. The size of a matching is the number of edges. A matching is maximum if its size is as large as possible.

The Marriage Lemma

Theorem (1.51): Let G be a bipartite graph with parts X and Y. There is a matching of G using all the vertices in X if and only if for every subset $S \subseteq X,|N(S)| \geq|S|$, where $N(S)$ is the set of neighbors of elements of S.

Easy Direction

Suppose there is an S with $|N(S)|<|S|$.
Each element of S can only match to an element of $N(S)$, and there are not enough for each to get a different one.

Augmenting Paths

- Consider paths starting at u that take any edge of the graph from X to Y , and take matching edges back.
- If you can reach an unmatched vertex, can increase matching.

u

Set S

If you cannot find one ending on unmatched vertex:

- Consider all vertices you can reach with such a path.
- Let S be the set of X vertices you can reach.
- T set of Y -vertices.

Application: Regular Bipartite Graphs

Proposition (1.57): Any regular, bipartite graph has a perfect matching (i.e. a matching that uses all of the vertices).

Bipartite Graph Degrees

Note that every edge of a bipartite graph attaches to each side of the graph.
Lemma: Let G be a bipartite graph with parts X and Y, then

$$
\Sigma d(x)=|E|=\Sigma d(y)
$$

Corollary: For regular bipartite $\mathrm{G},|\mathrm{X}|=|\mathrm{Y}|$.

Application: Edge Coloring Bipartite Graphs

Recall, that given a graph G, the edge coloring number was either $\Delta(\mathrm{G})$ or $\Delta(\mathrm{G})+1$.
Theorem (V 6.1.1): Every finite bipartite graph G can be edge colored with $\Delta(G)$ colors.

Proof Idea

- Find a matching M which includes all of the vertices of G of maximum degree.
- Color all edges in M one color, inductively color G-M.
- Since M includes an edge from each vertex of max degree $\Delta(\mathrm{G}-\mathrm{M})=\Delta(\mathrm{G})-1$, can be colored with $\Delta(\mathrm{G})-1$ colors.

In General

- Consider all degree k vertices
- Find matching M_{1} among max degree vertices.
- Remaining degree k vertices don't connect.
- Match degree k vertices on each side.

Vertex Cover

Definition: A vertex cover is a set C of vertices so that every edge is incident on some vertex of C.

Lemma: The size of the maximum matching is at most the size of the minimum vertex cover.

Proof: Each edge of M uses different vertex of C.
Is this tight?

Konig's Theorem

Theorem (1.53): For any finite, bipartite graph G the size of the maximum matching equals the size of the minimum vertex cover.
Note: This is a generalization of Hall's Theorem.

Definitions

A network is a directed graph G with designated source and sink vertices s and t .
A flow is a subgraph of G so that for each vertex v other than s and $t d_{\text {in }}(v)=d_{\text {out }}(v)$.
The size of a flow is $d_{\text {out }}(s)-d_{\text {in }}(s)$.

Augmenting Paths

Definition: Given a graph G and flow F an augmenting path is an s-t path that uses either edges of G unused by F in the forwards direction, or edges used by F in the backwards direction.
Lemma: Given an augmenting path, you can add it to F to get a path with 1 more unit of flow.

Cuts

Definition: A cut is a partition of the vertices into two sets S and T , which contain s and t , respectively.
The size of a cut is the total number of edges from vertices in S to vertices in T.

Cuts and Flows

Lemma (V 8.3.1): For a network G a flow F and a cut (S, T) it is the case that
Size(F) = \#\{edges in F from S to T\} - \#\{edges in F from T to $S\}$

Proof

Consider the sum over all v in S of $d_{\text {out }}(v)-d_{\text {in }}(v)$.
On the one hand this is 0 except for $v=s$, where it is Size(F).
On the other hand, each edge contributes to one in degree and one out degree. This makes its total contribution 0 unless it crosses the cut. This gives 1 for each edge from S to T and -1 for each edge from T to S.

Maxflow-Mincut

Theorem (V. 8.3.2): For any network G the size of a maximum flow in G is the same as the size of a minimum cut.

Maxflow \leq Mincut

Let F be a flow and C be a cut.
By Lemma:
Size (F) = \#\{edges in F from S to T\} - \#\{edges in F from T to S$\} \leq \operatorname{Size}(\mathrm{C})$
Any flow is smaller than any cut, so the maximum flow size is at most than the minimum cut size.

Maxflow \geq Mincut

- Let F be a maximum flow.
- No augmenting paths.
- Let S be the set of vertices v you can reach from s using unused forward edges or used backwards edges.
- F uses all edges out of S, no edges into S.
- Lemma says: Size(F) = Number of edges out of S = Size(C).
- Maxflow \geq Mincut.

Perfect Matchings

- Given graph G
- Find a set of edges that uses each vertex once.

In General

Odd vs. Even is important.
Definition: For a graph G let $\Omega(G)$ denote the number of connected components of G with an odd number of vertices.

Lemma: If there is a set S of vertices of G with $|S|<\Omega(G-S)$, then G has no perfect matching.

Tutte's Theorem

Surpsingly, this is the only thing that can go wrong.
Theorem (1.59): If G is a finite graph so that for every set S of vertices $|S| \geq \Omega(G-S)$, then G has a perfect matching.

A Lemma

Lemma: If G has an even number of vertices, then $\mathrm{S}-\Omega(\mathrm{G}-\mathrm{S})$ is always even.
Note: If G has an odd number of vertices, then for $S=\emptyset,|S|<\Omega(G-S)$.
Proof: The number of vertices of G equals $|S|$ plus the sum of the sizes of the connected components of G-S. If a collection of numbers adds to an even number, it must contain an even number of odd numbers.

Proof Overview

- Let S be maximal so that $|S|=\Omega(G-S)$.
- Claim 1: All components of G-S are odd.
- Claim 2: For any component C of G-S and v in C , C-v has perfect matching.
- Use IH and maximality of S.
- Claim 3: There is a perfect matching between points in S and components of G-S
- Use Hall's Theorem
- Match S and components. Then find perfect matching of remaining.

Ramsey Theory (Ch 1.8)

- Introduction
- Definitions
- Existence of Ramsey Numbers
- Derivation of Small Ramsey Numbers
- Lower Bounds
- Other Ramsey Problems

Ramsey's Theorem

Theorem: For any positive integers p and q there exists a number N so that for any $\mathrm{n} \geq \mathrm{N}$ and any red-blue coloring of the edges of a K_{n}, there is either a red K_{p} or a blue K_{q}.
Definition: The smallest such number N is called the Ramsey Number, R(p,q).

Furthermore: $R(p, q) \leq R(p-1, q)+R(p, q-1)$.

Proof I

- Take $n \geq R(p-1, q)+R(p, q-1)$. Color K_{n}.
- Consider vertex v, has at least $R(p-1, q)+R(p, q-1)-1$ edges out of it.
- Either has $R(p-1, q)$ red edges or $R(p, q-1)$ blue edges.
- WLOG v has R(p-1,q) red edges to other vertices S.

Proof II

- Have v, S
- All edge v to S red.
$-|S| \geq R(p-1, q)$.
- IH: Color of S has either:
- Red K_{p-1}.
- $\mathrm{v}+\mathrm{clique}$ is red K_{p}

v
- Blue K_{q}
- Gives blue K_{q}
- Either way we're done.

Known Ramsey Numbers

- $R(1, n)=1$
- $R(2, n)=n$
- $R(3,3)=6$
- $R(3,4)=9$
- $R(4,4)=18$
- $\mathrm{R}(3,5)=14$
- $R(3,6)=18$
- $R(3,7)=23$
- $R(3,8)=28$
- $R(3,9)=36$
- $R(4,5)=25$

Upper Bound

Theorem: $R(p, q) \leq 2^{p+q}$.
Proof: By induction on $p+q$.

- If $p=1$ or $q=1, R(p, q)=1<2^{p+q}$.
- Assume the inequality holds for smaller $p+q$.
$-R(p, q) \leq R(p-1, q)+R(p, q-1)$

$$
\leq 2^{p+q-1}+2^{p+q-1} \leq 2^{p+q}
$$

Lower Bound

Theorem (1.66): If $n \geq 3, R(n, n) \geq 2^{n / 2}$.

Random Construction

Color the edges of a K_{N} randomly. On average how many monochromatic $K_{n} s$?

- $\approx \mathrm{N}^{\mathrm{n}}$ many collections of n vertices.
- Each has $a \approx 2^{-n(n-1) / 2}$ probability of being monochromatic
- Average number of monochromatic Kns is roughly $N^{n} /\left(2^{n(n-1) / 2}\right) \approx\left[N / 2^{(n-1) / 2}\right]^{n}$.
- If N much smaller than $2^{n / 2}$, this is less than 1 , so some coloring must have none.

Graph Ramsey Numbers

Definition: For graphs G and H , we define the graph Ramsey number $\mathrm{R}(\mathrm{G}, \mathrm{H})$ to be the minimum n so that any red-blue coloring of K_{n} has either a red copy of G or a blue copy of H .

Finiteness

Note that G and H are contained in complete graphs, so this is finite.
Theorem (1.67):
$R(G, H) \leq R\left(\left|V_{G}\right|,\left|V_{H}\right|\right)$
Proof: Let $\mathrm{m}=\mathrm{R}\left(\left|\mathrm{V}_{\mathrm{G}}\right|,\left|\mathrm{V}_{\mathrm{H}}\right|\right)$. Any red-blue coloring of K_{m} has either a monochromatic complete red graph on $\left|\mathrm{V}_{\mathrm{G}}\right|$ or monochromatic blue complete graph on $\left|\mathrm{V}_{\mathrm{H}}\right|$. These contain a red copy of G or blue copy of H.

Example

Theorem (1.70): If m and n are integers with m 1 dividing $n-1$ and T_{m} is a tree with m vertices then

$$
R\left(T_{m}, K_{1, n}\right)=m+n-1 .
$$

Coloring

- Blue $K_{m-1} s$ connected by red edges.
- No Red T_{m} : All but CCs size m-1.
- No Blue K1,n:Each vertex has blue degree

$$
(m+n-3)-(m-2)=n-1
$$

Upper Bound

- Need to show that any red-blue coloring of a K_{n+m-1} has either a red T_{m} or a blue $K_{1, n}$.
- If any vertex has n or more blue edges, have blue $K_{1, n}$.
- Otherwise, consider G_{r}, graph of red edges.
- Note that $\delta\left(G_{r}\right) \geq m-1$.

Lemma

Lemma (1.16): Let T be any tree on k vertices and G a graph with $\delta(G) \geq k-1$. Then G contains a copy of T .

Apply to G_{r} and T_{m} to get final result.

Proof by Induction on k

- Base case: $\mathrm{k}=1$
- Can embed single point
- Assume can embed any tree on k-1 vertices.
- Let v be a leaf of T. Removing edge (u, v) gives T'
- By IH, embed T' in G.
- Need new neighbor of u to be v.
- u has k-1 neighbors, only k-2 are used.

