Final Exam Review

Math 154

Note

This review will only cover material beyond what was on the two midterm review videos. If you want a comprehensive review of all course material that may be on the final, make sure to review the old videos as well.

Matchings and Flows (Ch 1.7)

- Bipartite Matching
 - Hall's Theorem
 - Konig's Theorem
- Flows
 - Maxflow-Mincut & Applications
- Perfect Matchings in General
 - Tutte's Theorem

Matchings

<u>Definition</u>: A *matching* in a graph G is a set of edges of G no two of which share an endpoint. The *size* of a matching is the number of edges. A matching is *maximum* if its size is as large as possible.

The Marriage Lemma

Theorem (1.51): Let G be a bipartite graph with parts X and Y. There is a matching of G using all the vertices in X if and only if for every subset $S \subseteq X$, $|N(S)| \ge |S|$, where N(S) is the set of neighbors of elements of S.

Easy Direction

Suppose there is an S with |N(S)| < |S|.

Each element of S can only match to an element of N(S), and there are not enough for each to get a different one.

Augmenting Paths

- Consider paths starting at u that take any edge of the graph from X to Y, and take matching edges back.
- If you can reach an unmatched vertex, can increase matching.

Set S

- If you cannot find one ending on unmatched vertex:
- Consider all vertices you can reach with such a path.
- Let S be the set of Xvertices you can reach.
- T set of Y-vertices.

Application: Regular Bipartite Graphs

Proposition (1.57): Any regular, bipartite graph has a perfect matching (i.e. a matching that uses all of the vertices).

Bipartite Graph Degrees

Note that every edge of a bipartite graph attaches to each side of the graph.

Lemma: Let G be a bipartite graph with parts X and Y, then

$$\Sigma d(x) = |E| = \Sigma d(y)$$

<u>Corollary</u>: For regular bipartite G, |X| = |Y|.

Application: Edge Coloring Bipartite Graphs

Recall, that given a graph G, the edge coloring number was either $\Delta(G)$ or $\Delta(G)+1$.

Theorem (V 6.1.1): Every finite bipartite graph G can be edge colored with $\Delta(G)$ colors.

Proof Idea

- Find a matching M which includes all of the vertices of G of maximum degree.
- Color all edges in M one color, inductively color G-M.
 - Since M includes an edge from each vertex of max degree Δ(G-M)=Δ(G)-1, can be colored with Δ(G)-1 colors.

In General

- Consider all degree k vertices
- Find matching M₁ among max degree vertices.
- Remaining degree k vertices don't connect.
- Match degree k vertices on each side.

Vertex Cover

<u>**Definition:</u>** A *vertex cover* is a set C of vertices so that every edge is incident on some vertex of C.</u>

Lemma: The size of the maximum matching is at most the size of the minimum vertex cover.

Proof: Each edge of M uses different vertex of C. Is this tight?

Konig's Theorem

Theorem (1.53): For any finite, bipartite graph G the size of the maximum matching equals the size of the minimum vertex cover.

Note: This is a generalization of Hall's Theorem.

Definitions

A *network* is a directed graph G with designated *source* and *sink* vertices s and t.

A *flow* is a subgraph of G so that for each vertex v other than s and t $d_{in}(v) = d_{out}(v)$.

The size of a flow is $d_{out}(s) - d_{in}(s)$.

Augmenting Paths

<u>**Definition:**</u> Given a graph G and flow F an *augmenting path* is an s-t path that uses either edges of G unused by F in the forwards direction, or edges used by F in the backwards direction.

Lemma: Given an augmenting path, you can add it to F to get a path with 1 more unit of flow.

Cuts

<u>**Definition:</u>** A *cut* is a partition of the vertices into two sets S and T, which contain s and t, respectively.</u>

The *size* of a cut is the total number of edges from vertices in S to vertices in T.

Cuts and Flows

Lemma (V 8.3.1): For a network G a flow F and a cut (S,T) it is the case that Size(F) = #{edges in F from S to T} - #{edges in F from T to S}

Proof

Consider the sum over all v in S of d_{out}(v)-d_{in}(v).

On the one hand this is 0 except for v = s, where it is Size(F).

On the other hand, each edge contributes to one in degree and one out degree. This makes its total contribution 0 unless it crosses the cut. This gives 1 for each edge from S to T and -1 for each edge from T to S.

Maxflow-Mincut

Theorem (V. 8.3.2): For any network G the size of a maximum flow in G is the same as the size of a minimum cut.

$Maxflow \leq Mincut$

Let F be a flow and C be a cut.

By Lemma:

Size(F) = #{edges in F from S to T} - #{edges in F from T to S} \leq Size(C)

Any flow is smaller than any cut, so the maximum flow size is at most than the minimum cut size.

$Maxflow \ge Mincut$

- Let F be a maximum flow.
- No augmenting paths.
- Let S be the set of vertices v you can reach from s using unused forward edges or used backwards edges.
- F uses all edges out of S, no edges into S.
- Lemma says: Size(F) = Number of edges out of S = Size(C).
- Maxflow \geq Mincut.

Perfect Matchings

- Given graph G
- Find a set of edges that uses each vertex once.

In General

Odd vs. Even is important.

<u>**Definition:</u>** For a graph G let Ω(G) denote the number of connected components of G with an odd number of vertices.</u>

Lemma: If there is a set S of vertices of G with |S| < Ω(G-S), then G has no perfect matching.

Tutte's Theorem

Surpsingly, this is the only thing that can go wrong.

Theorem (1.59): If G is a finite graph so that for every set S of vertices $|S| \ge \Omega(G-S)$, then G has a perfect matching.

A Lemma

- Lemma: If G has an even number of vertices, then S-Ω(G-S) is always even.
- <u>Note</u>: If G has an odd number of vertices, then for $S = \emptyset$, $|S| < \Omega(G-S)$.
- **Proof:** The number of vertices of G equals |S| plus the sum of the sizes of the connected components of G-S. If a collection of numbers adds to an even number, it must contain an even number of odd numbers.

Proof Overview

- Let S be *maximal* so that $|S| = \Omega(G-S)$.
- Claim 1: All components of G-S are odd.
- Claim 2: For any component C of G-S and v in C, C-v has perfect matching.

– Use IH and maximality of S.

 Claim 3: There is a perfect matching between points in S and components of G-S

– Use Hall's Theorem

• Match S and components. Then find perfect matching of remaining.

Ramsey Theory (Ch 1.8)

- Introduction
- Definitions
- Existence of Ramsey Numbers
- Derivation of Small Ramsey Numbers
- Lower Bounds
- Other Ramsey Problems

Ramsey's Theorem

<u>Theorem</u>: For any positive integers p and q there exists a number N so that for any $n \ge N$ and any red-blue coloring of the edges of a K_n, there is either a red K_p or a blue K_q. **<u>Definition</u>**: The smallest such number N is called the *Ramsey Number*, R(p,q).

<u>Furthermore</u>: $R(p,q) \le R(p-1,q)+R(p,q-1)$.

Proof I

- Take $n \ge R(p-1,q)+R(p,q-1)$. Color K_n .
- Consider vertex v, has at least R(p-1,q)+R(p,q-1)-1 edges out of it.
- Either has R(p-1,q) red edges or R(p,q-1) blue edges.
- WLOG v has R(p-1,q) red edges to other vertices S.

Proof II

- Have v, S
 - All edge v to S red.
 - $-|\mathsf{S}| \geq \mathsf{R}(\mathsf{p}\text{-}\mathsf{1},\mathsf{q}).$
- IH: Color of S has either:
 - $\operatorname{Red} K_{p-1}$.
 - v + clique is red K_p
 - Blue K_q
 - Gives blue K_q
- Either way we're done.

Known Ramsey Numbers

- R(1,n) = 1
- R(2,n) = n
- R(3,3) = 6
- R(3,4) = 9
- R(4,4) = 18
- R(3,5) = 14
- R(3,6) = 18
- R(3,7) = 23
- R(3,8) = 28
- R(3,9) = 36
- R(4,5) = 25

Upper Bound

<u>Theorem</u>: $R(p,q) \leq 2^{p+q}$.

Proof: By induction on p+q.

- If p=1 or q=1, R(p,q) = 1 < 2^{p+q}.
- Assume the inequality holds for smaller p+q.
 R(p,q) ≤R(p-1,q)+R(p,q-1) ≤2^{p+q-1}+2^{p+q-1} <2^{p+q}.

Lower Bound

Theorem (1.66): If $n \ge 3$, $R(n,n) \ge 2^{n/2}$.

Random Construction

Color the edges of a K_N randomly. On average how many monochromatic K_n s?

- $\approx N^n$ many collections of n vertices.
- Each has a ≈ 2^{-n(n-1)/2} probability of being monochromatic
- Average number of monochromatic Kns is roughly Nⁿ/(2^{n(n-1)/2}) ≈ [N/2^{(n-1)/2}]ⁿ.
- If N much smaller than 2^{n/2}, this is less than 1, so some coloring must have none.

Graph Ramsey Numbers

<u>Definition</u>: For graphs G and H, we define the graph Ramsey number R(G,H) to be the minimum n so that any red-blue coloring of K_n has either a red copy of G or a blue copy of H.

Finiteness

Note that G and H are contained in complete graphs, so this is finite.

<u>Theorem (1.67):</u>

 $\mathsf{R}(\mathsf{G},\mathsf{H}) \leq \mathsf{R}(|\mathsf{V}_{\mathsf{G}}|, |\mathsf{V}_{\mathsf{H}}|)$

<u>Proof:</u> Let m = $R(|V_G|, |V_H|)$. Any red-blue coloring of K_m has either a monochromatic complete red graph on $|V_G|$ or monochromatic blue complete graph on $|V_H|$. These contain a red copy of G or blue copy of H.

Example

Theorem (1.70): If m and n are integers with m-1 dividing n-1 and T_m is a tree with m vertices then

 $R(T_m, K_{1,n}) = m + n - 1.$

- Blue K_{m-1}s connected by red edges.
- No Red T_m: All but CCs size m-1.
 - No Blue K1,n:Each vertex has blue degree (m+n-3) – (m-2) = n-1.

Upper Bound

- Need to show that any red-blue coloring of a K_{n+m-1} has either a red T_m or a blue $K_{1,n}$.
- If any vertex has n or more blue edges, have blue K_{1,n}.
- Otherwise, consider G_r, graph of red edges.

- Note that $\delta(G_r) \ge m-1$.

Lemma

Lemma (1.16): Let T be any tree on k vertices and G a graph with δ(G) ≥ k-1. Then G contains a copy of T.

Apply to G_r and T_m to get final result.

Proof by Induction on k

• Base case: k = 1

Can embed single point

- Assume can embed any tree on k-1 vertices.
- Let v be a leaf of T. Removing edge (u,v) gives
 T'
- By IH, embed T' in G.
- Need new neighbor of u to be v.
- u has k-1 neighbors, only k-2 are used.