Final Exam Review

Math 154



Note

This review will only cover material beyond what
was on the two midterm review videos. If you
want a comprehensive review of all course
material that may be on the final, make sure
to review the old videos as well.



Matchings and Flows (Ch 1.7)

* Bipartite Matching
— Hall’s Theorem

— Konig’s Theorem

* Flows
— Maxflow-Mincut & Applications

e Perfect Matchings in General
— Tutte’s Theorem



Matchings

Definition: A matching in a graph G is a set of
edges of G no two of which share an endpoint.
The size of a matching is the number of edges.
A matching is maximum if its size is as large as

possible.




The Marriage Lemma

Theorem (1.51): Let G be a bipartite graph with
parts X and Y. There is a matching of G using
all the vertices in X if and only if for every
subset S € X, |N(S)| = |S|, where N(S) is the
set of neighbors of elements of S.




Easy Direction

Suppose there is an S with |[N(S)| < |S].

Each element of S can only match to an element
of N(S), and there are not enough for each to
get a different one.
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Augmenting Paths

* Consider paths starting

at u that take any edge ®
of the graph from X to
Y, and take matching
°

edges back.

* |f you can reach an
unmatched vertex, can
increase matching.




Set S

If you cannot find one
ending on unmatched
vertex:

* Consider all vertices
you can reach with
such a path.

e Let S be the set of X-
vertices you can reach.

e T set of Y-vertices.



Application: Regular Bipartite Graphs

Proposition (1.57): Any regular, bipartite graph
has a perfect matching (i.e. a matching that
uses all of the vertices).




Bipartite Graph Degrees

Note that every edge of a bipartite graph
attaches to each side of the graph.

Lemma: Let G be a bipartite graph with parts X
and Y, then

2d(x) = |E] =2 d(y)
Corollary: For regular bipartite G, | X| = |Y].




Application: Edge Coloring Bipartite
Graphs
Recall, that given a graph G, the edge coloring
number was either A(G) or A(G)+1.

Theorem (V 6.1.1): Every finite bipartite graph G
can be edge colored with A(G) colors.




Proof Idea

* Find a matching M which includes all of the
vertices of G of maximum degree.

* Color all edges in M one color, inductively
color G-M.

— Since M includes an edge from each vertex of max
degree A(G-M)=A(G)-1, can be colored with A(G)-1
colors.



In General

Consider all degree k
vertices

Find matching M, among
max degree vertices.

Remaining degree k
vertices don’t connect.

Match degree k vertices
on each side.




Vertex Cover

Definition: A vertex cover is a set C of vertices so
that every edge is incident on some vertex of
C.

Lemma: The size of the maximum matching is at
most the size of the minimum vertex cover.

Proof: Each edge of M uses different vertex of C.
s this tight?




Konig’s Theorem

Theorem (1.53): For any finite, bipartite graph G
the size of the maximum matching equals the
size of the minimum vertex cover.

Note: This is a generalization of Hall’s Theorem.




Definitions

A network is a directed graph G with designated
source and sink vertices s and t.

A flow is a subgraph of G so that for each vertex
v otherthansand td, (v) =d_,(v).

The size of a flow is d_.(s) — d..(s).



Augmenting Paths

Definition: Given a graph G and flow F an
augmenting path is an s-t path that uses
either edges of G unused by F in the forwards
direction, or edges used by F in the backwards
direction.

Lemma: Given an augmenting path, you can add
it to F to get a path with 1 more unit of flow.




Cuts

Definition: A cut is a partition of the vertices
into two sets S and T, which contain s and t,
respectively.

The size of a cut is the total number of edges
from vertices in S to verticesin T.



Cuts and Flows

Lemma (V 8.3.1): For a network G a flow F and a
cut (S,T) it is the case that
Size(F) = #{edges in F from S to T} - #{edges in F
from T to S}




Proof

Consider the sum over all vin S of
d, ¢ (v)-d (v).

On the one hand this is O except for v = s, where
it is Size(F).

On the other hand, each edge contributes to
one in degree and one out degree. This makes
its total contribution O unless it crosses the

cut. This gives 1 for each edge from Sto T and
-1 for each edge from T to S.



Maxflow-Mincut

Theorem (V. 8.3.2): For any network G the size
of a maximum flow in G is the same as the size
of a minimum cut.




Maxflow < Mincut

Let F be a flow and C be a cut.
By Lemma:
Size(F) = #{edges in F from S to T} - #{edges in F
from T to S} < Size(C)
Any flow is smaller than any cut, so the

maximum flow size is at most than the
minimum cut size.



Maxflow > Mincut

Let F be a maximum flow.
No augmenting paths.

Let S be the set of vertices v you can reach
from s using unused forward edges or used
nackwards edges.

- uses all edges out of S, no edges into S.

_lemma says: Size(F) = Number of edges out of
S = Size(C).

Maxflow = Mincut.



Perfect Matchings

* Given graph G

* Find a set of edges
that uses each vertex

once.




In General

Odd vs. Even is important.

Definition: For a graph G let Q(G) denote the
number of connected components of G with
an odd number of vertices.

Lemma: If there is a set S of vertices of G with
|S| < Q(G-S), then G has no perfect matching.




Tutte’s Theorem

Surpsingly, this is the only thing that can go
wrong.

Theorem (1.59): If G is a finite graph so that for
every set S of vertices |S| =2 Q(G-S), then G has
a perfect matching.




A Lemma

Lemma: If G has an even number of vertices,
then S-Q(G-S) is always even.

Note: If G has an odd number of vertices, then
forS=0@, |S| < Q(G-S).

Proof: The number of vertices of G equals |S|
plus the sum of the sizes of the connected
components of G-S. If a collection of numbers
adds to an even number, it must contain an
even number of odd numbers.




Proof Overview

Let S be maximal so that |S| = Q(G-S).
Claim 1: All components of G-S are odd.

Claim 2: For any component C of G-Sand v in C,
C-v has perfect matching.

— Use IH and maximality of S.

Claim 3: There is a perfect matching between
points in S and components of G-S

— Use Hall’'s Theorem

Match S and components. Then find perfect
matching of remaining.



Ramsey Theory (Ch 1.8)

Introduction

Definitions

Existence of Ramsey Numbers
Derivation of Small Ramsey Numbers
Lower Bounds

Other Ramsey Problems



Ramsey’s Theorem

Theorem: For any positive integers p and g

there exists a num
n > N and any red-
of a K, there is eit

Definition: The smal

oer N so that for any
olue coloring of the edges
ner a red K; or a blue K.

est such number N is called

the Ramsey Number, R(p,q).

Furthermore: R(p,q)

< R(p-1,9)+R(p,q-1).



Proof |

Take n 2 R(p-1,9)+R(p,g-1). Color K..

Consider vertex v, has at least
R(p-1,9)+R(p,q-1)-1 edges out of it.

Either has R(p-1,q) red edges or R(p,g-1) blue
edges.

WLOG v has R(p-1,q) red edges to other
vertices S.



Proof Il

* Havev, S
— All edge v to S red.
— |S| 2 R(p-1,9).
* |H: Color of S has either:
— Red K ;.
* v+ clique is red K, Vv

— Blue Kq
e Gives blue Kq

* Either way we’re done.



Known Ramsey Numbers

R(1,n)=1
R(2,n) =n
R(3,3)=6
R(3,4)=9
R(4,4) = 18
R(3,5)=14
R(3,6) =18
R(3,7) = 23
R(3,8) = 28
R(3,9) = 36
) =25



Upper Bound

Theorem: R(p,q) < 2P*a,

Proof: By induction on p+q.
e |f p=1o0rg=1, R(p,q) =1 < 2°P*,
 Assume the inequality holds for smaller p+q.

— R(p,q) <R(p-1,9)+R(p,q-1)
<2P+a-142p+a-1 <p+a.




Lower Bound

Theorem (1.66): If n > 3, R(n,n) > 2"/2,




Random Construction

Color the edges of a K, randomly. On average
how many monochromatic K_s?

= N" many collections of n vertices.

e Each has a = 2("1/2 probhability of being
monochromatic

* Average number of monochromatic Kns is
roughly N"/(2n(n-1)/2) ~ [N/2(n-1)/2]n,

* If N much smaller than 2"/2, this is less than 1,
so some coloring must have none.



Graph Ramsey Numbers

Definition: For graphs G and H, we define the
graph Ramsey number R(G,H) to be the
minimum n so that any red-blue coloring of K
has either a red copy of G or a blue copy of H.




Finiteness

Note that G and H are contained in complete
graphs, so this is finite.

Theorem (1.67):

Proof: Let m = R(|V;]|, |V4]). Any red-blue
coloring of K_ has either a monochromatic
complete red graph on | V| or monochromatic
blue complete graph on |V, |. These contain a
red copy of G or blue copy of H.




Example

Theorem (1.70): If m and n are integers with m-
1 dividing n-1 and T is a tree with m vertices
then

R(T, Ky ) = m+n-1.



Coloring

* Blue K ;s connected by red edges.
* No Red T, : All but CCs size m-1.

* No Blue K1,n:Each vertex has blue degree
(m+n-3) — (m-2) = n-1.



Upper Bound

. Need to show that any red-blue coloring of a

Knim-1 Nas eitherared T, or a blue K, .

 |f any vertex has n or more blue edges, have
olue K .

* Otherwise, consider G,, graph of red edges.
— Note that 6(G,) 2 m-1.



Lemma

Lemma (1.16): Let T be any tree on k vertices
and G a graph with 6(G) = k-1. Then G contains
a copy of T.

Apply to G, and T, to get final result.



Proof by Induction on k

Base case: k=1

— Can embed single point

Assume can embed any tree on k-1 vertices.
Let v be a leaf of T. Removing edge (u,v) gives
e

By IH, embed T’ in G.

Need new neighbor of u to be v.

u has k-1 neighbors, only k-2 are used.



