
Exam 2 Review 

Math 154 Spring 2020 



Ch 1.5: Planar Graphs 

• Planarity Definition 

• Faces and Euler’s Formula 

• Platonic Solids 

• Straight Line Embeddings 

• Non-Planar Graphs 

 

 



Planar Embeddings 

Definition: A planar embedding of a graph G is a 
drawing of G so that 

• Each vertex of G corresponds to a point in the 
plane. 

• Each edge of G corresponds to a curve 
connecting its endpoints. 

• No two edge-curves cross except at endpoints. 



Planar Graphs 

Definition: A graph is planar if it has a planar 
embedding. 



Application: Maps 

Given a map with simply connected regions, the 
adjacency graph on regions is planar. 



Faces 

A planar embedding of a graph divides the plane 
into regions. These are called faces. 
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Euler’s Formula 

Theorem (1.31): For any planar embedding of a 
connected graph G with v vertices, e edges 
and f faces (including the infinite face) 

v – e + f = 2 



General Graphs 

• Use induction on e. 

• Base case: G is a tree. 

• Otherwise, G has a cycle 

• Cycle separates plane into 
inside and outside. 

• Remove an edge of cycle, 
decreases f by 1. 

• IH => v – (e-1) + (f-1) = 2 



Sides to a Face 

If G is a connected planar graph, any face 
(including the infinite one) will be bounded by 
a loop of edges. 

The number of 
sides of the face is 
the number of 
edges in this loop. 



Dual Handshake Lemma 

• Note similarity to Handshake Lemma. Sides of 
faces instead of degrees of vertices. 
• Proof similar. 



Edge Bound 

Theorem (1.33): If G is a connected planar graph 
with |V| ≥ 3, then 

|E| ≤ 3|V| - 6. 



K5 Non-Planar 

Theorem (1.34): The K5 is non-planar. 

Proof: If it were, we would have  

e ≤ 3v-6 = 9 

But e = 10. Contradiction! 



K3,3 Non-Planar 

Theorem (1.32): K3,3 is non-planar. 

Proof: K3,3 is bipartite, so it has no odd cycles. 
Therefore, if planar any face has at least 4 
sides. 

If planar, 

e ≤ 2v-4 = 8. 

But e=9. Contradiction! 



Minimum Degree 
Theorem (1.35): If G is a finite, connected planar 

graph, its vertices have minimum degree at 
most 5. 

Proof: Otherwise, each vertex has degree 6 or 
more. 

Handshake Lemma implies 

2e = Σ d(v) ≥ 6v. 

But then 

3v- 6 ≥ e ≥ 3v. 

Contradiction! 



Triangulations 

We note that our edge bound of 3v-6 has an 
equality case if and only if all faces are 
triangles. 

We can always ensure that this is the case if we 
add more edges. 

Lemma: For any planar embedding of a graph G 
there is a way to add more edges to G to get a 
new planar graph G’ in which all faces are 
triangles. 



Fary’s Theorem 

Theorem (V. 7.4.2): Any finite (simple) planar 
graph G has a plane embedding where all of 
the edges are straight line segments. 



Proof Strategy 

• Induct on v. 

– If v ≤ 3, easy to draw. 

• Assume G is connected (ow/ draw each 
component separately) 

• Find a vertex v of low degree. 

• Draw G-v with straight lines. 

• Re-insert v into drawing. 



Lemma 

Lemma: Given any polygon P in the plane with 
at most 5 sides, there is a point v inside of P 
with straight line paths to each of P’s vertices. 



Polyhedra 

Definition: A polyhedron is a 3 dimensional 
figure bounded by finitely many flat faces. 
Two faces meet at an edge and edges meet at 
vertices.  

A polyhedron is convex if for any two points in 
the polyhedron the line segment connecting 
them is also contained in the polyhedron. 



Polyhedral Graphs 

Given a convex polyhedron, can turn it into a planar 
graph by projecting vertices/edges onto a sphere 
(which can then be flattened onto a plane). 



Euler’s Formula 

Euler’s Formula applies directly: 

For any polyhedron: 

#Faces - #Edges + #Vertices = 2 



Degrees 

Note that in any polyhedron, each vertex has 
degree at least 3. 

Handshake Lemma implies 
2e = Σ d(v) ≥ 3v 

e ≥ 3v/2 



Edges and Vertices 

Remember we also saw that if each face of a 
planar graph had at least k edges then 

e ≤ (v-2)/(1-2/k) 

If k = 6, we have that 

3v/2 ≤ e ≤ (v-2)/(2/3) = 3(v-2)/2. 

Contradiction! 

Corollary: Every polyhedron has a face with at 
most 5 sides. 



Regular Polyhedra 

A regular polyhedron is a highly symmetric 
polyhedron (like a cube). In particular, it has 
the following properties: 

• All edges are the same length. 

• All faces are regular polygons with the same 
number – s of sides. 

• The same number of faces, d, meet at each 
vertex. 



Counting Continued 

Therefore, we must have: 

• 5 ≥ d, s ≥ 3 

• 2/d + 2/s > 1 

• e = 2/(2/d+2/s-1) 

• v = 2e/d 

• f = 2e/s 



Only 5 Platonic Solids 



Subdivisions 

Here’s one thing that doesn’t much affect 
planarity: 

Definition: A subdivision of a graph G is 
obtained by placing vertices in the middle of 
some of its edges. 



Subdivisions II 

Lemma: If G’ is a subdivision of G, then G’ is 
planar if and only if G is. 

Proof: 

• Given a plane embedding of G add vertices in 
the middle of edges to get embedding of G’. 

• Given embedding of G’, remove vertices and 
join edges, to get embedding of G. 



Kuratowski’s Theorem 

Theorem (V. 7.0.1): A finite graph G is planar if 
and only if it has no subdivision of a K5 or K3,3 
as a subgraph. 



Coloring Problems (Ch 1.6) 

• Introduction and Definitions 

• Basic Results 

• Brooke’s Theorem 

• Colorings of Planar Graphs 

• Edge Colorings 



Colorings 

Definition: A (vertex) coloring of a graph G is an 
assignment of a color to each vertex of G so 
that no two adjacent vertices have the same 
color. This is an n-coloring if only n different 
colors are used. 

Definition: The Chromatic Number, χ(G), of a 
graph G is the smallest number n so that G has 
an n-coloring. 



Basic Facts 

• A graph has χ(G) = 1 if and only if G has no 
edges. 

• A graph has χ(G) ≤ 2 if and only if G is 
bipartite. 

• Determining χ(G) for more complicated graphs 
is difficult. For 2-colorings once you color a 
vertex, there is only one possible choice for its 
neighbors.  For 3-colorings, you have 2. 



Cliques 

Definition: The clique number, ω(G), of a graph 
G is the largest n so that Kn is a subgraph of G. 

Corollary: For any graph G, χ(G) ≥ ω(G). 

Note: This bound is far from tight. 



Upper Bound 

Lemma: For G a graph on n vertices, then χ(G) ≤ 
n. 

Proof: Give each vertex a different color. 



Greedy Coloring 

Coloring Strategy: Color vertices one at a time, 
giving each a color that doesn’t conflict. 



Max Degree 

Definition: For a graph G, let Δ(G) denote the 
maximum degree of any vertex of G. 

Lemma: For any graph G, χ(G) ≤ Δ(G)+1. 

Proof: Use the greedy coloring. 

Note: This bound is again often far from tight. 



This usually isn’t tight 

Theorem 1.43 (Brook’s Theorem): If G is a finite 
connected graph that is neither an odd cycle 
nor a complete graph,  
χ(G) ≤ Δ(G). 



Non-Regular Graphs 

If G not regular 

• Some v, d(v) < Δ(G) 

• If you can color  
G-v, greedily color v 

• But v’s neighbors in G-
v have smaller degree 

• Recurse 

v 



Not a Cut Set 

If {u,w} is not a cut set, we can do our recursive 
coloring, assigning colors to u and w first. 
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Case 1: Single Cut Vertex 

Suppose v is a cut vertex. 

• Inductively color each 
component of G-v. 

• For each component can 
change colors in that 
component. 

• Arrange so two neighbors 
of v are same color 

• Color v 

v 



Case 2a 

Try to make u, w different colors on both sides. 

• Use greedy coloring, choosing colors for u and 
w last. 

• Unless they each connect to Δ(G)-1 vertices on 
same side, can pick different colors. 

• Make colors on top same as on bottom. 



Case 2b 

Suppose that u, w can only be the same in any 
coloring of top component. 

• Must each connect to Δ(G)-1 on top 

• Only connect to 1 each on bottom. 

• Color bottom component, can pick u, w same 
color (only 2 disallowed options). 



The 5-Color Theorem 

Theorem 1.47 (Kemp): Every planar graph is 5-
colorable. 



Proof 

• Induct on |V| 

– Base case easy 

• Take v with d(v) ≤ 5 

• Color G-v 

– OK unless v’s 
neighbors use all 5 
colors 

– Try to recolor them 
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Kemp Chains 

• Can recolor unless 
red-green chain from 
A to C 

• Can recolor unless 
blue-yellow chain 
from B to D 

• Cannot have both! 

• Always a way to 
recolor and add v 
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The Four Color Map Theorem 

Theorem 1.46: Every planar graph is 4-colorable. 

Notes: 

• Optimal 

• Proof along the same lines as above- add one 
vertex by recoloring some nearby ones 

• Too many cases to check by hand. All known 
proofs are computer assisted. 



Edge Colorings 

Definition: An edge coloring of a graph is an 
assignment of a color to each edge so that no 
two edges incident on the same vertex are 
the same color. 



How Many Colors are Needed 

Lemma: Any edge coloring of a graph G requires 
at least Δ(G) colors. 



Vizing’s Theorem 

Theorem (V. 6.2.1): Any finite graph G has an 
edge coloring with at most Δ(G)+1 colors. 

• The minimum number of colors is either Δ(G) 
or Δ(G)+1. 

• Both are possible. Cn requires 2 colors (Δ(G)) 
when n is even and 3 colors (Δ(G)+1) when n is 
odd. 



Proof Idea 

• Proof by induction on |E| 

• Color G-e, show how to insert last edge 

• This might require some recoloring of its 
neighbors 



Case 1 

If the chain ends eventually, you can recolor all 
of the affected edges, inserting the new one. 
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no black 



Case 2 

Otherwise, the chain must eventually loop back. 

Recolor everything up to the loop. 

v u 

no blue 

no green no yellow 

no red no green 



Recoloring the Cycle 

• u, v, w all have degree 1 in H 

• One must be in own component 

• Recolor that component & add edge 
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