Exam 2 Review

Math 154 Spring 2020

Ch 1.5: Planar Graphs

- Planarity Definition
- Faces and Euler's Formula
- Platonic Solids
- Straight Line Embeddings
- Non-Planar Graphs

Planar Embeddings

Definition: A planar embedding of a graph G is a drawing of G so that

- Each vertex of G corresponds to a point in the plane.
- Each edge of G corresponds to a curve connecting its endpoints.
- No two edge-curves cross except at endpoints.

Planar Graphs

Definition: A graph is planar if it has a planar embedding.

Application: Maps

Given a map with simply connected regions, the adjacency graph on regions is planar.

Faces

A planar embedding of a graph divides the plane into regions. These are called faces.

Euler's Formula

Theorem (1.31): For any planar embedding of a connected graph G with v vertices, e edges and f faces (including the infinite face)

$$
v-e+f=2
$$

General Graphs

- Use induction on e.
- Base case: G is a tree.
- Otherwise, G has a cycle
- Cycle separates plane into inside and outside.
- Remove an edge of cycle, decreases f by 1 .

- $I H=>v-(e-1)+(f-1)=2$

Sides to a Face

If G is a connected planar graph, any face (including the infinite one) will be bounded by a loop of edges.

The number of sides of the face is the number of edges in this loop.

Dual Handshake Lemma

Lemma: For a connected, planar graph,

$$
\operatorname{Sides}(f)=2|E| .
$$

Faces f

- Note similarity to Handshake Lemma. Sides of faces instead of degrees of vertices.
- Proof similar.

Edge Bound

Theorem (1.33): If G is a connected planar graph with $|\mathrm{V}| \geq 3$, then

$$
|E| \leq 3|V|-6 .
$$

K_{5} Non-Planar

Theorem (1.34): The K_{5} is non-planar. Proof: If it were, we would have

$$
e \leq 3 v-6=9
$$

But $\mathrm{e}=10$. Contradiction!

$K_{3,3}$ Non-Planar

Theorem (1.32): $K_{3,3}$ is non-planar.
Proof: $K_{3,3}$ is bipartite, so it has no odd cycles. Therefore, if planar any face has at least 4 sides.
If planar,

$$
\mathrm{e} \leq 2 \mathrm{v}-4=8
$$

But e=9. Contradiction!

Minimum Degree

Theorem (1.35): If G is a finite, connected planar graph, its vertices have minimum degree at most 5.
Proof: Otherwise, each vertex has degree 6 or more.
Handshake Lemma implies

$$
2 \mathrm{e}=\Sigma \mathrm{d}(\mathrm{v}) \geq 6 \mathrm{v} .
$$

But then

$$
3 v-6 \geq e \geq 3 v .
$$

Contradiction!

Triangulations

We note that our edge bound of $3 \mathrm{v}-6$ has an equality case if and only if all faces are triangles.
We can always ensure that this is the case if we add more edges.
Lemma: For any planar embedding of a graph G there is a way to add more edges to G to get a new planar graph G^{\prime} in which all faces are triangles.

Fary's Theorem

Theorem (V. 7.4.2): Any finite (simple) planar graph G has a plane embedding where all of the edges are straight line segments.

Proof Strategy

- Induct on v.
- If $v \leq 3$, easy to draw.
- Assume G is connected (ow/ draw each component separately)
- Find a vertex v of low degree.
- Draw G-v with straight lines.
- Re-insert v into drawing.

Lemma

Lemma: Given any polygon P in the plane with at most 5 sides, there is a point v inside of P with straight line paths to each of P 's vertices.

Polyhedra

Definition: A polyhedron is a 3 dimensional figure bounded by finitely many flat faces.
Two faces meet at an edge and edges meet at vertices.

A polyhedron is convex if for any two points in the polyhedron the line segment connecting them is also contained in the polyhedron.

Polyhedral Graphs

Given a convex polyhedron, can turn it into a planar graph by projecting vertices/edges onto a sphere (which can then be flattened onto a plane).

Euler's Formula

Euler's Formula applies directly:
For any polyhedron:

$$
\text { \#Faces - \#Edges + \#Vertices = } 2
$$

Degrees

Note that in any polyhedron, each vertex has degree at least 3.

Handshake Lemma implies

$$
\begin{gathered}
2 e=\Sigma d(v) \geq 3 v \\
e \geq 3 v / 2
\end{gathered}
$$

Edges and Vertices

Remember we also saw that if each face of a planar graph had at least k edges then

$$
e \leq(v-2) /(1-2 / k)
$$

If $k=6$, we have that

$$
3 v / 2 \leq e \leq(v-2) /(2 / 3)=3(v-2) / 2
$$

Contradiction!
Corollary: Every polyhedron has a face with at most 5 sides.

Regular Polyhedra

A regular polyhedron is a highly symmetric polyhedron (like a cube). In particular, it has the following properties:

- All edges are the same length.
- All faces are regular polygons with the same number - s of sides.
- The same number of faces, d, meet at each vertex.

Counting Continued

Therefore, we must have:

- $5 \geq d, s \geq 3$
- $2 / d+2 / s>1$
- $e=2 /(2 / d+2 / s-1)$
- $v=2 e / d$
- $f=2 e / s$

Only 5 Platonic Solids

Subdivisions

Here's one thing that doesn't much affect planarity:
Definition: A subdivision of a graph G is obtained by placing vertices in the middle of some of its edges.

Subdivisions II

Lemma: If G^{\prime} is a subdivision of G , then G^{\prime} is planar if and only if G is.

Proof:

- Given a plane embedding of G add vertices in the middle of edges to get embedding of G^{\prime}.
- Given embedding of G^{\prime}, remove vertices and join edges, to get embedding of G .

Kuratowski's Theorem

Theorem (V. 7.0.1): A finite graph G is planar if and only if it has no subdivision of a K_{5} or $\mathrm{K}_{3,3}$ as a subgraph.

Coloring Problems (Ch 1.6)

- Introduction and Definitions
- Basic Results
- Brooke's Theorem
- Colorings of Planar Graphs
- Edge Colorings

Colorings

Definition: A (vertex) coloring of a graph G is an assignment of a color to each vertex of G so that no two adjacent vertices have the same color. This is an n-coloring if only n different colors are used.
Definition: The Chromatic Number, $\chi(G)$, of a graph G is the smallest number n so that G has an n -coloring.

Basic Facts

- A graph has $\chi(\mathrm{G})=1$ if and only if G has no edges.
- A graph has $\chi(\mathrm{G}) \leq 2$ if and only if G is bipartite.
- Determining $\chi(\mathrm{G})$ for more complicated graphs is difficult. For 2-colorings once you color a vertex, there is only one possible choice for its neighbors. For 3-colorings, you have 2.

Cliques

Definition: The clique number, $\omega(G)$, of a graph G is the largest n so that K_{n} is a subgraph of G.
Corollary: For any graph $\mathrm{G}, \chi(\mathrm{G}) \geq \omega(\mathrm{G})$.
Note: This bound is far from tight.

Upper Bound

Lemma: For G a graph on n vertices, then $\chi(\mathrm{G}) \leq$ n .

Proof: Give each vertex a different color.

Greedy Coloring

Coloring Strategy: Color vertices one at a time, giving each a color that doesn't conflict.

Max Degree

Definition: For a graph G, let $\Delta(G)$ denote the maximum degree of any vertex of G.
Lemma: For any graph $\mathrm{G}, \chi(\mathrm{G}) \leq \Delta(\mathrm{G})+1$.
Proof: Use the greedy coloring.
Note: This bound is again often far from tight.

This usually isn't tight

Theorem 1.43 (Brook's Theorem): If G is a finite connected graph that is neither an odd cycle nor a complete graph, $\chi(\mathrm{G}) \leq \Delta(\mathrm{G})$.

Non-Regular Graphs

If G not regular

- Some v, d(v) < $\Delta(G)$
- If you can color G-v, greedily color v
- But v's neighbors in Gv have smaller degree

- Recurse

Not a Cut Set

If $\{u, w\}$ is not a cut set, we can do our recursive coloring, assigning colors to u and w first.

Case 1: Single Cut Vertex

Suppose v is a cut vertex.

- Inductively color each component of G-v.
- For each component can change colors in that component.
- Arrange so two neighbors of v are same color
- Color v

Case 2a

Try to make u, w different colors on both sides.

- Use greedy coloring, choosing colors for u and w last.
- Unless they each connect to $\Delta(\mathrm{G})-1$ vertices on same side, can pick different colors.
- Make colors on top same as on bottom.

Case 2b

Suppose that u, w can only be the same in any coloring of top component.

- Must each connect to $\Delta(\mathrm{G})-1$ on top
- Only connect to 1 each on bottom.
- Color bottom component, can pick u, w same color (only 2 disallowed options).

The 5-Color Theorem

Theorem 1.47 (Kemp): Every planar graph is 5colorable.

Proof

- Induct on |V|
- Base case easy
- Take v with $\mathrm{d}(\mathrm{v}) \leq 5$
- Color G-v
- OK unless v's neighbors use all 5 colors
- Try to recolor them

Kemp Chains

- Can recolor unless red-green chain from A to C
- Can recolor unless blue-yellow chain from B to D
- Cannot have both!
- Always a way to recolor and add v

The Four Color Map Theorem

Theorem 1.46: Every planar graph is 4-colorable.
Notes:

- Optimal
- Proof along the same lines as above- add one vertex by recoloring some nearby ones
- Too many cases to check by hand. All known proofs are computer assisted.

Edge Colorings

Definition: An edge coloring of a graph is an assignment of a color to each edge so that no two edges incident on the same vertex are the same color.

How Many Colors are Needed

Lemma: Any edge coloring of a graph G requires at least $\Delta(\mathrm{G})$ colors.

Vizing's Theorem

Theorem (V. 6.2.1): Any finite graph G has an edge coloring with at most $\Delta(\mathrm{G})+1$ colors.

- The minimum number of colors is either $\Delta(\mathrm{G})$ or $\Delta(\mathrm{G})+1$.
- Both are possible. C_{n} requires 2 colors ($\Delta(\mathrm{G})$) when n is even and 3 colors ($\Delta(\mathrm{G})+1$) when n is odd.

Proof Idea

- Proof by induction on $|E|$
- Color G-e, show how to insert last edge
- This might require some recoloring of its neighbors

Case 1

If the chain ends eventually, you can recolor all of the affected edges, inserting the new one.

Case 2

Otherwise, the chain must eventually loop back. Recolor everything up to the loop.

Recoloring the Cycle

- u, v, w all have degree 1 in H
- One must be in own component
- Recolor that component \& add edge

