Exam 1 Review

For Math 154 Spring 2020

Basic Graph Concepts (Ch 1.1)

- What is a graph?
- Drawing graphs
- Basic terminology
- Basic types of graphs
- Walks, Paths, and Connectivity

Graph Definition

Definition: A graph $G=(\mathrm{V}, \mathrm{E})$ consists of two things:

- A collection V of vertices, or objects to be connected.
- A collection E of edges, each of which connects a pair of vertices.

Other Types of Graphs I

A mutligraph can have multiple edges between the same pair of vertices.

A pseduograph can have loops, edges connecting a vertex to itself.

A graph is called simple if it has neither.

Other Types of Graphs II

A hypergraph can have edges that connect more than two vertices.

A directed graph has edges that only point in one direction

Graph Terminology I

- Two vertices u and v are adjacent if there is an edge connecting them.
- A vertex v is incident on an edge e (or is an endpoint of e) if v is one of the vertices e connects.

Graph Terminology II

- The neighborhood of a vertex v (denoted $N(v)$) is the set of vertices adjacent to v along with v .
- The degree of $v($ denoted $d(v))$ is the number of vertices adjacent to v.

$$
d(v)=4
$$

Graph Terminology III

- A graph is d-regular if all vertices have degree d. It is regular if it is d-regular for some d.

This graph is 3-regular

This graph is not regular

The Handshake Lemma

(Theorem 1.1) For any graph $G=(V, E)$,

$$
\sum_{v \in V} d(v)=2|E| .
$$

Examples of Graphs I

A complete graph on n vertices (denoted K_{n}) is a graph with n vertices and an edge between every pair of them

Examples of Graphs II

A cycle on n vertices (denoted C_{n}) is a graph with n vertices connected in a loop.

A path on n vertices (denoted P_{n}) is a graph with n vertices connected in a chain.

Examples of Graphs III

A graph H is a subgraph of G if $V(H) \subset V(G)$ and $E(H) \subset E(G)$.

A subgraph H is an induced subgraph if it contains all the edges of G connecting two vertices in $V(H)$.

Examples of Graphs IV

A bipartite graph is a graph whose vertices can be split into two parts where all edges connect one part to the other.

A complete bipartite graph (denoted $\mathrm{K}_{\mathrm{n}, \mathrm{m}}$) has an edge connecting every element of one part (of size n) to every element of the other (of size m).

Walk Definitions

A walk in a graph G is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{n}$ where for each i, v_{i} and v_{i+1} are connected by an edge.

Types of Walks

A walk whose edges are distinct is called a trail.
A walk whose vertices are distinct is called a path.
A circuit is a trail that starts and ends at the same vertex.

A cycle is a path plus an additional edge connecting the ends.

Induction on Length

The length of a walk is the number of edges in that walk.
For example, the walk ABCBA below is length 4.

The Importance of Paths and Cycles

Lemma (Theorem 1.2): In a graph G every walk from vertex u to vertex v (a u-v walk) contains a u-v path (by removing some of the edges).
Similarly, every circuit contains a cycle.

Connectivity

A graph G is connected if for any two vertices, u and v there is a u-v path in G.

Connected Components

Theorem: Any graph G can be uniquely partitioned into connected components, where each component is a connected subgraph and no two components have any edges between them.

Classification of Bipartite Graphs

G is bipartite if you can color vertices black \& white so that all edges connect a black vertex to a white vertex.

Theorem (Theorem 1.3): A graph G is bipartite if and only if it has no cycles of odd length.

Trees (Chapter 1.3)

- Definition and motivation
- Basic Properties
- Spanning Trees
- Counting Problems

Trees

Definition: A tree is a connected graph with no cycles. A forest is a graph where each connected component is a tree.

A Lemma

Lemma: Let T be a tree with vertices u and v. There exists a unique u-v path in T .

Edge Count

Theorem (1.10): Any tree with n vertices has exactly n -1 edges.

Idea: Look at connected components.

Lemma: Any graph $G=(V, E)$ with no cycles has
$|V|-|E|$ connected components.

Leaves

A leaf in a tree is a vertex of degree 1.
Lemma (Thrm 1.14): Any tree on $n>1$ vertices has at least two leaves.

Spanning Trees

Definition: In a graph G a Spanning Tree is a subgraph T of G that is a tree using all of the vertices of G.

Breadth First Search Tree

- Start at a base vertex v
- Connect v to all its neighbors
- Connect them to all their
 neighbors (without creating cycles)
- Repeat until you've reached all vertices

Breadth First Search Properties

- Finds shortest paths from v to other vertices.
- $\mathrm{d}^{\text {th }}$ round of edges finds all vertices reachable from v with paths of length d.
- No edges in G provide shortcuts from a vertex to its descendants further down.

Depth First Search Tree

- Start at a base vertex v
- Follow path from v until cannot extend anymore
- Backtrack until new branch

- Repeat backtrack/extend until nothing else to do

Depth First Search Tree Properties

- G has no extra edges that cross between different branches of the tree.

Minimum Spanning Tree

Definition: For a graph G with edge weights, a Minimum Spanning Tree is a spanning tree of G whose sum of edge weights is as small as possible.

How do you find a MST?

Kruskal's Algorithm:

- Repeatedly add lightest edge that does not create a cycle

Prim's Algorithm

Another way to find MST:

- Start at base vertex
- Repeatedly add cheapest new edge connected base vertex to something new

Cayley's Theorem

Theorem (1.18): There are $\mathrm{n}^{\mathrm{n}-2}$ labeled trees of order n.

Proof idea: Find a bijection between trees and sequences of $n-2$ numbers from 1,2,..,n

How to get a List from a Tree

- Take lowest labeled leaf, v
- Record label of v's neighbor
- Remove v from G
- Repeat until G has

3 only 2 vertices

$$
5,6,2,3,5,2,6
$$

How to find the tree

- Find missing numbers. These $5,6,2,3,5,2,6$ are the leaves.
- Smallest missing number is v .
- Connect v to first element of list.
- Remove v from available numbers and first element of list
- Repeat until list gone

Missing: 1, 4, 7, 8, 9 3, 5, 2,

- Connect remaining elements

$$
1,2,3,4,5,6,7,8,9
$$

Paths and Cycles (Ch 1.4)

- Eulerian Circuits
- Definition
- Classification of Eulerian graphs
- Algorithms
- Hamiltonian cycles
- Definition
- Hardness
- Some conditions

Definitions

An Eulerian circuit is a circuit that uses every edge of a graph exactly once.
An Eulerian trail similarly uses each edge exactly once, but does not start and end at the same vertex.

A graph is Eulerian if it contains an Eulerian circuit and semi-Eulerian if it contains an Eulerian trail.

Conclusion

Theorem (1.20): A finite, connected graph G is Eulerian if and only if all vertices have even degree.

Constructing a Circuit

- If every degree is even you can construct a circuit by starting at v and following new edges until you get stuck (must be at v).
- Repeat on remaining edges, to partition edges of G into circuits.

Combining Circuits

- Have two circuits that share a vertex.
- Turn them into one big circuit.

Final Algorithm

- Find a circuit.
- If all of G -> done.
- Otherwise, find v on circuit with unused edge.
- Find additional circuit through v .
- Merge with existing circuit.
- Repeat

Semi-Eulerian Graphs

Theorem: A finite, connected graph G is semiEulerian if and only if it has exactly two vertices of odd degree. Furthermore, these vertices will be the endpoints of any Eulerian trial.

New Algorithm

Build Eulerian circuit/trail by starting at correct vertex, follow any edge that isn't a bridge.

The Bad Case

This is what we want to avoid, is it possible?

Bridges and Odd Degrees

Lemma: If e is a bridge in a finite graph G , then there is at least one vertex of odd degree on each side of it.

Hamiltonian Graphs

Definition: A Hamiltonian path/cycle in a graph G is a path/cycle that uses every vertex of G exactly once.
A graph is Hamiltonian if it has a Hamiltonian cycle

Comparison

Eulerian Graphs:

- Is there a circuit that uses every edge exactly once?
- Easy characterization based on number of odd degree vertices
- Simple algorithms to construct

Hamiltonian Graphs:

- Is there a circuit that uses every vertex exactly once?
- No characterization
- NP-Hard to construct

Focus on partial characterizations.

Minimum Degrees

Theorem (1.22): If a graph G on $\mathrm{n}>2$ vertices has minimum degree at least $n / 2$, it is Hamiltonian.

Longest Path

Back to our main proof. Let $\delta(G) \geq n / 2$.
Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ be the longest path in G .

Note that v_{1} and v_{k} cannot connect to vertices outside of this path.
Claim: G has a cycle of length k .

Counting

- There are $\geq n / 2$ i's so that v_{k} connects to v_{i}.
- There are $\geq n / 2$ i's so that v_{1} connect to v_{i+1}.
- There are only k-1 < n total i's.
- The two lists must have some index in common.

Cycle

Have a cycle of length k.
G is connected so either:

- $k=n$.
- Cycle is Hamiltonian
- k<n
- Some vertex in cycle
 connects to some other vertex.
- We have a longer path.

Structure of Connected Graphs (Verstraete Ch 4)

- Blocks and cut vertices
- Block decomposition of graphs
- Ear decompositions
- Theta-less graphs
- Menger's Theorem

Cut Vertices

How do you break up a connected graph?
Definition: A cut vertex in a connected graph G is a vertex v so that G - v is disconnected.

Blocks

Definition: A block is a maximal subgraph with no cut vertices.

Intersection of Blocks

Lemma: The intersection of two blocks is either empty of consists of a single cut vertex.

Block Graph

Block Tree

Theorem 4.1.1: The block graph is always a tree.

Ears

Definition: Given a subgraph H of G an ear is a path P in G starting and ending at vertices of H but with no intermediate vertices in H .

Decomposition

Theorem 4.2.1: Any block is either a K_{2} or can be obtained by starting with a cycle and adding ears.

Theta Graphs

Definition: A theta in a graph is a pair of vertices with three vertex-disjoint paths between them.

Conclusion

Proposition 4.1.2: Any connected, theta-less

 graph G is a tree of cycles and $\mathrm{K}_{2} \mathrm{~s}$.
Another Theorem on Blocks

Theorem 4.2.4: For a finite graph G with at least 3 vertices, the following are equivalent:

1) G is a single block
2) Any two edges of G are in a common cycle
3) Any two vertices of G are in a common cycle
