Math 154 Homework Solution

Fall 2021

Solution to Homework 1
Haixiao Wang

This homework is due on gradescope by Friday October 1st at 11:59pm pacific time. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in \texttt{LaTeX} is recommend though not required.

Please cite any other students with whom you collaborated on any problems.

Question 1 (2-Regular Graphs, 25 points). Show that any finite, 2-regular graph G is a disjoint union of cycles. In particular, show that G has a number of induced subgraphs that are cycles and so that:

1. Each vertex is in exactly one of these induced subgraphs.
2. No edges connect these subgraphs to each other.

Proof. Let $G = (V, E)$ be a finite 2-regular graph with n vertices. For any vertex $v_1 \in V$, there are 2 edges incident to v_1. Let e_1 be one of them. Following e_1, we would move to another vertex $v_2 \in V$, which has 2 edges as well since G is 2-regular. Starting at vertex v_2, one edge e_1 connects it back to v_1. The other edge e_2 will connect v_2 to some other vertex v_3. By repeating the process above, we would obtain a path $\{v_1, \cdots, v_n\}$, which must eventually reach a vertex we have seen before. This must be v_1 (since any other v_k is adjacent only to v_{k-1} and v_{k+1}), which gives one cycle C_n, as an induced subgraph of G. For any vertex $v_k \in C_n$, if it is connected to an outside vertex $v \in G \setminus C_n$, the degree of v_k would be 3, since v_k has already been adjacent to v_{k-1} and v_{k+1}, which violates the 2-regularity assumption. Hence C_n is a connected component of G. Repeating this procedure for each connected component of G, we find that G is a disjoint union of cycles. \qed

Question 2 (Properties Inherited by Subgraphs, 25 points). For which of the following graph properties P does the following hold: If G is a graph satisfying P and H is an induced subgraph of G, then H must also satisfy P. For each property, either give a proof or a counter-example.

(a) G is a complete graph [5 points]
(b) G is a bipartite graph [5 points]
(c) G is a cycle [5 points]
(d) G is a simple graph [5 points]
(e) G is a path [5 points]

Proof. Remember that a subgraph H is an induced subgraph if it contains all the edges of G connecting two vertices in $V(H)$.

(a) If $G = (V(G), E(G))$ is complete, then for any $v \in V(G)$, v is connected to all $u \in V(G) \setminus \{v\}$. As a result, for any $v \in V(H) \subset V(G)$, v is connected to all $u \in V(H) \setminus \{v\}$. Hence $H = (V(H), E(H))$ is complete.
(b) If \(G = (V(G), E(G)) \) is bipartite, then the vertex set \(V(G) \) can be partitioned into two disjoint subsets \(U(G) \) and \(W(G) \), i.e., \(V(G) = U(G) \cup W(G) \) and \(U(G) \cap W(G) = \emptyset \), such that for any \((u, w) = e \in E(G)\), we have \(u \in U(G) \) and \(w \in W(G) \). Let \(H = (V(H), E(H)) \) be an induced subgraph of \(G \). Let \(U(H) = U(G) \cap V(H) \) and \(W(H) = W(G) \cap V(H) \). For any edge \((u, w)\) of \(H \) must also be an edge of \(G \) and therefore, one of the vertices (say \(u \)) is in \(U(G) \) and the other (\(w \)) in \(W(G) \). However, since both are in \(V(H) \), this means that \(u \in U(H) \) and \(w \in W(H) \). Thus, \(H \) is bipartite.

(c) The induced subgraph \(H \) may not be cycle. The counter-example can be seen in Figure 1.

![Figure 1: The induced subgraph \(H \) of \(C_6 \) is marked red, which is not a cycle.](image)

(d) A simple graph \(G \) has neither multiedges, nor self loops. The induced subgraph \(H \) doesn’t contains any multiedges or self loops. Hence \(H \) is simple.

(e) The counter-example can be seen in Figure 2, where \(H \) has 2 disjoint components.

![Figure 2: The induced subgraph \(H \) of this path is marked red, which is not a path.](image)

Question 3 (Hypergraph Handshake Lemma, 25 points). Suppose that you have a hypergraph where each edge is incident on exactly \(k \) vertices. Formulate and prove a version of the Handshake Lemma for this type of graph.

Proof. Remember that in graph \(G = (V, E) \) the degree of vertex \(v \in V \), denoted by \(d(v) \), is the number of vertices adjacent to \(v \), i.e., the number of edges containing \(v \). A hypergraph \(H = (V, E) \) is called \(k \)-uniform if each edge \(e \in E \) is incident on exactly \(k \) vertices. The degree of \(v \), denoted by \(d(v) \), can be similarly defined as the number of edges containing \(v \). The analogous Handshake Lemma is

\[
\sum_{v \in V} d(v) = k|E|.
\]
To prove this, we are going to count the number of vertex-edge incidence pairs in two different ways. On left hand side, each vertex \(v \) is incident on \(d(v) \) hyper-edges, thus the total number of pairs in this hypergraph is \(\sum_{v \in V} d(v) \). On right hand side, each hyper-edge \(e = (v_1, v_2, \cdots, v_k) \) contains \(k \) incident vertices \(v_1, v_2, \cdots, v_k \), thus the total number of pairs is \(k|E| \).

![Figure 3: An example of 3-uniform hypergraph \(H \) with 9 vertices and 5 hyperedges.](image)

Question 4 (3-Regular Graphs, 25 points). Show that for every even integer \(n \geq 4 \) that there is a 3-regular graph with exactly \(n \) vertices. What happens if \(n \) is odd?

Proof. 1. Let \(n = 2k \) for some \(k \geq 2 \). Consider the cycle \(C_{2k} \) on vertices \(\{1, 2, \cdots, 2k - 1, 2k\} \). The desired graph is obtained by connecting vertex \(i \) and \(i + k \) for all \(1 \leq i \leq k \). The degree of vertex \(i \) (\(1 \leq i \leq k \)) is 3 since \(i \) is connected to \(i - 1 \), \(i + 1 \) and \(i + k \). The degree of vertex \(i \) (\(k + 1 \leq i \leq 2k \)) is also 3 since \(i \) is connected to \(i - 1 \), \(i + 1 \) and \(i - k \). Here vertex 1 is connected to \(2k \).

![Figure 4: Examples for \(n = 4 \) and \(n = 6 \).](image)

2. There is no such graph. The Handshake Lemma, \(\sum_{v \in V} d(v) = 2|E| \), indicates that the sum of degrees should be even, however \(3n \) is odd when \(n \) is odd.

Question 5 (Extra credit, 1 point). Approximately how much time did you spend on this homework?

Solution to Homework 2