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Abstract

We study the problem of PAC learning a single neuron in the presence of Massart noise.
Specifically, for a known activation function f : R — R, the learner is given access to labeled
examples (x,y) € R?xR, where the marginal distribution of x is arbitrary and the corresponding
label y is a Massart corruption of f({w,x)). The goal of the learner is to output a hypothesis
h : R — R with small squared loss. For a range of activation functions, including ReLUs,
we establish super-polynomial Statistical Query (SQ) lower bounds for this learning problem.
In more detail, we prove that no efficient SQ algorithm can approximate the optimal error
within any constant factor. Our main technical contribution is a novel SQ-hard construction
for learning {£1}-weight Massart halfspaces on the Boolean hypercube that is interesting on its
own right.
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1 Introduction

The success of deep learning has served as a motivation for understanding the complexity of learning
simple classes of neural networks. Here we study arguably the simplest possible setting of learning
a single neuron, i.e., a real-valued function of the form x — f((w,x)), where w is the weight
vector of parameters and f : R — R is a non-linear and monotone activation. The underlying
learning problem is the following: Given i.i.d. samples from a distribution D on (x,y), where
x € R? is the example and y € R is the corresponding label, the goal is to learn the target
function in L%—loss. That is, the objective of the learner is to output a hypothesis h : R? — R
such that Ey ,)p[(h(x) — y)?] is as small as possible, compared to the optimal loss value OPT :=
ming cpa Bix ) ~p[(f((W,x)) — y)?]. A learning algorithm in this context is called proper if the

hypothesis h is restricted to be of the form hg(x) = f((W,x)), for some w € RY. One of the

most popular activations is the ReLU function, corresponding to f(u) = ReLU(u) & max{0, u}.

In this work, we study the complexity of improperly learning single neurons, where the marginal
distribution on examples is fixed but arbitrary and the hypothesis h is allowed to be any efficiently
computable function.

In the realizable case, i.e., when the labels are consistent with a function in the target concept
class, the above learning problem is known to be efficiently solvable for various activation func-
tions. A line of work, see, e.g., [KS09, Sol17, YS20] and references therein, has shown that simple
algorithms like gradient-descent efficiently converge to an optimal solution (in some cases under
assumptions on the marginal distribution on examples). On the other hand, in the adversarial
label noise (aka agnostic) model, known hardness results [Dan16, DKMR22a] rule out efficient con-
stant factor approximations to the optimal loss for a range of activations including ReLLUs. The
aforementioned negative results for label agnostic learning motivate the study of weaker corruption
models, where non-trivial efficient learning algorithms may still be possible. A natural class of
such models — that may be more realistic in some practical applications — are semi-random noise
models, involving a combination of adversarial choices and random choices.

Here we focus on the Massart (or bounded) noise model [MNO6], a classical semi-random model
first defined in the context of binary classification (see [Slo88] for an equivalent noise model).
Intuitively, in the Massart model, an adversary has control over a (uniformly) random n < 1/2
fraction of the labels (see Definition 1.1). In the context of binary classification, [DGT19] gave
the first non-trivial learning algorithm for halfspaces in this model (see also [CKMY20, DKT21]).
Subsequent work [DK22, NT22] provided evidence that the error guarantee of the latter algorithm
is essentially best possible in the Statistical Query (SQ) model [Kea98|; and, more recently, under
standard cryptographic assumptions [DKMR22b].

To state our results, we formally define the following natural generalization of the Massart
model for real-valued functions (see, e.g., [CKMY21, DPT21]).

Definition 1.1 (Massart Noise Model). Let G be a concept class of real-valued functions over R?,
Dy be a fixed distribution over R?, and 0 < < 1/2. Fix an unknown function g € G. The noiseless
distribution D (corresponding to g) is the distribution on labeled examples (X,Y"), supported on
R? x R, where X ~ Dy and Y = ¢(X). An n-Massart distribution, D%ass, is a distribution on
labeled examples (X,Y”), supported on R? x R, such that for (X,Y’) ~ D};/Iass we have that (i)
X ~ Dy, and (ii) for all x € R? it holds that Pr(x y7)~ppass Y #g(X) | X =x] <.

Given sample access to the n-Massart distribution D%/Iass, corresponding to an unknown g € G,
the goal is to output a hypothesis A : R — R such that Lo (h; D};Aass) = Ex ynpyass [(Y'—h(X))?]
is small. Let OPTyags = infyeg E(x,y)~ptass [(Y' — g(X))?] denote the optimal squared error. We
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will say that a learning algorithm is a-approzimate if it outputs a hypothesis h : R — R that with
high probability satisfies La(h; Dg/[ass) < a(d) - OPTyass. We say that a learner is a constant factor
approzimation if a = O(1). Here we focus on the concept class of single neurons: for an activation
f:R— R, we will denote by Cy e {ew R R | ew(x) = f({w,x)),w € R},

In Definition 1.1, the Massart adversary corrupts each label independently with probability
at most n, for some n < 1/2. Even though this noise model might appear innocuous, the fact
that the corruption probability is unknown to the learner makes the design of efficient Massart
learners challenging. The Massart model has been extensively studied in the context of binary
classification [Slo88, RS94, Slo96, ABHU15, ABHZ16, DGT19, DKTZ20, CKMY20, DKT21] and,
more recently, for learning real-valued functions [CKMY21, DPT21].

For the task of PAC learning halfspaces with Massart noise (i.e., neurons corresponding to the
sign activation), there is compelling evidence that even approximate learning is computationally
hard [DK22, NT22, DKMR22b]. In sharp contrast, our understanding of the possibilities and
limitations of Massart learning well-behaved real-valued functions (including ReLUs and other Lip-
schitz monotone activations) remains limited. On the positive side, recent work developed the
first efficient learners for linear regression [CKMY21, DPT21]| and ReLU regression [DPT21] with
Massart noise. We note that the ReLU regression algorithm of [DPT21] requires a certain anti-
concentration condition on the distribution Dy of examples, which is crucial for its performance
guarantees. In fact, without such an assumption, no non-trivial upper bound is known for ReLUs
(or other non-linear activations). This discussion prompts the following question:

Is there an efficient O(1)-approzimate learner for distribution-free learning
of a single neuron with Massart noise?

For the important case of ReLU activations, [DPT21] conjectured that the distribution-independent
PAC learning problem is intractable. As the main contribution of this paper, we provide strong
evidence towards this conjecture, by establishing super-polynomial lower bounds in the Statistical
Query (SQ) model — a restricted but powerful family of algorithms. Specifically, we show that no
efficient SQ algorithm can achieve any constant factor approximation. Moreover, our SQ-hardness
result is not specific to ReLLUs, but generalizes to a broad class of non-linear activation functions.

1.1 Our Results

In this work, we give strong evidence that the problem of learning single neurons with Massart
noise does not admit any constant factor approximation. Specifically, we show that any efficient
SQ algorithm cannot achieve a constant factor approximation. In fact, the hardness gap that we
establish is super-constant, scaling with the dimensionality of the problem.

Instead of directly accessing samples, SQ algorithms [Kea98| are only to adaptively query ex-
pectations of bounded functions of the underlying distribution up to some tolerance (see Section 2).
The class of SQ algorithms is fairly broad: a wide range of known algorithmic techniques in machine
learning are known to be implementable in the SQ model [FGR*17].

For the important class of ReLLU activations, our main result is the following:

Theorem 1.2 (SQ Hardness of Massart Learning ReLUs). Any SQ algorithm that learns a single
neuron with ReLU activation on RY, in the presence of Massart noise with n = 1/3, to squared
error better than 1/poly(log(d)) requires either queries of accuracy better than 2-1°8D or at least
2Uog )L gratistical queries, for some constant ¢y > 1. This holds even if the optimal squared error
is at most 2718 D2 for some 0 < ¢y < 1, and the total weight of the neuron is poly(d).



Theorem 1.2 rules out the existence of efficient SQ algorithms (i.e., using polynomially many
queries of inverse polynomial accuracy) with approximation ratio 2(0gd)® for some 0 < ¢ < 1. Tt
therefore a fortiori rules out any constant factor approximate SQ learner.

We note that the SQ-hardness result of Theorem 1.2 does not require the linearity of the ReLU
(on positive inputs); a similar result can be shown for a broader class of activation functions.
Specifically, we can generalize our SQ-hardness result to any activation f of the form f(u) = 0,
u < 0, and Jug > 0, f(ug) # 0.

Theorem 1.2 establishes SQ-hardness of learning single neurons under the Massart noise notion
of Definition 1.1. We note that for learning real-valued functions, one can consider other natural
definitions of “Massart noise”. Specifically, Definition 1.1 considers an Lg-perturbation (the adver-
sary is allowed to arbitrarily corrupt a random n-fraction of the labels). Another natural definition
considers Lo-perturbations, as stated below (note that in the definition below, the parameter n
does not need to be bounded above by 1/2).

Definition 1.3 (Ly-Massart Noise Model). Let G be a concept class of real-valued functions
over R, Dy be a fixed distribution over R%, and n > 0. Fix an unknown function g € G.
An n-Lo-Massart distribution, D};/Iass_m, is a distribution on labeled examples (X,Y’), supported
on R? x R, such that for (X,Y) ~ D};/Iass_m we have that (i) X ~ Dy, and (ii) for all x €
R it holds that E(X’Y)N,D};/Iass—L2[(Y —g(X))? | X = x] < 4n. We will use OPTyjass_12 =

infgeg E(X7y)ND1\I/Iasst2 [(Y — g(X))?] to denote the optimal squared error.

Note that for {£1} labels, with noise rate 7 < 1/2, the above model generalizes the standard
Massart model (for binary classification) with the same noise rate 7. For this noise model, we
establish SQ-hardness for the following general family of non-linear activations (including ReLUs):

Definition 1.4 (Fast Convergent Activation). We say that a function f : R — R is a fast-
convergent activation if either g(¢) := f(t) or g(t) := f(—t) satisfies the following: (i) lim;_,_~ g(t)
exists. (i) For ¢t < 0 with absolute value sufficiently large, |g(t) — g(—o0)| = 1/poly(|¢]).

Intuitively, the second condition above requires that the function converges to its limit at inverse
polynomial rate. Without loss of generality, we consider activations which converge on the negative
side. For such an activation f, let f_ := f(—o0) and ¢4 be a constant such that f(cy) # f-.

Our proof technique establishing Theorem 1.2 is quite robust and can be adapted to Lo-Massart
noise under fast convergent activations. Our main result in this context is the following;:

Theorem 1.5 (SQ Hardness of Ly-Massart Learning). Let f : R — R be a fast convergent acti-
vation. Any SQ algorithm that learns a single neuron with activation f on R?, in the presence of

1-Lo-Massart noise with n = w, to squared error better than 1/poly(log(d)) requires either

queries of accuracy better than 2-18 D or ot least 208D statistical queries, for some constant
c1 > 1. This holds even if the optimal squared error is at most 2~ 18 D? for some 0 < ¢y < 1, and

the total weight of the neuron is poly(d).

Interestingly, the key ingredient for our aforementioned SQ hardness results for real-valued functions
is a new SQ hardness construction for low-weight halfspaces (i.e., neurons with a sign activation)
on the Boolean hypercube. In this context, we prove:

Theorem 1.6 (SQ Hardness for Low-weight Massart Halfspaces on {0,1}%). Any SQ algorithm
that learns {£1}-weight halfspaces on {0,1}?, in the presence of Massart noise with n = 1/3, to
0-1 error better than 1/poly(log(d)) requires either queries of accuracy better than 2~ (18D or gt
least 2098 D statistical queries, for some constant ¢; > 1. This holds even if the optimal 0-1 error
is at most 218D for some 0 < ¢y < 1.



Theorem 1.6 rules out any efficient polynomial (relative) approximation for {41}-weight half-
spaces on the hypercube. This is the first hardness result for approximate learning of Boolean
Massart halfspaces. Prior work either obtained SQ-hardness of exact learning [CKMY20] or was
inherently applicable to halfspaces on R? [DK22, NT22].

A number of learning problems involving halfspaces are computationally easy when the weights
are small integers (aka in the “large margin” case) and computationally hard for arbitrary weights.
The conceptual message of Theorem 1.6 is that the Massart halfspace learning problem is hard
due to the combinatorial nature of the problem (and not due to the magnitude of the weights).
This addresses an open problem of [Blu03] regarding the complexity of Massart learning simple
halfspaces.

1.2 Technical Overview

We start by describing the proof of Theorem 1.6. Our SQ lower bound for learning Boolean Massart
halfspaces requires a number of novel ideas. Our starting point is the construction of [DK22] that
proves a similar lower bound in the continuous setting. They begin by producing a one-dimensional
construction of a Massart polynomial threshold function (PTF) whose distributions conditional on
y = 1 and y = —1 approximately match many moments. Using techniques from [DKS17], they show
that by embedding this one-dimensional construction into higher dimensions, they can produce d-
dimensional instances of Massart PTFs that are SQ-hard to learn. They then further embed these
instances via the Veronese embedding to produce SQ-hard LTF instances (essentially using the fact
that a PTF in z is an LTF in the low-degree monomials of x).

Our proof adapts this general idea to the discrete setting. The first obstacle is developing an
appropriate analogue of the one-dimensional construction. The construction from [DK22] uses the
fact that a discrete Gaussian nearly matches moments with a standard Gaussian; thus, making the
conditional distributions of x mixtures of discrete Gaussians ensures that the moment-matching
condition is satisfied. By carefully picking this mixture, they ensure that the conditional distribu-
tions have no overlap for |z| small (thus ensuring a small value of OPT), but that the y = 1 case is
always more likely for |z| sufficiently large. This construction does not work in our setting, as we
need our one-dimensional instance to be discrete.

Our basic idea is to begin by noting that the binomial distribution conditioned on x being 0
mod s approximately matches many moments with the full binomial. As a first attempt, we let
y=—1if 2 =0 mod s and y = 1 otherwise. This matches many moments with the binomial,
but alternates between y = 1 and y = —1 many times, and thus cannot be considered to be
a low-degree PTF with Massart noise. To fix this issue, we need to modify our distributions
so that: (i) Conditioned on any z far from n/2, y is more likely to be 1 than —1, (ii) the two
distributions conditioning on y = 1 and y = —1 have little overlap, and (iii) each conditional
distribution approximately matches moments with the full binomial. We can fix (i) at the cost of
(ii) by replacing the conditional distribution on y = 1 with the full binomial distribution. As long
as the prior probability of y = 1 exceeds that of y = —1 by enough, even for xt =0 mod s, y =1
will be more likely than y = —1. Unfortunately, the conditional distributions now have too much
overlap. We can address this by moving the mass in the y = 1 conditional off of the points with
=0 mod s and |z — n/2| small. Importantly, we must find a way to do this without destroying
property (iii). To that end, we show that there is a way to move mass from each of these points z
and redistribute it to nearby points in such a way so as to not affect any of the low-order moments
(see Lemma 3.11). By doing this to each x = 0 mod s with |z — n/2| small, we get our final
construction.

We also need to modify the method by which we embed the one-dimensional construction into



higher dimensions in order to obtain the family of SQ-hard PTF instances. This construction must
differ from previous constructions, as our family of distributions will be discrete and not Gaussian-
like as in [DKS17|. Fortunately, we can leverage the recent technique of [DKS22|, embedding our
low-dimensional construction as a junta. In particular, a significant difference with the Gaussian
case is in the way we embed the low-dimensional distribution as a higher-dimensional one. In the
Gaussian case, we simply take the distribution to be Gaussian in independent directions. In our
discrete setting, we begin by embedding into a moderate dimensional hypercube by taking the
unique symmetric distribution, where our one-dimensional distribution over some subset S is the
distribution over ), ¢ X;. We note that this distribution will approximately match low-degree
moments with the uniform distribution over the hypercube. We then embed this distribution into
a higher-dimensional hypercube as a random junta.

As an application of the above general recipe to obtain SQ lower bounds for discrete distribu-
tions, we note that the hard instances we construct for learning Boolean halfspaces with Massart
noise, also (with a slight change of variables) produce hard instances for ReL.Us (and other activa-
tions). In particular, in our hard instance for PTFs, the optimal classifier f is given by f(x) = —1
ifxg =0 mod sand |xg—n/2| < ds/2, and 1 otherwise, where xg is the sum over the coordinates
of x in some particular subset S. We note that the function (1 — f(x))/2, which is equal to 1 if
x5 = 0 mod s and |xg — n/2| < ds/2 and 0 otherwise, can be written as ReLU(p(x)) for some
degree O(d) polynomial p, where p(x) =1 for x¢ =0 mod s and |xg —n/2| < ds/2, and p(x) <0
otherwise. By replacing x by its Vernonese embedding as before, we can produce hard instances of
ReLU functions with Massart noise.

2 Preliminaries

Notation For n € Z,, we denote [n] def {1,...,n}. For two distributions p, q over a probability
space €, let dry(p, q) = supgcq [P(S) — ¢(S)| denote the total variation distance between p and q.
We use Pr[€] and I[£] for the probability and the indicator of event £. For a real random variable
X, we use E[X], Var[X] to denote the expectation and variance of X, respectively. For n € Z,
and 0 < p < 1, we use Bin(n,p) to denote the Binomial distribution with parameters n and p.
Throughout this article, we will use capital letters (e.g., X,X) to denote random variables and
random vectors, and small letters (e.g, x,x) to denote corresponding values.

Statistical Query Algorithms We will use the framework of Statistical Query (SQ) algorithms
for problems over distributions [FGR"17]. We require the following standard definition.

Definition 2.1 (Decision/Testing Problem over Distributions). Let D be a distribution and D
be a family of distributions over RM. We denote by B(D, D) the decision (or hypothesis testing)
problem in which the input distribution D’ is promised to satisfy either (a) D’ = D or (b) D' € D,
and the goal of the algorithm is to distinguish between these two cases.

We define SQ algorithms as algorithms that do not have direct access to samples from the distri-
bution, but instead have access to an SQ oracle. We will consider the following standard oracle.

Definition 2.2 (STAT Oracle). Let D be a distribution on RM. A Statistical Query (SQ) is a
bounded function f : RM — [~1,1]. For 7 > 0, the STAT(7) oracle responds to the query f
with a value v such that |[v — Exp[f(X)]| < 7. We call 7 the tolerance of the statistical query.
A Statistical Query (SQ) algorithm is an algorithm whose objective is to learn some information
about an unknown distribution D by making adaptive calls to the corresponding STAT(7) oracle.



To define the SQ dimension, we need the following definition.

Definition 2.3 (Pairwise Correlation). The pairwise correlation of two distributions with prob-
ability mass functions (pmfs) Dy, Do : {0,1}* — R, with respect to a distribution with pmf

D : {0,13™ — R, where the support of D contains the supports of D; and Ds, is defined
as xp(D1,D3) + 1 o > zeqopm Di(2)D2(x)/D(x). We say that a collection of s distributions
D = {Dy,...,Ds} over {0,1}M is (v, B)-correlated relative to a distribution D if |xp(D;, D;j)| < v

for all i # j, and |xp(D;, D;)| < S for i = j.
The following notion of dimension effectively characterizes the difficulty of the decision problem.

Definition 2.4 (SQ Dimension). For v, 3 > 0, a decision problem B(D, D), where D is fixed and
D is a family of distributions over {0,1}* let s be the maximum integer such that there exists
Dp C D such that Dp is (v, B)-correlated relative to D and |Dp| > s. We define the Statistical
Query dimension with pairwise correlations (v, 3) of B to be s and denote it by SD(B,~, ).

The connection between SQ dimension and lower bounds is captured by the following lemma.

Lemma 2.5 ([FGR'17]). Let B(D, D) be a decision problem, where D is the reference distribution
and D is a class of distributions over {0,1}M. For~,3 >0, let s = SD(B,~,3). Any SQ algorithm
that solves B with probability at least 2/3 requires at least s-~y /B queries to the STAT(y/27) oracles.

3 SQ Hardness Construction for Supervised Learning

3.1 Generic SQ Lower Bound Construction

We start with some basic definitions. Let Uy be the uniform distribution over {0,1}*. For a
subset T C [M] and x € {0,1}™, we denote xr(x) = (—1)Zwr®. For a distribution P over
{0,1}M  let P(T) = Exp[xr(X)]. We will require the orthogonal polynomials under the binomial
distribution. We have the following fact about the chi-squared inner product in the discrete setting.

Fact 3.1. For distributions P, Q over {0,1}™ | we have that 1+ xy,, (P, Q) = dorciM] P(T)Q(T).

Definition 3.2 (Kravchuk Polynomial [Sze89]). For k,m,z € Z, with 0 < k,x < m, the
Kravchuk polynomial Ky (x;m) is the univariate degree-k polynomial in = defined by Ky (xz;m) :=
> orCm], )=k XT(Y) = Z?:o(_l)] (?) (r]r;:]m), where y has x 1’s and m — z 0’s.

The following distribution family that is the basis of our discrete SQ lower bound construction.

Definition 3.3 (High-Dimensional Hidden Junta Distribution). Let m, M € Z, with m < M. For
a distribution A on [m]U{0} with probability mass function (pmf) A(x) and a subset S C [M] with
|S| = m, consider the probability distribution over {0,1}*, denoted by P4, such that for X ~ Pé
the distribution (X;);¢s is the uniform distribution on its support and the distribution (X;);eg is
symmetric with . ¢ X; distributed according to A. Specifically, Pé is given by the pmf

PA(x) = 2-Mimy <Z x) <Z:; x) o

€S

€S

We now define the hypothesis testing and learning problem which will be used throughout this
paper:



Definition 3.4 (Hidden Junta Binary Testing Problem). Fix a # b € R. Let A and B be
distributions on [m] U {0} satisfying Condition 3.5 with parameters k € Z; and v € Ry, and let
p € (0,1). For M € Zy, M > m, and a subset S C [M] with |S| = m, define the distribution
Pg’fl;p on {0, 1} x {a,b} that returns a sample from (Pg‘, a) with probability p and a sample from
(PE,b) with probability 1 — p. In the (4, B,a,b, M)-Hidden Junta Testing Problem, one is given
access to a distribution D so that either Hy: D = U}, where for (X,Y) ~ U}, we have that X
is a uniform random element of {0,1}*, and Y is independently a with probability p and b with
probability 1 —p. H;: D is given by P?’fgp for some subset S C [M] with |S| = m. One is then
asked to distinguish between Hy and Hy o

Note that this is just the hypothesis testing problem B(D, D) with D = U}, and D = {Pg’fl;p .
The following condition describes the approximate moment-matching property of the desired dis-
tribution A with the Binomial distribution.

Condition 3.5. Let k,m € Z, with k < m and v > 0. The distribution A on [m] U {0} is such
that |[Exa[Kt(X;m)]| <wv, forall1 <t <k.

The following correlation lemma states that the distributions Pg1 are nearly orthogonal as long
as A satisfies the nearly moment-matching condition.

Lemma 3.6 (Correlation Lemma [DKS22]). Let k,m, M € Z. with k < m < M. If the distribution
A on [m] U {0} satisfies Condition 3.5, then for all S,S" C [M] with |S| = |S'| = m, we have that

Ixt,, (P4, P3| < (1SN S| /m)*1\2(A, Bin(m, 1/2)) + kv? .
We will also use the following standard fact:

Fact 3.7. Let m,M € Z, with m < M. For any constant 0 < ¢ < 1 and M > 2m/c, there
exists a collection C of 2%(™) sybsets S C [M] such that any pair S,S" € C, with S # S', satisfies
SN S| < em.

In fact, an appropriate size set of random subsets satisfies the above statement with high
probability.

Proposition 3.8 (Generic Discrete SQ Lower Bound). Let m,M € Z4 with M > m. Let A,B
be distributions on [m] U {0} satisfying Condition 3.5. Let 7 > kv? + 27%(x%(A, Bin(m, 1/2)) +
x2(B,Bin(m,1/2))). Any SQ algorithm that solves the testing problem of Definition 3./ with prob-
ability at least 2/3 must either make queries of accuracy better than /2T or must make at least
29m) 1 /(x2(A, Bin(m, 1/2)) + x%(B, Bin(m, 1/2))) statistical queries.

Proof. Let C be a collection of s = 2™ subsets S C [M] with |S| = m whose pairwise intersections

are all less than m /2. By Fact 3.7 (taking the local parameter ¢ = 1/2), such a set is guaranteed to
exist. We then need to show that for S, S’ € C, we have that | Xu?, (P?’fl;p , P?,’B;’g )| is small. Since

Uiy, Pg}’fl;p , and P?,’B;’b all assign y = 1 with probability p, it is not hard to see that

A,Bp 1A,B, A,B, A,B,
xur, (PEIT PE) = b X iy (PES Ly =1, (PG |y =1)) +

A,B, A,B,
(1 =) Xvg,ly=—1 <(Ps7a,bp ly=—1),(Pyiab v = —1)>
= p xuy, (P4, PE) + (1 - p) xv,, (P, PE).



By Lemma 3.6, for S,5" € C with S # 5’, it holds that
Xur, (PGP PLEP) < ku? + 275 (3 (A, Bin(m, 1/2)) + x*(B, Bin(m, 1/2))) < 7.
If S = 5’, a similar computation shows that
Xvr, (PGl Paail) = XA(Pgni, URy) < X*(A, Bin(m, 1/2)) + x*(B, Bin(m, 1/2)) .

Let v = 7 and 3 = x2(4, Bin(m, 1/2)) + x%(B, Bin(m, 1/2)). We have that the Statistical Query
dimension of this testing problem with correlations (v, 3) is at least s. Then applying Lemma 2.5
with (v, 8) completes the proof. O

3.2 Construction of Univariate Moment-Matching Distributions

Here we give the construction of our approximate moment-matching distributions. For convenience,
we use the “expectation” and “moments” for the unnormalized measure without clarification. The
main result of this section is captured in the following proposition.

Proposition 3.9. Let d,k,s,m € Z, and ¢ € (0,1/2) such that: (i) s > w(k*), (i) k < m/2, (i)
ds > Q(y/mlog(1/C)), and (iv) s*d < o(m). There exist measures Dy and D_ over [m] U {0} and
a union J of d points in [m] U {0} such that:

1. (a) Dy =0 on J, and (b) Dy >2D_ on J = [m] U {0} \ J.
2. All but (-fraction of the measure of D_ lies in J.

3. The distributions Dy /||D+|1 and D_/||D-||1 satisfy Condition 3.5 with parameters k and
v < () exp(—=Q(m/s?)).

4. (a) Dy is at most O(1)Bin(m,1/2) and (b) | D+|1 = O(1).
5. ID_[l = ©(1/s).

Proof. We start by constructing each measure in turn.

Definition of the Measure D_. We define the measure D_ as follows: D_(z) := Bin(m, 1/2)(x)
if =0 (mod s); otherwise D_(x) = 0. We claim that this satisfies Condition 3.5. This is shown
in the following lemma.

Lemma 3.10. D_(z) satisfies Condition 3.5 with parameters k and v = s(}) exp(—Q(m/s?)).

Proof. We need to bound Ezp [Ki(Z;m)] for 1 <t < k. By definition, we have that

Pop KZim] = S Baep a0 = (7

. )EXNR[XTO (X1,
TC[m] | T|=t

where Y has Z 1’s and m — Z 0’s, and R € {0,1}"™ is the unique symmetric measure with » ;- X;
having measure D_, and Ty C [m] is some subset with |Tp| = t. Let w be a primitive s root of
unity. We note that the pmf R(x) of the measure R satisfies

1 s—1 ' 1 s—1 m .
R(x) = s Zw(]Zizlxl) = 5o ZHw”Z .
7=0 j=0i=1



Therefore, we can write

Rl ) = (St (LS o) = LSO (e
Jj=01i=1 j=0i=1

Since the expectation is the sum of the above over all z € {0,1}™ and since this separates as a
product, we get that

s—1 m s—1 m
]I[zeT [zeT]
EXNR[XTO( Z (wj ’ ) 2m8 Z H <1 + w] ’ > :
xe{Ol}m] =0:=1 7j=01i=1
Note that the terms with 2j = 0 (mod s) have indices i such that w/(—1)I€T0] = —1 and do not
contribute to the sum. Other terms will have each value of |1+ w’(—1)1€7]| at most 2 — Q(1/s?).
Therefore, Exr [x1,(X)] = exp(—(m/s?)). This completes our proof. O

We also note that D_ is clearly bounded above by Bin(m,1/2). We define J to be the union
of the d elements of m U {0} congruent to 0 modulo s that are closest to m/2. We note that the
measure of D_ outside J is clearly at most the probability that Bin(m, 1/2) is more than ds/2 from
m/2, which is at most ¢ by standard tail bounds.

Definition of the Measure D,. Intuitively, we would like to define Dy to be equal to some
suitable multiple (say, 3) of the standard Binomial measure Bin(m, 1/2). Such a definition would
satisfy the desired moment-matching conditions (property 3 of Proposition 3.9) with zero error and
would also guarantee that Dy > 2D_ on J, as desired (property 1(b)). However, this candidate
definition does not satisfy property 1(a), i.e., that D, be equal to 0 on J. To satisfy the latter
property, we will need to carefully modify this measure. The key lemma is the following:

Lemma 3.11. Let s > w(k*). There emzsts a signed measure fr on {—s+1,—s+2,...,s—1} such
that: (i) For any integer 0 <t <k, S2571 pu(i)it =0, (i) p(0) = —1, (m) (i) < 1/10 i #0.

Proof. The conditions on y define a linear program (LP). We will show that this LP is feasible by
showing that the dual LP is infeasible. The dual LP asks for a degree at most k real polynomial
q(z) such that

s—1

la(0)] = (1/11) Y la(i) -

i=1—s

Consider the parameterization p(f) = q(ssin(f)). We will leverage the fact that p(0) is a degree-k
polynomial in €l and e, In particular, p(f) can be written as

k
0) = Z a;el?
=k

for some complex coefficients a; € C. By normalizing, we can assume that Z;?:_ . laj|* = 1. Then,
for any 6, we have that

k
0 < > lajl =0(Vk

j=—k



where the final inequality follows from the Cauchy-Schwarz. In particular, |¢(0)| = |p(0)| = O(VE).
In addition, for any 6, by Cauchy-Schwarz, we have that

k k
Y .
PO =D ja;e??| < > |jlla;| <

j==k j=—k
Finally, we note that
1 2w ) k )
o pO)do = > o =1.
0 =k

Combining the latter with the fact that |p(6)] = O(Vk), we obtain that

/ 7 p(O)]do = QK72
0

For any 6 € [0, 27], let n(f) be the closest ¢ € [0, 27] such that ssin(¢) is an integer in {1 — 5,2 —
5,...,5— 1}. Tt is not hard to see that |n(f) — 6] = O(s~/2) for all such #. Furthermore, we have
that

lp(n(0)) — p(B)] < [n(0) — 6] sup [p'(0)] < Ok>?s71/2).
0’€10,27]

We can thus write

2

a7 = [ < | 7 p(n(0))1d8 + O(kH257112)

Therefore,

/ - Ip(n(0))[d6 > Q(k™"/?) .
0

On the other hand, each value of p(n(0)) is equal to the value of ¢ evaluated at some integer between
1—s and s — 1. Furthermore, it is not hard to see that each such integer occurs for at most a total
of O(s~1/?) range of @’s. Therefore, we get that

s—1

O(s2) 3 1a(i)] = Q(k2) .

i=1—s

Combining with the fact that |¢(0)] = O(k'/?), this shows that it is impossible that

s—1
la(0) > 1/4 Y (i) -

i=1—s
This completes our proof. O

We are now ready to construct the measure D;. We begin with the measure 3Bin(m, 1/2). We
then for each element = € J take the measure p from Lemma 3.11, translate it to center around x
and add an appropriate multiple of it to D4 in order to make Dy (x) = 0. It is clear that the first
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kE moments of Dy agree with those moments of 3Bin(m,1/2), and from there it follows that D
satisfies Condition 3.5 with v = 0, since for any 0 < ¢ < k and any point x € J, we have that

;i (i) (@ + i) = :i (i) Zt: @ it _ zt: @ o .s

-1
p(@)it =0,
s i=1—s /=0 (=0 i=1—s

(2
which means that we never change the moments by making D4 (z) = 0. Therefore, we have D4
is 0 on J by our construction. We also claim that D4 is bounded between 2Bin(m,1/2) and
4Bin(m, 1/2) on J. For this, we note that for any x ¢ .J, there are at most two integers, =’ and ",
that are in J and within distance s of z. It is clear that

|D, (z) — 3Bin(m, 1/2)(x)| < (3/10)(Bin(m, 1/2)(x") + Bin(m, 1/2)(z")) .

It suffices to show that %1//22))%)) < 3/2 along with the analogous statement for z”. However,

the log of the ratio is easily seen to be O(s%d/m) = o(1), which suffices. This completes the proof
of Proposition 3.9. O

3.3 Parameter Setting for the SQ-hard Distributions

We will consider the following family of hardness distributions which will be used in the proof of all
SQ hardness results throughout this article. Let C' > 0 be a sufficiently large universal constant.
Let m be a positive integer and m’ be an integer on the order of Cm. Let d be an integer on
the order of m!/10, s an integer on the order of m*?, and k an integer on the order of m?/19.
Observe that (2d:g,m,) < (m)?* = exp(O(Cm"1og(m))). Select m as large as possible so that
the above is less than M. Decreasing M if necessary, we can assume that M = (2d;;3”l). We
consider the Veronese mapping Vp(g) : R™ — RM, such that the coordinate functions of Vo(a)
are exactly the monomials in m’ variables of degree at most O(d). We define measures Dy and
D_ on [m] U {0}, as given by Proposition 3.9, with k,s and d as above, and taking log(1/() a
sufficiently small multiple of (ds)?/m, so that ¢ = exp(—Q(m**®)) = exp(—Q(log(M)¥/?)). It
is easily verified that these parameters satisfy the assumptions of Proposition 3.9. For a subset
S C [m/] of size m and labels a # b € R, define the distribution P?’Z:bp ~P as in Definition 3.4,
with p = || Dy |l1/(|Dx 1 + |D—|l1). We will consider the distribution (X’,Y’) on {0,1}* x {a,b}
by drawing (X,Y) from Pg;}? “P and letting X' = Vp(g(X) and Y/ = Y. It is easy to see
that finding a hypothesis that predicts ¢/ given x’' is equivalent to finding a hypothesis for y
given x (since y = y' and there is a known 1-1 mapping between x and x’). The pointwise
bounds on Dy and D_ imply that x*(Dy/||Dy |1, Bin(m,1/2)) + x*>(D_/||D_||1, Bin(m, 1/2)) =
O(s?). The parameter v in Proposition 3.8 is at most smF exp(—Q(m/s?)) = exp(—Q(m'/?)).
Note that as M = exp(O(m/19)), this is exp(—Q(log(M)'1)). As k is also Q(log(M)95), we have
that 7 = exp(—Q(log(M)!9)) < 1/poly(M). In the remaining part of this article, we will use
x', X',/ Y’ without clarification to denote the results of x,X,y,Y after the Veronese mapping
Vo : R™ — RM.

4 Concrete SQ Hardness Results

4.1 SQ Hardness of Learning Low-Weight Boolean Halfspaces with Massart
Noise

In this subsection, we prove our SQ hardness results for Massart learning of low-weight half-spaces
and ReLUs.
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In particular, we start by proving the following theorem.

Theorem 4.1 (SQ Hardness for Low-weight Massart Halfspaces on {0,1}). Any SQ algo-
rithm that learns {#1}-weight halfspaces on {0,1YM in the presence of Massart noise with n =
1/3, to 0-1 error better than 1/poly(log(M)) requires either queries of accuracy better than T :=
exp(—Q(log(M)19)) or at least 1/ statistical queries. This holds even if the optimal classifier has

0-1 error exp(—Q(log M)®/9).

Proof. Our proof will make use of the SQ framework of Section 3.1 and will crucially rely on the
one-dimensional construction of Proposition 3.9. In this subsection, we fix the labelsa = 1,b = —1,
and apply the construction in Section 3.3 to obtain the joint distributions (X,Y") and (X', Y”). Note
that y = 3/ and there is a known 1-1 mapping between x and x’, therefore finding a hypothesis
that predicts 3’ given x’ is equivalent to finding a hypothesis for y given x.

Claim 4.2. The distribution (X', Y") over {0, 1} x {£1} is a Massart LTF distribution with op-
timal misclassification error OPTyjass < exp(—Q(log(M)8/?)) and Massart noise rate upper bound

of n=1/3.

Proof. For a vg the vector whose i coordinate is 1if i € S and 0 otherwise, let g : {0, 1} — {£1}
be defined as g(x) = —1 if and only if vg:x € J. In this way, we are able to write g as a degree-2d
PTF, ie., g(x) = sign([],c;(vix — 2)?). Therefore, there exists some LTF L : RM — {+1} such
that g(x) = L(x') = L(V4(x)) for all x. We now bound the error for LTF L under the distribution
(X', Y"). By the law of total probability, we have that

Prix,yn [Y' # LX)] = Prx,y) [Y # 9(X)]

We note that our hard distribution returns (x’,y’) with ¢’ = L(x’), unless it picked a sample
corresponding to a sample of D_ coming from .J, therefore,

Prixiyn [V # LX) <Prxy)Y #9(X) | Y =-1]< ¢,

which implies that OPTyass < ¢ < exp(—Q(log(M)®/?)). We then show that (X’,Y”) is a Massart
LTF distribution with noise rate upper bound of n = 1/3. For any fixed x’ € R, we have that

PI’(X/’Y/)[Y/ =1 ‘ X/ = X/] . PI‘(X7y) [Y =1 ’ X = X]
Prx ynY'=-1|X' =x]  Prxyly =-1|X=x]
Prxy)[Y =1 PrxyX=x|Y =1 Dy -P5 (x) D,(vix)
T
S

- Prxy)[Y =1 PrxyX=x|Y=-1 |p_|,.-PT (x) D-(vix)’

Therefore, if vix € J, the above ratio will be 0 and L(x’) = —1, which means that the noise rate
n(x’) = 0; otherwise, the above ratio will be at least 2 (since Dy > 2D_ on J by property 1(b)
of Proposition 3.9) and L(x’) = 1, which means that n(x’) < 1/3. This completes the proof of the
claim. 0O

We now show that the (Dy,D_,1,—1,m')-Hidden Junta Testing Problem efficiently reduces to
our learning task. In more detail, we show that any SQ algorithm that computes a hypothesis A’/
satisfying Prx/ y[h/(X’) # Y] < min(p, 1 — p) — 2v/27 can be used as a black-box to distinguish

between sz,bp,,p , for some unknown subset S C [m] with |S| = m, and U”,. Since there is a 1-1

mapping between x € {0,1}™ and x’ € {0,1}™, we denote h : {0, 1} + {£1} to be h(x) = I/ (x').
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We note that we can (with one additional query to estimate the Pr[h/(X’) # Y] within error v/27)
distinguish between (i) the distribution P S*’b ~P_ and (ii) the distribution U?,. This is because for
any h we have that Pr(X,y)NUp [hW(X) #Y] > mln(p, 1—p). Applying PlOpOSlthIl 3.8, we determine

that any SQ algorithm which, given access to a distribution P so that either P = Uf;,, or P is given
by P?Z’b ~ for some unknown subset S C [m/] with |S| = m, correctly distinguishes between these

two cases with probability at least 2/3 must either make queries of accuracy better than v/27 or must
make at least 2°0™) 7 /(x2(A, Bin(m, 1/2)) + x*(B, Bin(m, 1/2))) statistical queries. Therefore, it is
impossible for an SQ algorithm to learn a hypothesis with error better than min(p, 1 —p) —2v/27 =
©(1/s) — O(y/7) = 1/polylog(M) without either using queries of accuracy better than 7 or making
at least 2920m) /polylog(M) > 1/7 many queries. This completes the proof of the SQ-hardness.

It remains to argue that the underlying halfspaces in the hard instance can be assumed to
have {1} weights. To deal with the weights, we note that g is a degree-2d PTF that can be
defined as the product of 2d linear polynomials L;, so that each L; has integer coefficients and
the sum of the absolute values of these coefficients is O(m). This means that g can be defined
by a degree-2d polynomial with integer coefficients and the sum of whose absolute values is at
most O(m)?? = poly(M). By doubling these coefficients, we can assume that they are all even.
Therefore, the linear threshold function L can be defined by a linear polynomial with even integer
weights each of which has absolute value at most W. If we replace our distribution over {0, 1}
by a distribution over {0,1}"W by duplicating each coordinate W times (i.e., creating a new
distribution with coordinates z; ; for i € [M] and j € [W] with z;; = x; for all ,j), we can
rewrite L(z) as an LTF L'(z), where L' has {41}-weights. This is done by replacing a term a;z;
by E(GH_W 22— ZjVI;(ai+W)/2+1 z; ;. This completes the proof of Theorem 4.1. O

4.2 SQ Hardness of Learning a Single Neuron with Massart Noise

In this subsection, we prove our SQ hardness result of learning a single neuron with ReLLU activation
and Massart noise. The standard ReLU function is defined by ReLU(¢) = max(¢,0),Vt € R. For
technical convenience, we will consider the following linear transformation of the standard Rel.U,
ReLU( )=—-1ift <0, and ReLU( ) = —1 + 2t otherwise. We note that our SQ hardness result

for the ReLU function applies to the standard ReLU function as well.

Theorem 4.3 (SQ Hardness of Massart Learning ReLUs). Any SQ algorithm that learns a single
neuron with ReLU activation on RM, in the presence of Massart noise with n = 1/3, within
squared error better than 1/poly(log(M)) requires either queries of accuracy better than T :=
exp(—Q(log(M)'9)) or at least 1/7 statistical queries. This holds even if (i) the optimal neu-
ron has squared error exp(—Q(log M)8/), (ii) The X walues are supported on {0,1}M, and (iii)
the total weight of the neuron is poly(M).

Throughout this subsection, we need the following technical lemma.

Lemma 4.4. Let J be a union of d points in [m] U {0} for some odd integer d. Then there exists
a real univariate polynomial p(x) of degree O(d) such that p(x) = 1,Yx € J, and p(xr) < 0,Vz € J.
In addition, the absolute value of the coefficients of p(z) is at most mO@ = poly(M).

Proof. Let J = {x1,...,x4}. Define q(z) = — H?Zl(m — (x; —1/2))(x — (x; + 1/2)). By definition,
we have that ¢(x) > 0,Vx € J, and ¢(z) < 0,Vz € J. Then, by polynomial interpolation,

there exists a real univariate polynomial r of degree d — 1 such that r(xz;) = m 1 <4 <d.
q(z

Consider the real univariate polynomial p(x) = r?(z)g(z). For any 1 < i < d, we have that
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p(z;) = r*(z;)q(x;) = 1 and for any = € J, we have that p(z) < 0 since ¢(x) < 0,Vx € J. Finally
by polynomial interpolation, we know that the absolute value of every coefficient of r(z), p(z) is at
most mP@ = poly(M). O

Proof of Theorem 4.3. Our proof will make use of the SQ framework of Section 3.1 and will crucially
rely on the one-dimensional construction of Proposition 3.9. In this section, we fix the labels
a = —1,b = 1, and apply the construction in Section 3.3 to obtain the joint distributions (X,Y")
and (X',Y’). Note that y = 3/ and there is a known 1-1 mapping between x and x’, therefore
finding a hypothesis that predicts ¢’ given x’ is equivalent to finding a hypothesis for y given x.

Claim 4.5. The distribution (X', Y") over {0,1}M x {£1} is a Massart single neuron distribution
with ReLU activation, with optimal squared error OPTypas < exp(—Q(log(M)%/?)) and Massart
noise rate upper bound of n = 1/3.

Proof. Let vg be the vector whose it coordinate is 1 if 7 € S and 0 otherwise. By Lemma 4.4, there

is a real univariate polynomial p of degree O(d) such that p(vix) = 1,vix € J and p(vix) <
0,vix ¢ J. Let g(x) := ReLU(p(vix)). Since the absolute value of every coefficient of p is

at most mO@ = poly(M), by our definition, the total weight of the corresponding neuron g is
(

at most m@Pd = poly(M). Therefore, there exists some ReLU function L : RM — R such that
9(x) = L(x') = L(Vp(q)(x)) for all x. We now bound the error for L under the distribution (X', Y”).
By the law of total expectation, we have that

Ex vy [(Y = LX)’ = Ex,y) [(Y — 9(X))?]
<Exy) [(Y —9(X)? Y =1] + Exy) [(Y - 9(X))? | Y = 1] .

We note that our hard distribution returns (X', Y”’) with Y/ = L(X'), unless it picked a sample
corresponding to a sample of D_ coming from J, therefore,

Ex vy (Y = L(X))*] <Exy) [(Y —9(X)* | Y =1] <4,

which implies that OPTyjass < 4¢ < exp(—Q(log(M)®/?)). We then show that (X', Y”) is a Massart
single neuron distribution with ReLU activation and with noise rate upper bound of n = 1/3. For
any fixed x' € RM | we have that

PI'(X/ Y/ [ =-1 | X, = X,] . PI'(X7y) [Y =-1 | X = X]
X/Y/)[ ,_1‘X/:X,] Pr(X7Y)[Y:1’X:X]
C Prxy)[Y = -1 Prxy[X=x|Y=-1 |Dy-P5*(x) D,(vix)
- T
S

Nl =1 Pry)[X=x[Y =1 |p_|,- Py (x) D-(vix)

Therefore, if vgx € J, the above ratio will be 0 and L(x’) = —1, which means Ehat the noise rate
n(x’) = 0; otherwise the above ratio will be at least 2 (since Dy > 2D_ on J by property 1(b)
of Proposition 3.9) and L(x") = 1, which means that n(x") < 1/3. This completes the proof of the
claim. 0O

We now show that the (Dy,D_,—1,1,m')-Hidden Junta Testing Problem efficiently reduces to
our learning task. In more detail, we show that any SQ algorithm that computes a hypothesis A’
satisfying Ex:y)[(h'(X) = Y)?] < 4p — 4p* — 2V/27 can be used as a black-box to distinguish

between P?Z’I;D ~P_ for some unknown subset S C [m’] with |S| = m, and U”,. Since there is a 1-1

mapping between x € {0,1}" and x’ € {0,1}, we denote h : {0,1}™ — R to be h(x) = h'(x').
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We note that we can (with one additional query to estimate the E[(h/(X’) —Y”)?] within error v/27)
distinguish between (i) the distribution P?Z’I;D ~P_ and (ii) the distribution U?,. This is because for
any h we have that

E(X,Y)NU;, [(h(X) = Y)* ] =1—2(1 - 2p)E(X,Y)~Uf;, [M(X)] + E(X,Y)NU;, [h(X)?]
> 1201 = 2p)Ex y)r, [MX)] + Ex vy o7, [n(X)]? > dp — 4p* .

Applying Proposition 3.8, we determine that any SQ algorithm which, given access to a distribution
P so that either P = Uf;b,, or P is given by P?Z’I;D —P for some unknown subset S C [m'] with
|S| = m, correctly distinguishes between these two cases with probability at least 2/3 must either
make queries of accuracy better than /27 or must make at least 2™ 7 /(x?(A, Bin(m, 1/2)) +
x?(B,Bin(m, 1/2))) statistical queries. Therefore, it is impossible for an SQ algorithm to learn a
hypothesis with error better than 4p — 4p® — 227 = O(1/s) — O(y/7) = 1/polylog(M) without
either using queries of accuracy better than 7 or making at least 2%(™) ¢ /polylog(M) > 1/7 many
queries. This completes the proof of Theorem 4.3. O

4.3 SQ Hardness of Learning a Single Neuron with L,-Massart Noise

In this section, we prove our SQ hardness result of learning a single neuron with fast convergent
activations and Lo-Massart noise. Without loss of generality, we consider activations which converge
on the negative side. For such an activation f, let f_ := f(—o0) and ¢4 be a constant such that
fey) # f—. The main theorem of this section is the following.

Theorem 4.6 (SQ Hardness of Ly-Massart Learning). Let f : R — R be a fast convergent acti-
vation. Any SQ algorithm that learns a single neuron with activation f on RM, in the presence
of n-Lo-Massart noise with n = W, to squared error better than 1/poly(log(M)) requires
either queries of accuracy better than 7 := exp(—Q(log(M)%)) or at least 1/7 statistical queries.

This holds even if:

1. The optimal neuron has squared error OPTyjass—1.2 < exp(—Q(log(M)8/9)),
2. The X walues are supported on {0,1}, and

3. The total weight of the neuron is poly(M).

Proof. Our proof will make use of the SQ framework of Section 3.1 and will crucially rely on the
one-dimensional construction of Proposition 3.9. In this section, we fix the labels a = f_,b = f(c4),
and apply the construction in Section 3.3 to obtain the joint distributions (X,Y") and (X', Y”). Note
that y = 3/ and there is a known 1-1 mapping between x and x’, therefore finding a hypothesis
that predicts 3’ given x’ is equivalent to finding a hypothesis for y given x.

Claim 4.7. The distribution (X', Y") on {0, 13M x {f_, f(cy)} is an Lo-Massart single neuron dis-
tribution with respect to activation f, it has optimal squared error OPTypass—12 < exp(—Q(log(M)8/?))

and Lo-Massart noise rate upper bound of n = M.

Proof. We assume M > |cy| to be sufficiently large. Let vg be the vector whose i coordinate

is 1if i € S and 0 otherwise. By Lemma 4.4, there is a real univariate polynomial ¢(z) of degree
O(d) such that q(x) = 1,Vz € J and ¢(z) < 0,Vz € J. Let p(x) = (cy + M)q(x) — M and
g(x) = f(p(vix)). By definition, we have that p(z) = c4 for x € J and p(z) < —M for z € J.
Since the absolute value of every coefficient of p is at most m@@ = poly(M), the weight of the
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corresponding neuron g is at most m@@ = poly(M). Therefore, there exists some fast convergent
activation L : RM — R such that g(x) = L(x') = L(Vo(ay(x)) for all x. We now bound the error
for L under the distribution (X’,Y”). We note that conditional on Y = f_, we will always have
that V%:X ¢ J and conditional on Y = f(cy), we will have that vgx ¢ J with probability at most
(. Therefore, by the law of total expectation, we have that

Exc v (Y = L(X)?] = By (Y — 9(X))?]

SExy[(Y —9(X)? Y = f-] + Ex )Y —g(X)? | Y = f(ct)]
SExnl(f- —9X)? | Y =[]+ 2Ex v [(f- = fler)? + (f- = 9(X)* | vEX ¢ 1Y = f(ey)]
< 1/poly(M) +2¢ - (1/poly(M) + (f- — f(c1))?)

M)*%)) + exp(—Q(log(M)*/%)) - (1/poly (M) + (f- = f(e+))?)

< exp(—Q(log(M)¥/
(log(M)®?)) ,

(
< exp(—Q(log(
where the third inequality follows from the definition of fast convergent activation. Therefore, we
have that OPTyfass_12 < exp(—Q(log(M)®/?)). We then show that (X’,Y”) is a Lo-Massart single
neuron distribution with activation f and with noise rate upper bound of n = W. Note
that for any x € R™, if vix € J, then g(x) = f(p(vix)) = f(cy) and YV will always be f(c.),
which implies that the error will always be 0. Hence, we assume that vgx ¢ J and have that

PrxnlY =/ |X=x]  PrxynlV=/[]PrxyX=x|Y=/[]
Pr(X,Y)[Y:f(C-i-)‘X:X] Pr(XY[ = f(cy)]- P XY)[ =x|Y = f(ey)]
_ D4l -P (X) D, (vEx) 9
TPl ) Do)

which implies that Prx y)[Y = f(cy) | X = x] < 1/3. Therefore,

Ex y[(Y = L(X))? | X' =x] = Ex y)[(Y - 9(X))* | X =x]
= (fles) = 9(x))*Prx v)[Y = fley) | X =x] + (f- - g(x)*Proey)Y = f- | X =x]
(f(eq) — 9(x))? 2 ((fler) = f)* + (f- —9(x))?)

< 3 +(f- —9(x)* < 3 +(f- = 9(x)?
< 2(f(0+?9)— f-)? +1/poly (M) < 8(f(0+2)— f-)? ,

where the third inequality follows from Vgx ¢ J and the definition of fast convergent activation.
This completes the proof of the claim. O

We now show that the (D4, D_, f_, f(c4), m’)-Hidden Junta Testing Problem efficiently reduces
to our learning task. In more detail, we show that any SQ algorithm that computes a hypothesis
W satisfying Ex: yn[(0/(X) = Y")?] < p(1 — p)(f- — f(cq))? — 2v/27 can be used as a black-box
to distinguish between Pg;:gj’ P, for some unknown subset S C [m’] with |S| = m, and U”,. Since
there is a 1-1 mapping between x € {0,1}™ and x’ € {0,1}, we denote h : {0,1}™ ~ R to be
h(x) = W (x’). We note that we can (with one additional query to estimate the E[(h/(X’) — Y)?]
within error 4/27) distinguish between (i) the distribution Pgl’bp ~P, and (ii) the distribution U? .
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This is because for any h we have that

Exy)~or, [(M(X) = V)’ = Exx y) N [h(X)?] — 2Ex,y)~or, [MX)Ex yyor, [Y]
+ Ex y)~u? ,[Yz]
= BEx y)~ur, [h(X))? - 2Ex,y)~ur, [h(X)]E(X,Y)NUf;, Y]
+Exy)~ [ ?]
> E(X,Y)~Uf;, [Y | = Exy)or, YT? =p(1—p)(f- — fleq)?

Applying Proposition 3.8, we determine that any SQ algorithm which, given access to a distribution
P so that either P = U?,, or P is given by P?Z’bp ~? for some unknown subset S C [m/] with
|S| = m, correctly distinguishes between these two cases with probability at least 2/3 must either
make queries of accuracy better than /27 or must make at least 220" 7 /(x2(A, Bin(m, 1/2)) +

x%(B,Bin(m, 1/2))) statistical queries. Therefore, it is impossible for an SQ algorithm to learn a
hypothesis with error better than p(1—p)(f- — f(cy))? —2v27 = O(1/s) — (\/_) = 1/polylog(M)
without either using queries of accuracy better than 7 or making at least 2™ 7 /polylog(M) > 1/7
many queries. This completes the proof of Theorem 4.6. O

5 Conclusion and Future Directions

In this work, we showed that no efficient SQ algorithm can approximate the optimal error within any
constant factor for learning single neurons with Massart noise. In the process, we constructed new
moment-matching distributions corresponding to Boolean halfspaces with Massart noise, which is
a result of independent interest. Importantly, our construction has some additional desirable prop-
erties which allows us to establish hardness for learning low-weight LTFs, strengthening the result
of [DK22]. In addition, we provide a simple technique for transforming our binary construction
into hardness of learning real-valued single neurons with Massart noise.

A number of avenues for future work remain, some of which we briefly discuss below. Recent
work [DKK™22] studied the problem of learning halfspaces under the Gaussian distribution with
Massart noise for n = 1/2. It is plausible that the n = 1/2 case in our distribution-independent
setting is much harder than the n = 0.49 case. Establishing such a statement is left as an interesting
open question. Another direction concerns the distribution-specific setting. Are there efficient
algorithms with non-trivial error guarantees (e.g., achieving a constant factor approximation) for
learning single neurons under simple discrete distributions (e.g., under the uniform distribution on
the hypercube)?
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