
Announcements

• No HW this week

• Final exam next Wednesday

Last Time

• Dealing with NP Completeness

– Basics

– Backtracking

– Branch and Bound

Bad News

If your problem is NP-Hard/NP-Complete…

Then unless P=NP, there is no algorithm that
gives the exact answer to your problem on
all instances in polynomial time.

What are the
loopholes
here?

Prove P=NP? Approximation
Algorithms/
Local Search

Fixed Parameter
Tractability

See if you can
make further
assumptions.

See if you can
modify problem.

Efficient Search

Today

• Local Search

• Approximation Algorithms

Local Search

Many optimization problems have a structure
where solutions “nearby” a good solution will
likely also be good.

This leads to a natural algorithmic idea:

• Find an OK solution

• Search nearby for better solutions

• Repeat

Local Search

LocalSearch(f)

\\ Try to maximize f(x)

 x ← Random initial point

 Try all y close to x

 If f(y) > f(x) for some y

 x ← y

 Repeat

 Else Return x

MAXCUT

Problem: Given a graph G find a way to color the
vertices of G black and white so that as many
edges as possible have endpoints of different
colors.

This is NP-Hard.

Question: MAXCUT

What is the size of the MAXCUT of the graph
below?

A) 2

B) 3

C) 4

D) 5

E) 6

MAXCUT: Local Search

If possible recolor one vertex at a time for
maximum improvement.

Problem

Stuck!

Local Maxima
Maximum

Local
Maximum

How to Get Unstuck

• Randomized Restart
– If you try many starting points, hopefully, you will

find one that finds you the true maximum.

• Expand Search Area
– Look for changes to 2 or 3 vertices rather than 1.

• Larger area means harder to get stuck

• Larger area also takes more work per step

• Still no guarantee of finding the actual
maximum in polynomial time.

Simulated Annealing

• At the start of algorithm take big random
steps.

– Hopefully, this will get you onto the right “hill”.

• As the algorithm progresses, the
“temperature” decreases and the algorithm
starts to fine tune more precisely.

• Works well in practice on a number of
problems.

MAXCUT Minimal Value

Look back at local search for MAXCUT.

• Swap a vertex if most of its neighbors are the
same color.

• At the end of the algorithm most of a vertices
neighbors are the opposite color.

• At the end of the algorithm at least half of the
edges are cut.

• Get cut of size at least |E|/2, but optimum at
most |E|.

Approximation Algorithms

An α-approximation algorithm to an
optimization problem is a (generally
polynomial time) algorithm that is guaranteed
to produce a solution within an α-factor of the
best solution.

Our local search algorithm for MAXCUT is a 2-
approximation algorithm.

Often approximation algorithms can produce
good enough solutions.

Vertex Cover

Often greedy algorithms can give approximation
algorithms.

Problem (Vertex Cover): Given a graph G find a
set S of vertices so that every edge of G
contains a vertex of S and so that |S| is as
small as possible.

Also, NP-Hard.

Question Vertex Cover Example

What is the size of the smallest vertex cover in
the graph below?

A) 1

B) 2

C) 3

D) 4

E) 5

Greedy Algorithm

GreedyVertexCover(G)

 S ← {}

 While(S doesn’t cover G)

 (u,v) ← some uncovered edge

 Add u and v to S

 Return S

Simple and fast.

Example

Analysis

Algorithm finds k edges and 2k vertices.

• Edges are vertex-disjoint.

• Any cover must have at least one vertex on
each of these edges.

• Optimum cover has size at least k.

• We have a 2-approximation.

Knapsack

Even though general knapsack is NP-Hard, we
have a polynomial time algorithm if all
weights are small integers (or more generally
small integer multiples of some common
value).

Since everything can be rounded to small
integers, we have an algorithm idea.

Small Values

Actually rounding the weights doesn’t quite
work. It gives you sets which almost fit in the
sack.

Instead, we want to round the values of the
items and for this, we need a new algorithm.

Dynamic Program

Let Lightest≤k(V) be the weight of the lightest
collection of the first k items with total value V.

We have a recursion

Lightest≤k(V) =
min{Lightest≤k-1(V),Wt(k)+ Lightest≤k-1(V-Val(k))}

This gives a DP.

#subprobs = [Total Value][#items]

Time/Subproblem = O(1).

Approximation Algorithm

1) Throw away items that don’t fit in sac.

2) Let V0 be highest value of item.

3) Round each item’s value to closest multiple
of δV0.

4) Run the small integer values DP.

Runtime: Values integer multiples of δV0. Total
value at most [#items]V0 = ([#items]/δ) δV0.

Total runtime O([#items]2/δ).

Approximation Analysis

Optimal value at least V0.

Rounding changes the value of any set of items
by at most [#items]δV0.

The solution we find is at least as good as the
optimal after round.

Our solution is within [#items]δV0 of optimal.

Combining

Let δ = ε/[#items].

OPT ≥ V0.

Our solution is at most εV0 worse.

Have a (1+ε)-approximation algorithm.

Runtime = O([#items]3/ε)

For any ε > 0, have a (1+ε)-approximation in
polynomial time. (known as a PTAS).

