
Announcements 

• No HW this week 

• Final exam next Wednesday 



Last Time 

• Dealing with NP Completeness 

– Basics 

– Backtracking 

– Branch and Bound 



Bad News 

If your problem is NP-Hard/NP-Complete… 

 

Then unless P=NP, there is no algorithm that 
gives the exact answer to your problem on 
all instances in polynomial time. 

What are the 
loopholes 
here? 

Prove P=NP? Approximation 
Algorithms/ 
Local Search 

Fixed Parameter 
Tractability 

See if you can 
make further 
assumptions. 

See if you can 
modify problem. 

Efficient Search 



Today 

• Local Search 

• Approximation Algorithms 



Local Search 

Many optimization problems have a structure 
where solutions “nearby” a good solution will 
likely also be good. 

This leads to a natural algorithmic idea: 

• Find an OK solution 

• Search nearby for better solutions 

• Repeat 



Local Search 

LocalSearch(f) 

\\ Try to maximize f(x) 

  x ← Random initial point 

  Try all y close to x 

    If f(y) > f(x) for some y 

      x ← y 

      Repeat 

    Else Return x 



MAXCUT 

Problem: Given a graph G find a way to color the 
vertices of G black and white so that as many 
edges as possible have endpoints of different 
colors. 

 

This is NP-Hard. 



Question: MAXCUT 

What is the size of the MAXCUT of the graph 
below? 

 

A) 2 

B) 3 

C) 4 

D) 5 

E) 6 



MAXCUT: Local Search 

If possible recolor one vertex at a time for 
maximum improvement. 



Problem 

Stuck! 



Local Maxima 
Maximum 

Local 
Maximum 



How to Get Unstuck 

• Randomized Restart 
– If you try many starting points, hopefully, you will 

find one that finds you the true maximum. 

• Expand Search Area 
– Look for changes to 2 or 3 vertices rather than 1. 

• Larger area means harder to get stuck 

• Larger area also takes more work per step 

• Still no guarantee of finding the actual 
maximum in polynomial time. 



Simulated Annealing 

• At the start of algorithm take big random 
steps. 

– Hopefully, this will get you onto the right “hill”. 

• As the algorithm progresses, the 
“temperature” decreases and the algorithm 
starts to fine tune more precisely. 

• Works well in practice on a number of 
problems. 



MAXCUT Minimal Value 

Look back at local search for MAXCUT. 

• Swap a vertex if most of its neighbors are the 
same color. 

• At the end of the algorithm most of a vertices 
neighbors are the opposite color. 

• At the end of the algorithm at least half of the 
edges are cut. 

• Get cut of size at least |E|/2, but optimum at 
most |E|. 



Approximation Algorithms 

An α-approximation algorithm to an 
optimization problem is a (generally 
polynomial time) algorithm that is guaranteed 
to produce a solution within an α-factor of the 
best solution. 

Our local search algorithm for MAXCUT is a 2-
approximation algorithm. 

Often approximation algorithms can produce 
good enough solutions. 



Vertex Cover 

Often greedy algorithms can give approximation 
algorithms. 

 

Problem (Vertex Cover): Given a graph G find a 
set S of vertices so that every edge of G 
contains a vertex of S and so that |S| is as 
small as possible. 

 

Also, NP-Hard. 



Question Vertex Cover Example 

What is the size of the smallest vertex cover in 
the graph below? 

A) 1 

B) 2 

C) 3 

D) 4 

E) 5 

 



Greedy Algorithm 

GreedyVertexCover(G) 

  S ← {} 

  While(S doesn’t cover G) 

    (u,v) ← some uncovered edge 

    Add u and v to S 

  Return S 

 

Simple and fast. 



Example 



Analysis 

Algorithm finds k edges and 2k vertices. 

• Edges are vertex-disjoint. 

• Any cover must have at least one vertex on 
each of these edges. 

• Optimum cover has size at least k. 

• We have a 2-approximation. 



Knapsack 

Even though general knapsack is NP-Hard, we 
have a polynomial time algorithm if all 
weights are small integers (or more generally 
small integer multiples of some common 
value). 

Since everything can be rounded to small 
integers, we have an algorithm idea. 



Small Values 

Actually rounding the weights doesn’t quite 
work. It gives you sets which almost fit in the 
sack. 

 

Instead, we want  to round the values of the 
items and for this, we need a new algorithm. 



Dynamic Program 

Let Lightest≤k(V) be the weight of the lightest 
collection of the first k items with total value V. 

We have a recursion 

Lightest≤k(V) =  
min{Lightest≤k-1(V),Wt(k)+ Lightest≤k-1(V-Val(k))}  

This gives a DP. 

#subprobs = [Total Value][#items] 

Time/Subproblem = O(1). 



Approximation Algorithm 

1) Throw away items that don’t fit in sac. 

2) Let V0 be highest value of item. 

3) Round each item’s value to closest multiple 
of δV0. 

4) Run the small integer values DP. 

Runtime: Values integer multiples of δV0. Total 
value at most [#items]V0 = ([#items]/δ) δV0. 

Total runtime O([#items]2/δ). 



Approximation Analysis 

Optimal value at least V0. 

Rounding changes the value of any set of items 
by at most [#items]δV0. 

The solution we find is at least as good as the 
optimal after round. 

Our solution is within [#items]δV0 of optimal. 



Combining 

Let δ = ε/[#items]. 

OPT ≥ V0.  

Our solution is at most εV0 worse. 

Have a (1+ε)-approximation algorithm. 

Runtime = O([#items]3/ε) 

For any ε > 0, have a (1+ε)-approximation in 
polynomial time. (known as a PTAS). 


