
Announcements
• No HW this week

• 3-4pm discussion section today over zoom

• Final exam next week

– Wednesday at 11:30

– In this classroom

– Randomized seating

– Comprehensive (with slight emphasis on new 
material in Chapters 8 and 9)

– 6 Questions in 3 hours

– 12 one-sided pages of notes



Last Time

• NP Problems and NP completeness



NP

Such problems are said to be in Nondeterministic 
Polynomial time (NP).

NP-Decision problems ask if there is some object that 
satisfies a polynomial time-checkable property.

NP-Optimization problems ask for the object that 
maximizes (or minimizes) some polynomial time-
computable objective.



Reduction Summary

Any NP 
Decision 
Problem

Circuit SAT

3-SAT

Maximum 
Independent Set

Zero-One
Equations

Subset 
Sum

Knapsack

Hamiltonian 
Cycle

Travelling 
Salesman 
Problem



NP Complete

The problems on the last slide are all 
NP-Complete/Hard. This means that if any
problem in NP is fundamentally hard (a widely 
held belief), then these particular problems are.



Today

• Dealing with NP Completeness

• Basic Methods

• Backtracking / Branch and Bound



Dealing With NP-Completeness 
(Ch 9)

• Backtracking/Branch and Bound

• Heuristic Search

• Approximation Algorithms



Identifying NP-Complete Problems

When given a problem to solve, it is important 
to determine if it is NP-Complete.



Identifying NP-Complete Problems

When given a problem to solve, it is important 
to determine if it is NP-Complete.

If it is, then you have very good evidence that 
you won’t find a polynomial time solution. So 
you have an excuse for not having a better 
algorithm.



Identifying NP-Complete Problems

When given a problem to solve, it is important 
to determine if it is NP-Complete.

If it is, then you have very good evidence that 
you won’t find a polynomial time solution. So 
you have an excuse for not having a better 
algorithm.

Unfortunately, this doesn’t solve your original 
problem. Even if it’s NP-Complete you still 
need to solve it anyway.



Bad News

If your problem is NP-Hard/NP-Complete…

Then unless P=NP, there is no algorithm that 
gives the exact answer to your problem on 
all instances in polynomial time.



Bad News

If your problem is NP-Hard/NP-Complete…

Then unless P=NP, there is no algorithm that 
gives the exact answer to your problem on 
all instances in polynomial time.

What are the 
loopholes 
here?



Bad News

If your problem is NP-Hard/NP-Complete…

Then unless P=NP, there is no algorithm that 
gives the exact answer to your problem on 
all instances in polynomial time.

What are the 
loopholes 
here?

Prove P=NP?



Bad News

If your problem is NP-Hard/NP-Complete…

Then unless P=NP, there is no algorithm that 
gives the exact answer to your problem on 
all instances in polynomial time.

What are the 
loopholes 
here?

Prove P=NP? Approximation 
Algorithms/ 
Local Search



Bad News

If your problem is NP-Hard/NP-Complete…

Then unless P=NP, there is no algorithm that 
gives the exact answer to your problem on 
all instances in polynomial time.

What are the 
loopholes 
here?

Prove P=NP? Approximation 
Algorithms/ 
Local Search

See if you can 
modify problem.



Bad News

If your problem is NP-Hard/NP-Complete…

Then unless P=NP, there is no algorithm that 
gives the exact answer to your problem on 
all instances in polynomial time.

What are the 
loopholes 
here?

Prove P=NP? Approximation 
Algorithms/ 
Local Search

Fixed Parameter 
Tractability

See if you can 
make further 
assumptions.

See if you can 
modify problem.



Bad News

If your problem is NP-Hard/NP-Complete…

Then unless P=NP, there is no algorithm that 
gives the exact answer to your problem on 
all instances in polynomial time.

What are the 
loopholes 
here?

Prove P=NP? Approximation 
Algorithms/ 
Local Search

Fixed Parameter 
Tractability

See if you can 
make further 
assumptions.

See if you can 
modify problem.

Efficient Search



Sudoku

Consider the logic puzzle Sudoku (or any similar 
logic puzzle).

Fill a 9x9 grid of numbers with 1-9 so that:

• Each row has all numbers

• Each column has all numbers

• Each of the main 3x3 sub squares has all 
numbers

• Some entries are pre-filled



NP-Hard

Suitable generalizations of Sudoku are NP-Hard.



NP-Hard

Suitable generalizations of Sudoku are NP-Hard.

• So in general, you cannot do much better than 
brute force search.

• True brute force search would consider 
981 ≈ 2·1077 possibilities.



NP-Hard

Suitable generalizations of Sudoku are NP-Hard.

• So in general, you cannot do much better than 
brute force search.

• True brute force search would consider 
981 ≈ 2·1077 possibilities.

• In practice, people can solve them while 
waiting for the dentist.

– How?



Deductions

One way to progress is so make deductions.

• Use the rules to show that some square can 
only be filled out in one way.



Deductions

One way to progress is so make deductions.

• Use the rules to show that some square can 
only be filled out in one way.

• Use that information to help fill out more 
squares.



Deductions

One way to progress is so make deductions.

• Use the rules to show that some square can 
only be filled out in one way.

• Use that information to help fill out more 
squares.

• Hopefully, you can keep going until the entire 
problem is solved.



Example

Consider 3-SAT:



Example

Consider 3-SAT:

First clause implies x = True.



Example

Consider 3-SAT:

First clause implies x = True.

Plugging in and simplifying gives:



Example

Consider 3-SAT:

First clause implies x = True.

Plugging in and simplifying gives:

First clause implies y = True.



Example

Consider 3-SAT:

First clause implies x = True.

Plugging in and simplifying gives:

First clause implies y = True.

Plugging in and simplifying gives:



Example

Consider 3-SAT:

First clause implies x = True.

Plugging in and simplifying gives:

First clause implies y = True.

Plugging in and simplifying gives:

So we must have x = y = z = True, which is a 
solution. 



Getting Stuck

Deductions are very useful when you can make 
them, but for hard problems, you will often 
get stuck quickly and be unable to make more 
deductions.



Getting Stuck

Deductions are very useful when you can make 
them, but for hard problems, you will often 
get stuck quickly and be unable to make more 
deductions.

How do you get out?



Getting Stuck

Deductions are very useful when you can make 
them, but for hard problems, you will often 
get stuck quickly and be unable to make more 
deductions.

How do you get out?

Option 1: Stronger deductive rules.



Sudoku Inference Rules

More complicated deduction rules allow you to go further 
without getting stuck. Common Sudoku rules include:

1) Find a square that only one number can fill.

2) Find a region with only one place for a given number.

3) Find a pair of squares in the same row that must contain two 
numbers (which then cannot appear elsewhere in that row).

4) Find a rectangle whose corners must contain 2 copies of a 
number. That number cannot appear elsewhere in those 
rows/columns.

5) Find 3 rows & 3 columns whose intersections must contain 3 
copies of a number. That number cannot appear elsewhere 
in those rows and columns.



Still Stuck?

What if your complicated set of inference rules 
is still not enough?



Still Stuck?

What if your complicated set of inference rules 
is still not enough?

There is a general strategy that can always be 
made to work.



Still Stuck?

What if your complicated set of inference rules 
is still not enough?

There is a general strategy that can always be 
made to work.

Guess and check.



Guess and Check

• Make a guess for some entry.

• Try to solve the resulting puzzle (perhaps 
doing more guessing).

• If you find a solution, great!

• If not, you have deduced that your original 
guess was wrong.



Example



Example

Guess x = True:



Example

Guess x = True:

2nd clause: y = False
4th clause: z = False
Contradicts 1st clause.



Example

So must have x = False:



Example

So must have x = False:

1st clause: y = True
3rd clause: z = True
Contradicts 4th clause.



Example

So must have x = False:

1st clause: y = True
3rd clause: z = True
Contradicts 4th clause. No Solutions!



Backtracking

You can combine guess and check nicely with 
deductions. In fact, a deduction can be 
thought of as just guessing the wrong way to 
fill things in and then concluding that it 
doesn’t work.



Backtracking

You can combine guess and check nicely with 
deductions. In fact, a deduction can be 
thought of as just guessing the wrong way to 
fill things in and then concluding that it 
doesn’t work.

This brings us to the general algorithm of 
Backtracking. This takes some search problem 
P with some space S that needs to be 
searched.



Backtracking

Backtracking(P,S)

If you can deduce unsolveable

Return ‘no solutions’

Split S into parts S1,S2,…

For each i, 

Run Backtracking(P,Si)

Return any solutions found



Splitting

How do you split S into parts?

• Pick variable xi and set xi = True, or xi = False

• Try all possible numbers in a square in Sudoku

• Try all possible edges in Hamiltonian Cycle



Splitting

How do you split S into parts?

• Pick variable xi and set xi = True, or xi = False

• Try all possible numbers in a square in Sudoku

• Try all possible edges in Hamiltonian Cycle

Which variable do we guess?

• Often helps to pick a variable that shows up a 
lot. Then guessing it’s value will make later 
deductions easier.



Runtime

These problems are still NP-Hard. Worst case, 
backtracking will still take exponential time. 
But it is usually much better than brute force.



Runtime

These problems are still NP-Hard. Worst case, 
backtracking will still take exponential time. 
But it is usually much better than brute force.

SAT Solvers can use these ideas to solve 
problems with hundreds of variables, many 
many more than would be practical by brute 
force.



Optimization Version

Backtracking works well for decision/search 
problems (where a potential solution works or 
doesn’t work), but not so well for optimization 
problems (where many solutions work, but 
you need to find the best one).



Optimization Version

Backtracking works well for decision/search 
problems (where a potential solution works or 
doesn’t work), but not so well for optimization 
problems (where many solutions work, but 
you need to find the best one).

If most solutions work, how do you weed out 
bad paths?



Branch & Bound

To get rid of bad paths do two things:



Branch & Bound

To get rid of bad paths do two things:

1) Keep track of the best solution you have 
found so far.

2) Try to prove upper bounds on your 
subproblems. 



Branch & Bound

To get rid of bad paths do two things:

1) Keep track of the best solution you have 
found so far.

2) Try to prove upper bounds on your 
subproblems. 

If an upper bound is smaller than your best 
solution so far, it cannot contain the 
optimum.



Example: Maximum Independent Set



Example: Maximum Independent Set

Set of size 3.



Example: Maximum Independent Set

Set of size 3.



Example: Maximum Independent Set

Set of size 3.

If we have 
this point…



Example: Maximum Independent Set

Set of size 3.

If we have 
this point…

Can’t have 
any of these.



Example: Maximum Independent Set

Set of size 3.

If we have 
this point…

Can’t have 
any of these.

Can’t have 
both of 
these



Example: Maximum Independent Set

Set of size 3.

If we have 
this point…

Can’t have 
any of these.

Can’t have 
both of 
these

Set of size 
at most 3.



Branch and Bound

BranchAndBound(Best,S)

If UpperBound(S) ≤ Best

Return ‘no improvement’

If S a full solution

Return value of S

Split S into S1,S2,…

For each Si

New ← BranchAndBound(Best,Si)

Best = Max(New,Best)

Return Best


