
Announcements

• Exam 3 on Friday

– In class

– Assigned seating

– 6 one-sided pages of notes

– On Dynamic programming/Huffman codes/MSTs

Last Time

• NP Problems and NP completeness

– 3SAT

– MIS

NP

Such problems are said to be in Nondeterministic
Polynomial time (NP).

NP-Decision problems ask if there is some object that
satisfies a polynomial time-checkable property.

NP-Optimization problems ask for the object that
maximizes (or minimizes) some polynomial time-
computable objective.

Reductions

Reductions are a method for proving that one
problem is at least as hard as another.

We show that if there is an algorithm for solving
A, then we can use this algorithm to solve B.
Therefore, B is no harder than A.

Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to
problem B
instance

Solution to
problem A
instance

Polynomial time
reduction algorithm

Hypothetical
algorithm for B

Polynomial time
interpretation
algorithm

Solution to A

NP-Complete

Circuit-SAT is our first example of an
NP-Complete problem. That is a problem in NP that
is at least as hard as any other problem in NP.

3-SAT

3-SAT is a special case of formula-SAT where the
formula is an AND of clauses and each clause
is an OR of at most 3 variables or their
negations.

NP-Complete!

Another Look at 3-SAT

Lemma: A 3-SAT instance is satisfiable if and
only if it is possible to select one term from
each clause without selecting both a variable
and its negation.

Intermediate Problems

To prove our more complicated reductions, it
will help to have the correct problem to prove
reductions from.

A convenient problem is the one the book calls
Zero-One Equations.

Today

• More NP-Completeness Reductions

– Zero-One Equations

– Knapsack

– Hamiltonian Cycle

Zero-One Equations

Problem: Given a matrix A with only 0 and 1 as
entries and b a vector of 1s, determine
whether or not there is an x with 0 and 1
entries so that

Ax = b.

Zero-One Equations

Problem: Given a matrix A with only 0 and 1 as
entries and b a vector of 1s, determine
whether or not there is an x with 0 and 1
entries so that

Ax = b.

This problem is clearly in NP. We will show that
it is NP-Complete.

Example

Example

Equivalently, do there exist x1, x2, x3 ∈ {0,1} so
that

x1+x3 = 1

x1+x2 = 1

Example

Equivalently, do there exist x1, x2, x3 ∈ {0,1} so
that

x1+x3 = 1

x1+x2 = 1

Generally, this is what a ZoE looks like. A bunch
of sets of xis that need to add to 1.

3-SAT → ZOE

Basic Idea:

• Use the one term from each clause
formulation of 3-SAT.

3-SAT → ZOE

Basic Idea:

• Use the one term from each clause
formulation of 3-SAT.

• Create one variable for each term to denote
whether or not it has been selected.

3-SAT → ZOE

Basic Idea:

• Use the one term from each clause
formulation of 3-SAT.

• Create one variable for each term to denote
whether or not it has been selected.

• Add equations to enforce exactly one term
from each clause, no contradictory terms
selected.

Example

Example

x1 x2 x3 x4 x5 x6 x7

Example

x1 x2 x3 x4 x5 x6 x7

One term per clause:
x1 + x2 + x3 = 1
x4 + x5 = 1
x6 + x7 = 1

Example

x1 x2 x3 x4 x5 x6 x7

One term per clause:
x1 + x2 + x3 = 1
x4 + x5 = 1
x6 + x7 = 1

No Contradictions:
x1 + x4 ≤ 1
x1 + x7 ≤ 1
x2 + x6 ≤ 1
x5 + x6 ≤ 1

Example

x1 x2 x3 x4 x5 x6 x7

One term per clause:
x1 + x2 + x3 = 1
x4 + x5 = 1
x6 + x7 = 1

No Contradictions:
x1 + x4 ≤ 1
x1 + x7 ≤ 1
x2 + x6 ≤ 1
x5 + x6 ≤ 1

Not allowed inequalities

Example

x1 x2 x3 x4 x5 x6 x7

One term per clause:
x1 + x2 + x3 = 1
x4 + x5 = 1
x6 + x7 = 1

No Contradictions:
x1 + x4 ≤ 1
x1 + x7 ≤ 1
x2 + x6 ≤ 1
x5 + x6 ≤ 1

Not allowed inequalities

Replace
a + b ≤ 1 with
a + b + c = 1

Example

x1 x2 x3 x4 x5 x6 x7

One term per clause:
x1 + x2 + x3 = 1
x4 + x5 = 1
x6 + x7 = 1

Replace
a + b ≤ 1 with
a + b + c = 1

No Contradictions:
x1 + x4 + x8 = 1
x1 + x7 + x9 = 1
x2 + x6 + x10 = 1
x5 + x6 + x11 = 1

General Construction

• Create one variable per term

• For each clause, create one equation

• For each pair of contradictory term, create an
equation with those two and a new variable

Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Example:

Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Example:

x1*[1 0 0 1] +

x2*[0 0 1 1] +

x3*[1 1 1 0]

= [1 1 1 1]

Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Example:

x1*[1 0 0 1] +

x2*[0 0 1 1] +

x3*[1 1 1 0]

= [1 1 1 1]

What if we treated these as numbers rather than vectors?

Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Example:

What if we treated these as numbers rather than vectors?

x1* 1 0 0 1 +

x2* 0 0 1 1 +

x3* 1 1 1 0

= 1 1 1 1

Reduction

If the numbers are represented in a large
enough base that carrying is impossible, we
have a solution to the vector equation if and
only if we have a solution to the number
equation.

Subset Sum

Problem: Given a set S of numbers and a target
number C, is there a subset T ⊆ S whose
elements sum to C.

Subset Sum

Problem: Given a set S of numbers and a target
number C, is there a subset T ⊆ S whose
elements sum to C.

Alternatively: Can we find xy ∈ {0,1} so that

Subset Sum

Problem: Given a set S of numbers and a target
number C, is there a subset T ⊆ S whose
elements sum to C.

Alternatively: Can we find xy ∈ {0,1} so that

Reduction: ZOE → Subset Sum.

Knapsack

Subset Sum is pretty closely related to (non-
repeated) knapsack.

Knapsack

Subset Sum is pretty closely related to (non-
repeated) knapsack.

Subset Sum wants to find a set of values so that
the weights equal the capacity.

Knapsack

Subset Sum is pretty closely related to (non-
repeated) knapsack.

Subset Sum wants to find a set of values so that
the weights equal the capacity.

Knapsack wants to find a set of values so that
the weights are at most the capacity and the
value is large.

Subset Sum → Knapsack

• Create Knapsack problem where for each item
Value(item) = Weight(item).

Subset Sum → Knapsack

• Create Knapsack problem where for each item
Value(item) = Weight(item).

• Maximizing value is the same as maximizing
weight (without going over capacity).

Subset Sum → Knapsack

• Create Knapsack problem where for each item
Value(item) = Weight(item).

• Maximizing value is the same as maximizing
weight (without going over capacity).

• We can achieve value = capacity if and only if
there is a subset of the items with total weight
equal to capacity.

Knapsack is NP-Hard

3-SAT → ZOE → Subset Sum → Knapsack

Knapsack is NP-Hard

3-SAT → ZOE → Subset Sum → Knapsack

Wait. Didn’t we have a polynomial time DP for
knapsack?

Knapsack is NP-Hard

3-SAT → ZOE → Subset Sum → Knapsack

Wait. Didn’t we have a polynomial time DP for
knapsack?

Our algorithm was polynomial in the total
weight, which in this case is exponential.

One Final Reduction

The last reduction we are going to show is
ZOE → Hamiltonian Cycle. This will show that
both Hamiltonian Cycle and TSP are NP-
Complete/Hard.

