
Announcements

• Exam 3 on Friday

– In class

– Assigned seating

– 6 one-sided pages of notes

– On Dynamic programming/Huffman codes/MSTs



Last Time

• NP Problems and NP completeness

– 3SAT

– MIS



NP

Such problems are said to be in Nondeterministic 
Polynomial time (NP).

NP-Decision problems ask if there is some object that 
satisfies a polynomial time-checkable property.

NP-Optimization problems ask for the object that 
maximizes (or minimizes) some polynomial time-
computable objective.



Reductions

Reductions are a method for proving that one 
problem is at least as hard as another.

We show that if there is an algorithm for solving 
A, then we can use this algorithm to solve B. 
Therefore, B is no harder than A.



Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to 
problem B 
instance

Solution to 
problem A 
instance

Polynomial time 
reduction algorithm

Hypothetical 
algorithm for B

Polynomial time 
interpretation 
algorithm

Solution to A



NP-Complete

Circuit-SAT is our first example of an 
NP-Complete problem. That is a problem in NP that 
is at least as hard as any other problem in NP.



3-SAT

3-SAT is a special case of formula-SAT where the 
formula is an AND of clauses and each clause 
is an OR of at most 3 variables or their 
negations.

NP-Complete!



Another Look at 3-SAT

Lemma: A 3-SAT instance is satisfiable if and 
only if it is possible to select one term from 
each clause without selecting both a variable 
and its negation.



Intermediate Problems

To prove our more complicated reductions, it 
will help to have the correct problem to prove 
reductions from.

A convenient problem is the one the book calls 
Zero-One Equations.



Today

• More NP-Completeness Reductions

– Zero-One Equations

– Knapsack

– Hamiltonian Cycle



Zero-One Equations

Problem: Given a matrix A with only 0 and 1 as 
entries and b a vector of 1s, determine 
whether or not there is an x with 0 and 1 
entries so that

Ax = b.



Zero-One Equations

Problem: Given a matrix A with only 0 and 1 as 
entries and b a vector of 1s, determine 
whether or not there is an x with 0 and 1 
entries so that

Ax = b.

This problem is clearly in NP. We will show that 
it is NP-Complete.



Example
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Equivalently, do there exist x1, x2, x3 ∈ {0,1} so 
that

x1+x3 = 1

x1+x2 = 1



Example

Equivalently, do there exist x1, x2, x3 ∈ {0,1} so 
that

x1+x3 = 1

x1+x2 = 1

Generally, this is what a ZoE looks like. A bunch 
of sets of xis that need to add to 1.



3-SAT → ZOE

Basic Idea:

• Use the one term from each clause 
formulation of 3-SAT.



3-SAT → ZOE

Basic Idea:

• Use the one term from each clause 
formulation of 3-SAT.

• Create one variable for each term to denote 
whether or not it has been selected.



3-SAT → ZOE

Basic Idea:

• Use the one term from each clause 
formulation of 3-SAT.

• Create one variable for each term to denote 
whether or not it has been selected.

• Add equations to enforce exactly one term 
from each clause, no contradictory terms 
selected.



Example
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a + b ≤ 1 with
a + b + c = 1 



Example

x1 x2 x3 x4 x5 x6 x7

One term per clause:
x1 + x2 + x3 = 1
x4 + x5 = 1
x6 + x7 = 1

Replace 
a + b ≤ 1 with
a + b + c = 1 

No Contradictions:
x1 + x4 + x8 = 1
x1 + x7 + x9 = 1
x2 + x6 + x10 = 1
x5 + x6 + x11 = 1



General Construction

• Create one variable per term

• For each clause, create one equation

• For each pair of contradictory term, create an 
equation with those two and a new variable



Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn ],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.



Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn ],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Example:



Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn ],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Example:

x1*[ 1 0 0 1 ] +

x2*[ 0 0 1 1 ] +

x3*[ 1 1 1 0 ]

----------------

=  [ 1 1 1 1 ]



Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn ],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Example:

x1*[ 1 0 0 1 ] +

x2*[ 0 0 1 1 ] +

x3*[ 1 1 1 0 ]

----------------

=  [ 1 1 1 1 ]

What if we treated these as numbers rather than vectors?



Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn ],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Example:

What if we treated these as numbers rather than vectors?

x1*  1 0 0 1   +

x2*  0 0 1 1   +

x3*  1 1 1 0  

----------------

=    1 1 1 1  



Reduction

If the numbers are represented in a large 
enough base that carrying is impossible, we 
have a solution to the vector equation if and 
only if we have a solution to the number 
equation.



Subset Sum

Problem: Given a set S of numbers and a target 
number C, is there a subset T ⊆ S whose 
elements sum to C.
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Subset Sum

Problem: Given a set S of numbers and a target 
number C, is there a subset T ⊆ S whose 
elements sum to C.

Alternatively: Can we find xy ∈ {0,1} so that 

Reduction: ZOE → Subset Sum.
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repeated) knapsack.
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Knapsack

Subset Sum is pretty closely related to (non-
repeated) knapsack.

Subset Sum wants to find a set of values so that 
the weights equal the capacity.

Knapsack wants to find a set of values so that 
the weights are at most the capacity and the 
value is large.



Subset Sum → Knapsack

• Create Knapsack problem where for each item
Value(item) = Weight(item).



Subset Sum → Knapsack

• Create Knapsack problem where for each item
Value(item) = Weight(item).

• Maximizing value is the same as maximizing 
weight (without going over capacity).



Subset Sum → Knapsack

• Create Knapsack problem where for each item
Value(item) = Weight(item).

• Maximizing value is the same as maximizing 
weight (without going over capacity).

• We can achieve value = capacity if and only if 
there is a subset of the items with total weight 
equal to capacity.



Knapsack is NP-Hard

3-SAT → ZOE → Subset Sum → Knapsack
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Knapsack is NP-Hard

3-SAT → ZOE → Subset Sum → Knapsack

Wait. Didn’t we have a polynomial time DP for 
knapsack?

Our algorithm was polynomial in the total 
weight, which in this case is exponential.



One Final Reduction

The last reduction we are going to show is 
ZOE → Hamiltonian Cycle. This will show that 
both Hamiltonian Cycle and TSP are NP-
Complete/Hard.


