Announcements

- Exam 3 on Friday
 - In class
 - Assigned seating
 - 6 one-sided pages of notes
 - On Dynamic programming/Huffman codes/MSTs

Last Time

- NP Problems and NP completeness
 - 3SAT
 - -MIS

Such problems are said to be in <u>Nondeterministic</u> <u>Polynomial</u> time (NP).

<u>NP-Decision</u> problems ask if there is some object that satisfies a polynomial time-checkable property.

<u>NP-Optimization</u> problems ask for the object that maximizes (or minimizes) some polynomial timecomputable objective.

Reductions

Reductions are a method for proving that one problem is <u>at least as hard</u> as another.

We show that <u>if</u> there is an algorithm for solving A, then we can use this algorithm to solve B. Therefore, B is no harder than A.

Reduction $A \rightarrow B$

NP-Complete

Circuit-SAT is our first example of an <u>NP-Complete</u> problem. That is a problem in NP that is at least as hard as any other problem in NP.

3-SAT

3-SAT is a special case of formula-SAT where the formula is an AND of clauses and each clause is an OR of at most 3 variables or their negations.

NP-Complete!

Another Look at 3-SAT

Lemma: A 3-SAT instance is satisfiable if and only if it is possible to select one term from each clause without selecting both a variable and its negation.

Intermediate Problems

To prove our more complicated reductions, it will help to have the correct problem to prove reductions from.

A convenient problem is the one the book calls <u>Zero-One Equations</u>.

Today

- More NP-Completeness Reductions
 - Zero-One Equations
 - Knapsack
 - Hamiltonian Cycle

Zero-One Equations

<u>Problem:</u> Given a matrix A with only 0 and 1 as entries and b a vector of 1s, determine whether or not there is an x with 0 and 1 entries so that

$$Ax = b.$$

Zero-One Equations

<u>Problem:</u> Given a matrix A with only 0 and 1 as entries and b a vector of 1s, determine whether or not there is an x with 0 and 1 entries so that

$$Ax = b.$$

This problem is clearly in NP. We will show that it is NP-Complete.

Example $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Equivalently, do there exist $x_1, x_2, x_3 \in \{0,1\}$ so that

$$x_1 + x_3 = 1$$

 $x_1 + x_2 = 1$

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Equivalently, do there exist $x_1, x_2, x_3 \in \{0,1\}$ so that

$$x_1 + x_3 = 1$$

 $x_1 + x_2 = 1$

Generally, this is what a ZoE looks like. A bunch of sets of x_is that need to add to 1.

$3\text{-SAT} \rightarrow \text{ZOE}$

Basic Idea:

• Use the one term from each clause formulation of 3-SAT.

$3\text{-SAT} \rightarrow \text{ZOE}$

Basic Idea:

- Use the one term from each clause formulation of 3-SAT.
- Create one variable for each term to denote whether or not it has been selected.

$3\text{-SAT} \rightarrow \text{ZOE}$

Basic Idea:

- Use the one term from each clause formulation of 3-SAT.
- Create one variable for each term to denote whether or not it has been selected.
- Add equations to enforce exactly one term from each clause, no contradictory terms selected.

Example $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$

Example $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$ $X_2 X_3$ $X_4 X_5$ X₆ **X**₁ X_7

Example

$$(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$$

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7$

One term per clause:

 $x_1 + x_2 + x_3 = 1$ $x_4 + x_5 = 1$ $x_6 + x_7 = 1$

Example

$$(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$$

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7$

One term per clause:No Contradictions: $x_1 + x_2 + x_3 = 1$ $x_1 + x_4 \le 1$ $x_4 + x_5$ = 1 $x_1 + x_7 \le 1$ $x_6 + x_7$ = 1 $x_2 + x_6 \le 1$ $x_5 + x_6 \le 1$

Example

$$(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$$

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7$

One term per clause: $x_1 + x_2 + x_3 = 1$ $x_4 + x_5 = 1$ $x_6 + x_7 = 1$

No Contradictions: $x_1 + x_4 \leq 1$ $x_1 + x_7 \leq 1$ $x_2 + x_6 \leq 1$ $x_5 + x_6 \leq 1$

Not allowed inequalities

Example

$$(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$$

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7$

One term per clause:

$$x_1 + x_2 + x_3 = 1$$

 $x_4 + x_5 = 1$
 $x_6 + x_7 = 1$
Replace
 $a + b \le 1$ with
 $a + b + c = 1$

No Contradictions:

$$\begin{array}{l} x_{1} + x_{4} \leq 1 \\ x_{1} + x_{7} \leq 1 \\ x_{2} + x_{6} \leq 1 \\ x_{5} + x_{6} \leq 1 \end{array}$$

Not allowed inequalities

Example

$$(x \lor y \lor z) \land (\overline{x} \lor y) \land (\overline{y} \lor \overline{x})$$

 $x_1 x_2 x_3 x_4 x_5 x_6 x_7$

<u>One term</u>	n per clause:
$x_1 + x_2 + x_3$	x ₃ = 1
x ₄ + x ₅	= 1
$x_{6} + x_{7}$	= 1
Replace	
$a + b \le 1$ with	
a + b + c =	1

No Contradictions:

 $x_{1} + x_{4} + x_{8} = 1$ $x_{1} + x_{7} + x_{9} = 1$ $x_{2} + x_{6} + x_{10} = 1$ $x_{5} + x_{6} + x_{11} = 1$

General Construction

- Create one variable per term
- For each clause, create one equation
- For each pair of contradictory term, create an equation with those two and a new variable

Recall if
$$A = [v_1 v_2 v_3 ... v_n]$$
,
 $Ax = x_1 v_1 + x_2 v_2 + x_3 v_3 + ... + x_n v_n$.

Recall if
$$A = [v_1 v_2 v_3 ... v_n]$$
,
 $Ax = x_1 v_1 + x_2 v_2 + x_3 v_3 + ... + x_n v_n$.
Example:

Recall if
$$A = [v_1 v_2 v_3 ... v_n]$$
,
 $Ax = x_1 v_1 + x_2 v_2 + x_3 v_3 + ... + x_n v_n$.
Example:

Recall if
$$A = [v_1 v_2 v_3 ... v_n]$$
,
 $Ax = x_1 v_1 + x_2 v_2 + x_3 v_3 + ... + x_n v_n$.
Example:

What if we treated these as numbers rather than vectors?

Recall if
$$A = [v_1 v_2 v_3 ... v_n]$$
,
 $Ax = x_1 v_1 + x_2 v_2 + x_3 v_3 + ... + x_n v_n$.
Example:

What if we treated these as numbers rather than vectors?

Reduction

If the numbers are represented in a large enough base that carrying is impossible, we have a solution to the vector equation if and only if we have a solution to the number equation.

Subset Sum

Problem: Given a set S of numbers and a target number C, is there a subset T ⊆ S whose elements sum to C.

Subset Sum

Problem: Given a set S of numbers and a target number C, is there a subset T ⊆ S whose elements sum to C.

<u>Alternatively</u>: Can we find $x_v \in \{0,1\}$ so that

$$\sum_{y \in S} x_y y = C.$$

Subset Sum

Problem: Given a set S of numbers and a target number C, is there a subset T ⊆ S whose elements sum to C.

<u>Alternatively</u>: Can we find $x_v \in \{0,1\}$ so that

$$\sum_{y \in S} x_y y = C.$$

Reduction: ZOE \rightarrow Subset Sum.

Knapsack

Subset Sum is pretty closely related to (non-repeated) knapsack.

Knapsack

Subset Sum is pretty closely related to (non-repeated) knapsack.

Subset Sum wants to find a set of values so that the weights equal the capacity.

Knapsack

Subset Sum is pretty closely related to (non-repeated) knapsack.

Subset Sum wants to find a set of values so that the weights equal the capacity.

Knapsack wants to find a set of values so that the weights are at most the capacity and the value is large.

Subset Sum \rightarrow Knapsack

 Create Knapsack problem where for each item Value(item) = Weight(item).

Subset Sum \rightarrow Knapsack

- Create Knapsack problem where for each item Value(item) = Weight(item).
- Maximizing value is the same as maximizing weight (without going over capacity).

Subset Sum \rightarrow Knapsack

- Create Knapsack problem where for each item Value(item) = Weight(item).
- Maximizing value is the same as maximizing weight (without going over capacity).
- We can achieve value = capacity if and only if there is a subset of the items with total weight equal to capacity.

Knapsack is NP-Hard

 $3\text{-SAT} \rightarrow \text{ZOE} \rightarrow \text{Subset Sum} \rightarrow \text{Knapsack}$

Knapsack is NP-Hard

 $3\text{-SAT} \rightarrow \text{ZOE} \rightarrow \text{Subset Sum} \rightarrow \text{Knapsack}$

Wait. Didn't we have a polynomial time DP for knapsack?

Knapsack is NP-Hard

 $3\text{-SAT} \rightarrow \text{ZOE} \rightarrow \text{Subset Sum} \rightarrow \text{Knapsack}$

Wait. Didn't we have a polynomial time DP for knapsack?

Our algorithm was polynomial <u>in the total</u> <u>weight</u>, which in this case is exponential.

One Final Reduction

The last reduction we are going to show is ZOE → Hamiltonian Cycle. This will show that both Hamiltonian Cycle and TSP are NP-Complete/Hard.