Announcements

- Homework 5 solutions online
- Exam 3 on Friday
 - TAs tell me that pens scan better than pencils, so their use is recommended

Last Time

• NP Problems and NP completeness

Such problems are said to be in <u>Nondeterministic</u> <u>Polynomial</u> time (NP).

<u>NP-Decision</u> problems ask if there is some object that satisfies a polynomial time-checkable property.

<u>NP-Optimization</u> problems ask for the object that maximizes (or minimizes) some polynomial timecomputable objective.

Examples of NP Problems

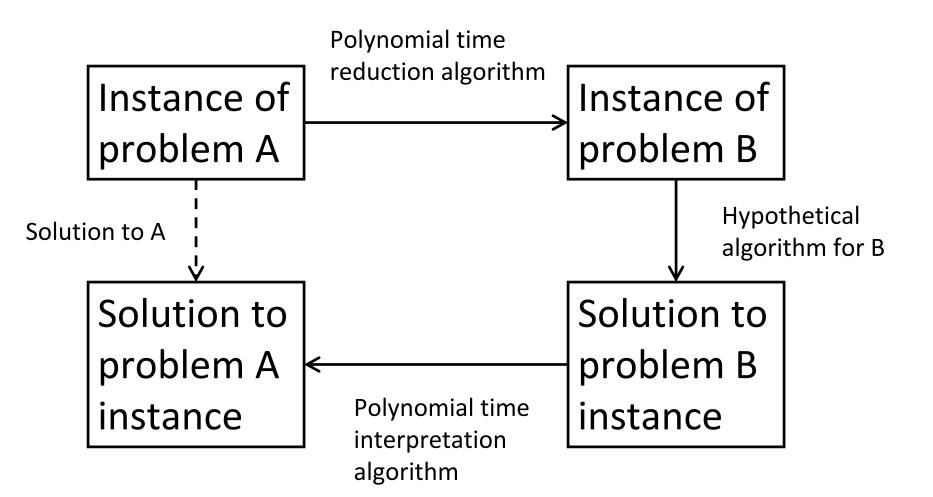
- SAT
- TSP
- Hamiltonian Cycle
- Knapsack
- Maximum Independent Set

Reductions

Reductions are a method for proving that one problem is <u>at least as hard</u> as another.

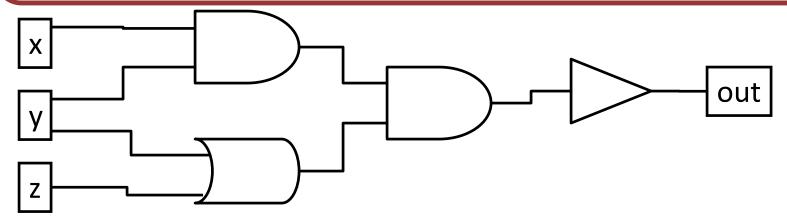
We show that <u>if</u> there is an algorithm for solving A, then we can use this algorithm to solve B. Therefore, B is no harder than A.

Reduction $A \rightarrow B$



Circuit SAT

<u>**Problem:</u>** Given a circuit C with several Boolean inputs and one Boolean output, determine if there is a set of inputs that give output 1.</u>



Important Reduction:

Any NP decision problem \rightarrow Circuit SAT

NP-Complete

Circuit-SAT is our first example of an <u>NP-Complete</u> problem. That is a problem in NP that is at least as hard as any other problem in NP.

Note: Decision problems can be NP-Complete. For optimization problems, it is called <u>NP-Hard</u>.

Today

- Other NP-Complete Problems
 - 3SAT
 - Maximum Independent Set
 - Zero-One Equations

3-SAT

3-SAT is a special case of formula-SAT where the formula is an AND of clauses and each clause is an OR of at most 3 variables or their negations.

3-SAT

3-SAT is a special case of formula-SAT where the formula is an AND of clauses and each clause is an OR of at most 3 variables or their negations.

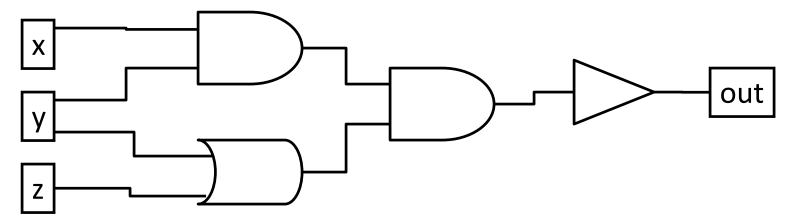
Example:

 $(x \lor y \lor z) \land (\bar{x} \lor u) \land (w \lor \bar{z} \lor u) \land (\bar{u} \lor w \lor \bar{z}) \land (\bar{y})$

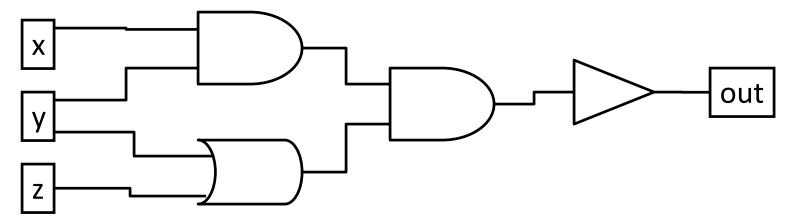
• Start with circuit

$\text{Circuit-SAT} \rightarrow \text{3-SAT}$

• Start with circuit

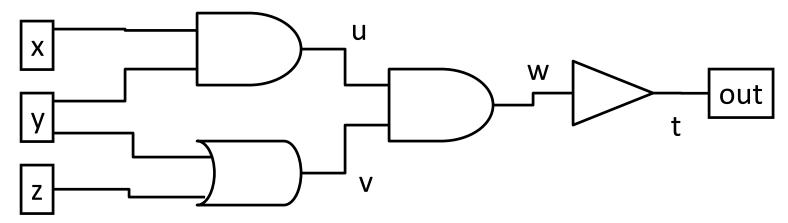


• Start with circuit



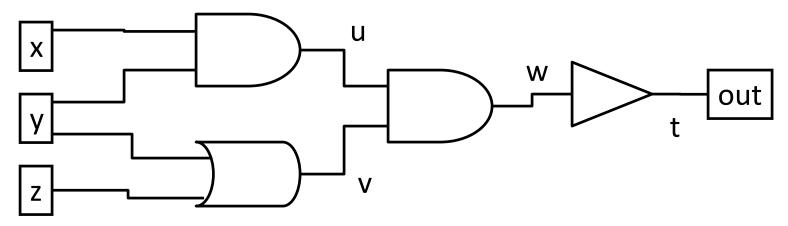
• Create variable for each wire

• Start with circuit



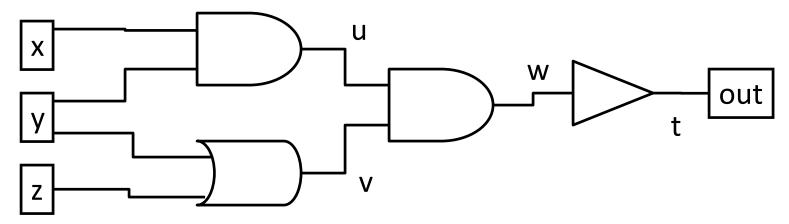
• Create variable for each wire

• Start with circuit



- Create variable for each wire
- Create formula with clause for each gate and output

• Start with circuit



- Create variable for each wire
- Create formula with clause for each gate and output

 $(v \iff y \lor z) \land (u \iff x \land y) \land (w \iff u \land v) \land (t \iff \bar{w}) \land (t)$

We have 3-variable clauses that aren't 3-SAT clauses. Write it in terms of them.

We have 3-variable clauses that aren't 3-SAT clauses. Write it in terms of them.

• Write truth table

x	y	z	$z \iff x \lor y$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

We have 3-variable clauses that aren't 3-SAT clauses. Write it in terms of them.

- Write truth table
- Each 3-SAT clause sets one output to false.

x	y	z	$z \iff x \lor y$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

We have 3-variable clauses that aren't 3-SAT clauses. Write it in terms of them.

- Write truth table
- Each 3-SAT clause sets one output to false.

 $(x \lor y \lor \bar{z})$

[x]	y	z	$z \iff x \lor y$
0	0	0	1
0	0	1	X
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

We have 3-variable clauses that aren't 3-SAT clauses. Write it in terms of them.

- Write truth table
- Each 3-SAT clause sets one output to false.

 $(x \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor z)$

x	y	z	$z \iff x \lor y$
0	0	0	1
0	0	1	X
0	1	0	X
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

We have 3-variable clauses that aren't 3-SAT clauses. Write it in terms of them.

- Write truth table
- Each 3-SAT clause sets one output to false.

 $\begin{array}{c} (x \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor z) \\ \land (\bar{x} \lor y \lor z) \end{array}$

x	y	z	$z \iff x \lor y$
0	0	0	1
0	0	1	X
0	1	0	X
0	1	1	1
1	0	0	X
1	0	1	1
1	1	0	0
1	1	1	1

We have 3-variable clauses that aren't 3-SAT clauses. Write it in terms of them.

- Write truth table
- Each 3-SAT clause sets one output to false.

 $\begin{array}{c} (x \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor z) \\ \land (\bar{x} \lor y \lor z) \land (\bar{x} \lor \bar{y} \lor z) \end{array}$

x	y	z	$z \iff x \lor y$
0	0	0	1
0	0	1	X
0	1	0	X
0	1	1	1
1	0	0	X
1	0	1	1
1	1	0	X
1	1	1	1

We have 3-variable clauses that aren't 3-SAT clauses. Write it in terms of them.

- Write truth table
- Each 3-SAT clause sets one output to false.

 $(x \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor z) \land (\bar{x} \lor y \lor z) \land (\bar{x} \lor \bar{y} \lor z)$

 $= (z \iff x \lor y)$

x	y	z	$z \iff x \lor y$
0	0	0	1
0	0	1	X
0	1	0	X
0	1	1	1
1	0	0	X
1	0	1	1
1	1	0	X
1	1	1	1

Note

This means that 3-SAT is <u>also</u> NP-Complete since we have:

Any problem in NP \rightarrow Circuit SAT \rightarrow 3-SAT

Note

This means that 3-SAT is <u>also</u> NP-Complete since we have:

Any problem in NP \rightarrow Circuit SAT \rightarrow 3-SAT

What other problems can we show to be NP-Complete/NP-Hard this way?

Another Look at 3-SAT

Lemma: A 3-SAT instance is satisfiable if and only if it is possible to select one term from each clause without selecting both a variable and its negation.

Another Look at 3-SAT

Lemma: A 3-SAT instance is satisfiable if and only if it is possible to select one term from each clause without selecting both a variable and its negation.

Example:

 $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{x} \lor z)$

Another Look at 3-SAT

Lemma: A 3-SAT instance is satisfiable if and only if it is possible to select one term from each clause without selecting both a variable and its negation.

Example:

 $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{x} \lor z)$

If satisfiable:

• Satisfying assignment causes at least one term in each clause to be true.

If satisfiable:

- Satisfying assignment causes at least one term in each clause to be true.
- Select one such term from each clause.
- Cannot contradict each other.

If satisfiable:

- Satisfying assignment causes at least one term in each clause to be true.
- Select one such term from each clause.
- Cannot contradict each other.

Example:

$$(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{x} \lor z)$$

If satisfiable:

- Satisfying assignment causes at least one term in each clause to be true.
- Select one such term from each clause.
- Cannot contradict each other.

Example:

$$(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{x} \lor z)$$

$$x = \text{False}, y = \text{True}, z = \text{False}$$

If satisfiable:

- Satisfying assignment causes at least one term in each clause to be true.
- Select one such term from each clause.
- Cannot contradict each other.

Example:

$$(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{x} \lor z)$$

x = False, y = True, z = False

If satisfiable:

- Satisfying assignment causes at least one term in each clause to be true.
- Select one such term from each clause.
- Cannot contradict each other.

Example:

$$(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{x} \lor z)$$

x = False, y = True, z = False

- Set those variables to be true
 - Can do this without contradiction

- Set those variables to be true
 Can do this without contradiction
- Set other variables arbitrarily

- Set those variables to be true
 Can do this without contradiction
- Set other variables arbitrarily
- Causes whole statement to be true

- Set those variables to be true
 Can do this without contradiction
- Set other variables arbitrarily
- Causes whole statement to be true **Example:** $(x \lor y \lor z) \land (\bar{x} \lor y)$

- Set those variables to be true
 Can do this without contradiction
- Set other variables arbitrarily
- Causes whole statement to be true **Example:** $(x \lor y \lor z) \land (\bar{x} \lor y)$

If there is a way to select terms:

- Set those variables to be true
 Can do this without contradiction
- Set other variables arbitrarily
- Causes whole statement to be true

Example: $(x \lor y \lor z) \land (\bar{x} \lor y)$

$$x = \text{True}, y = \text{True}$$

If there is a way to select terms:

- Set those variables to be true
 Can do this without contradiction
- Set other variables arbitrarily
- Causes whole statement to be true

Example: $(x \lor y \lor z) \land (\bar{x} \lor y)$

x = True, y = True, z = False

Want to encode this select one term from each clause as a graph.

Want to encode this select one term from each clause as a graph.

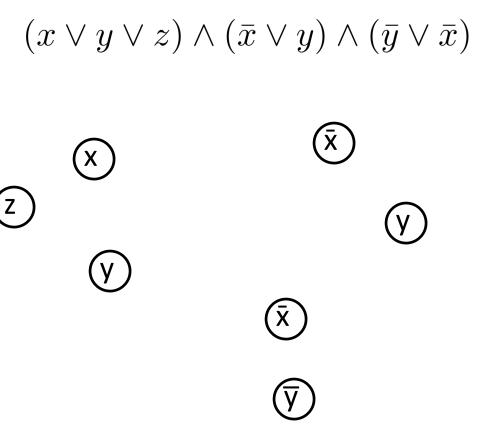
Example:

 $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$

Want to encode this select one term from each clause as a graph.

 Create one vertex for each term in each clause.

Example:



Ζ

Want to encode this select one term from each clause as a graph.

- Create one vertex for each term in each clause.
- Edges between terms in same clause.

Example:

Х

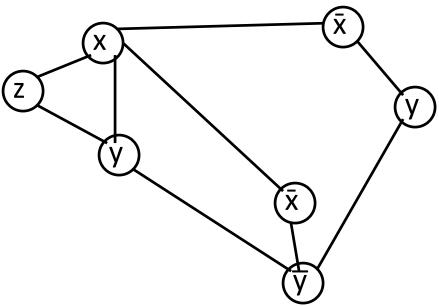
 $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$

Want to encode this select one term from each clause as a graph.

- Create one vertex for each term in each clause.
- Edges between terms in same clause.
- Edges between contradictory terms.

Example:

 $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$



Analysis

An independent set in this graph has:

- At most one vertex from each clause.
- No vertices representing contradictory terms.

Analysis

An independent set in this graph has:

- At most one vertex from each clause.
- No vertices representing contradictory terms.

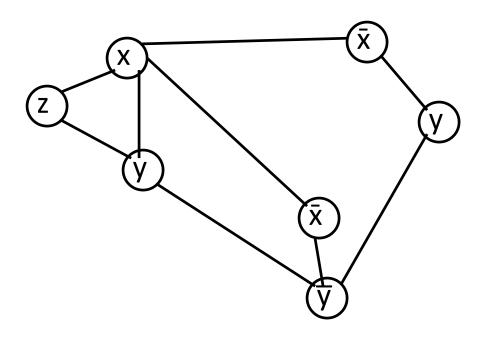
It has an independent set of size #Clauses if and only if, you can select one term form each clause without a contradiction.

Analysis

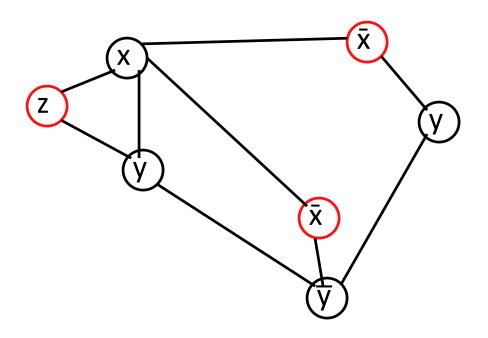
An independent set in this graph has:

- At most one vertex from each clause.
- No vertices representing contradictory terms.
- It has an independent set of size #Clauses if and only if, you can select one term form each clause without a contradiction.
- Therefore, |MIS| = #Clauses if and only if the 3-SAT has a solution.

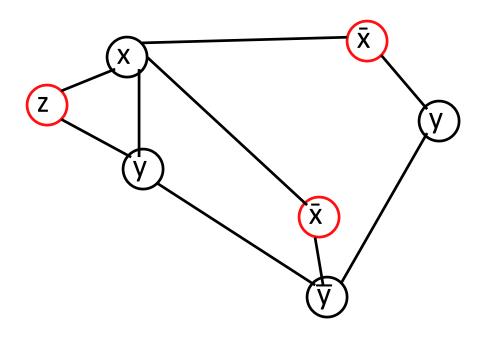
Example $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$



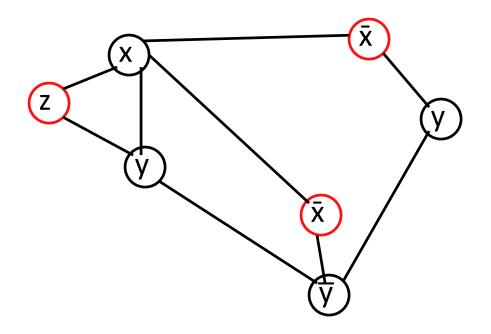
Example $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$



Example $(x \lor y \lor z) \land (\bar{x} \lor y) \land (\bar{y} \lor \bar{x})$



Example $(x \lor y \lor z) \land (\overline{x} \lor y) \land (\overline{y} \lor \overline{x})$ x = False, z = True, y = Whatever



Intermediate Problems

To prove our more complicated reductions, it will help to have the correct problem to prove reductions from.

Intermediate Problems

To prove our more complicated reductions, it will help to have the correct problem to prove reductions from.

A convenient problem is the one the book calls <u>Zero-One Equations</u>.

Zero-One Equations

<u>Problem:</u> Given a matrix A with only 0 and 1 as entries and b a vector of 1s, determine whether or not there is an x with 0 and 1 entries so that

$$Ax = b.$$

Zero-One Equations

<u>Problem:</u> Given a matrix A with only 0 and 1 as entries and b a vector of 1s, determine whether or not there is an x with 0 and 1 entries so that

$$Ax = b.$$

This problem is clearly in NP. We will show that it is NP-Complete.