
Announcements

• Homework 5 solutions online

• Exam 3 on Friday

– TAs tell me that pens scan better than pencils, so 
their use is recommended 



Last Time

• NP Problems and NP completeness



NP

Such problems are said to be in Nondeterministic 
Polynomial time (NP).

NP-Decision problems ask if there is some object that 
satisfies a polynomial time-checkable property.

NP-Optimization problems ask for the object that 
maximizes (or minimizes) some polynomial time-
computable objective.



Examples of NP Problems

• SAT

• TSP

• Hamiltonian Cycle

• Knapsack

• Maximum Independent Set



Reductions

Reductions are a method for proving that one 
problem is at least as hard as another.

We show that if there is an algorithm for solving 
A, then we can use this algorithm to solve B. 
Therefore, B is no harder than A.



Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to 
problem B 
instance

Solution to 
problem A 
instance

Polynomial time 
reduction algorithm

Hypothetical 
algorithm for B

Polynomial time 
interpretation 
algorithm

Solution to A



Circuit SAT

Problem: Given a circuit C with several Boolean 
inputs and one Boolean output, determine if 
there is a set of inputs that give output 1.

x

y

z

out

Important Reduction:

Any NP decision problem → Circuit SAT



NP-Complete

Circuit-SAT is our first example of an 
NP-Complete problem. That is a problem in NP that 
is at least as hard as any other problem in NP.

Note: Decision problems can be NP-Complete. For 
optimization problems, it is called NP-Hard.



Today

• Other NP-Complete Problems

– 3SAT

– Maximum Independent Set

– Zero-One Equations



3-SAT

3-SAT is a special case of formula-SAT where the 
formula is an AND of clauses and each clause 
is an OR of at most 3 variables or their 
negations.
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Example:
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we have:
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Note

This means that 3-SAT is also NP-Complete since 
we have:

Any problem in NP → Circuit SAT → 3-SAT

What other problems can we show to be 
NP-Complete/NP-Hard this way?
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Lemma: A 3-SAT instance is satisfiable if and 
only if it is possible to select one term from 
each clause without selecting both a variable 
and its negation.
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3-SAT → Maximum Independent Set

Want to encode this 
select one term from 
each clause as a graph.

• Create one vertex for 
each term in each 
clause.

• Edges between terms in 
same clause.

• Edges between 
contradictory terms.

Example:
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y̅

x̄
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An independent set in this graph has:

• At most one vertex from each clause.

• No vertices representing contradictory terms.
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Analysis

An independent set in this graph has:

• At most one vertex from each clause.

• No vertices representing contradictory terms.

It has an independent set of size #Clauses if and 
only if, you can select one term form each 
clause without a contradiction.

Therefore, |MIS| = #Clauses if and only if the 3-
SAT has a solution.
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reductions from.
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Zero-One Equations.
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Zero-One Equations

Problem: Given a matrix A with only 0 and 1 as 
entries and b a vector of 1s, determine 
whether or not there is an x with 0 and 1 
entries so that

Ax = b.

This problem is clearly in NP. We will show that 
it is NP-Complete.


