
Announcements
• Homework 5 due today

– Q3: You should not assume that the Ti are
increasing

• Exam 3 next week

– Same format

– Topics:

• Huffman codes

• MSTs

• Dynamic Programming

• LCSS/Knapsack/CMM/All-pairs shortest path/MIS in
trees/Travelling salesman

Today

• NP Problems and NP completeness

NP-Completeness (Ch 8)

• NP-Problems

• Reductions

• NP-Completeness & NP-Hardness

• SAT

• Hamiltonian Cycle

• Zero-One Equations

• Knapsack

Brute Force Algorithms

For almost every problem we have seen there
has been a (usually bad) naïve algorithm that
just considers every possible answer and
returns the best one.

Brute Force Algorithms

For almost every problem we have seen there
has been a (usually bad) naïve algorithm that
just considers every possible answer and
returns the best one.

• Is there a path from s to t in G?

• What is the longest common subsequence?

• What is the closest pair of points?

• Does G have a topological ordering?

NP

Such problems are said to be in Nondeterministic
Polynomial time (NP).

NP

Such problems are said to be in Nondeterministic
Polynomial time (NP).

NP-Decision problems ask if there is some object that
satisfies a polynomial time-checkable property.

NP

Such problems are said to be in Nondeterministic
Polynomial time (NP).

NP-Decision problems ask if there is some object that
satisfies a polynomial time-checkable property.

NP-Optimization problems ask for the object that
maximizes (or minimizes) some polynomial time-
computable objective.

Optimization vs. Decision

Note that these are not too different.

• Every decision problem can be phrased as an
optimization problem (objective has value 1 if
the object satisfies the condition and 0
otherwise).

• Every optimization problem has a decision
form (can we find an example whose
objective is more than x).

Examples of NP Problems

• SAT

• TSP

• Hamiltonian Cycle

• Knapsack

• Maximum Independent Set

SAT

Problem: Formula-SAT

Given a logical formula in a number of Boolean
variables, is there an assignment to the
variables that causes the formula to be true?

SAT

Problem: Formula-SAT

Given a logical formula in a number of Boolean
variables, is there an assignment to the
variables that causes the formula to be true?

SAT

Problem: Formula-SAT

Given a logical formula in a number of Boolean
variables, is there an assignment to the
variables that causes the formula to be true?

Applications of SAT

• Circuit Design

• Logic Puzzles

• Cryptanalysis

Hamiltonian Cycle (in text as Rudruta
Path)

Given an undirected graph G is there a cycle
that visits every vertex exactly once?

General Knapsack

Recall knapsack has a number of items each
with a weight and a value. The goal is to find
the set of items whose total value is as much
as possible without the total weight going
exceeding some capacity.

General Knapsack

Recall knapsack has a number of items each
with a weight and a value. The goal is to find
the set of items whose total value is as much
as possible without the total weight going
exceeding some capacity.

Have algorithm that runs in polynomial time
in the weights.

General Knapsack

Recall knapsack has a number of items each
with a weight and a value. The goal is to find
the set of items whose total value is as much
as possible without the total weight going
exceeding some capacity.

Have algorithm that runs in polynomial time
in the weights.

If weights are allowed to be large (written in
binary), don’t have a good algorithm.

Question: Decision vs.
Optimization

Which of the following are NP-Decision
problems? (Multiple correct answers)

A) SAT

B) Hamiltonian Cycle

C) General Knapsack

D) Maximum Independent Set

E) Travelling Salesman

Question: Decision vs.
Optimization

Which of the following are NP-Decision
problems? (Multiple correct answers)

A) SAT

B) Hamiltonian Cycle

C) General Knapsack

D) Maximum Independent Set

E) Travelling Salesman

Brute Force Search

• Every NP problem has a brute force search
algorithm.

• Throughout this class we have looked at
problems with algorithms that substantially
improve on brute force search.

• Does every NP problem have a better-than-
brute-force algorithm?

P vs. NP

$1,000,000 Question: Is P = NP?

Is it the case that every problem in NP has a
polynomial time algorithm?

P vs. NP

$1,000,000 Question: Is P = NP?

Is it the case that every problem in NP has a
polynomial time algorithm?

• If yes, every NP problem has a reasonably
efficient solution.

• If not, some NP problems are fundamentally
difficult

P vs. NP

$1,000,000 Question: Is P = NP?

Is it the case that every problem in NP has a
polynomial time algorithm?

• If yes, every NP problem has a reasonably
efficient solution.

• If not, some NP problems are fundamentally
difficult

Most computer scientists believe P ≠ NP.
(But proving anything is very very hard)

Hard Problems
In practice, at least some problems in NP appear to

be hard. Despite decades of trying, people still
don’t know particularly good algorithms.

Hard Problems
In practice, at least some problems in NP appear to

be hard. Despite decades of trying, people still
don’t know particularly good algorithms.

So if you have a problem, how do you know if it is
hard or not?

Hard Problems
In practice, at least some problems in NP appear to

be hard. Despite decades of trying, people still
don’t know particularly good algorithms.

So if you have a problem, how do you know if it is
hard or not?

• Can search for algorithms (to show it’s easy).

• Can try to prove that it is hard, but this is
extremely difficult.

Hard Problems
In practice, at least some problems in NP appear to

be hard. Despite decades of trying, people still
don’t know particularly good algorithms.

So if you have a problem, how do you know if it is
hard or not?

• Can search for algorithms (to show it’s easy).

• Can try to prove that it is hard, but this is
extremely difficult.

• Can try to relate its difficulty to that of other
problems.

Reductions

Reductions are a method for proving that one
problem is at least as hard as another.

Reductions

Reductions are a method for proving that one
problem is at least as hard as another.

How do we do this?

Reductions

Reductions are a method for proving that one
problem is at least as hard as another.

How do we do this?

We show that if there is an algorithm for solving
A, then we can use this algorithm to solve B.
Therefore, B is no harder than A.

Hamiltonian Cycle → TSP

Hamiltonian
Cycle Instance

Hamiltonian Cycle → TSP

Hamiltonian
Cycle Instance TSP Instance

Hamiltonian Cycle → TSP

Hamiltonian
Cycle Instance TSP Instance

Cost = 1

Cost = 2

Hamiltonian Cycle → TSP

Hamiltonian
Cycle Instance TSP Instance

Cost = 1

Cost = 2

Hamiltonian Cycle → TSP

Hamiltonian
Cycle Instance TSP Instance

Cost = 1

Cost = 2

Formally

• Given Ham. Cycle Instance G

Formally

• Given Ham. Cycle Instance G

• Create TSP Instance H

– Edges in G are cost 1

– Edges not in G are cost 2

Formally

• Given Ham. Cycle Instance G

• Create TSP Instance H

– Edges in G are cost 1

– Edges not in G are cost 2

• Solve TSP instance

– Have a cycle of cost |V| in H if and only if
Hamiltonian cycle in G

Formally

• Given Ham. Cycle Instance G

• Create TSP Instance H

– Edges in G are cost 1

– Edges not in G are cost 2

• Solve TSP instance

– Have a cycle of cost |V| in H if and only if
Hamiltonian cycle in G

• Use answer to solve initial problem

Formally

• Given Ham. Cycle Instance G

• Create TSP Instance H

– Edges in G are cost 1

– Edges not in G are cost 2

• Solve TSP instance

– Have a cycle of cost |V| in H if and only if
Hamiltonian cycle in G

• Use answer to solve initial problem

If, we have an
algorithm that solves
TSP, we can use it to
solve Ham. Cycle.

Reduction A → B

Instance of
problem A

Reduction A → B

Instance of
problem A

Instance of
problem B

Polynomial time
reduction algorithm

Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to
problem B
instance

Polynomial time
reduction algorithm

Hypothetical
algorithm for B

Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to
problem B
instance

Solution to
problem A
instance

Polynomial time
reduction algorithm

Hypothetical
algorithm for B

Polynomial time
interpretation
algorithm

Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to
problem B
instance

Solution to
problem A
instance

Polynomial time
reduction algorithm

Hypothetical
algorithm for B

Polynomial time
interpretation
algorithm

Solution to A

Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to
problem B
instance

Solution to
problem A
instance

Hypothetical
algorithm for B

Polynomial time
interpretation
algorithm

Solution to A

Create H with edge
weights 1 and 2

Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to
problem B
instance

Solution to
problem A
instance

Hypothetical
algorithm for B

Solution to A

Create H with edge
weights 1 and 2

See if solution has
weight |V|

Reduction A → B

If we have algorithms for reduction and
interpretation:

Reduction A → B

If we have algorithms for reduction and
interpretation:

• Given an algorithm to solve B, we can turn it
into an algorithm to solve A.

Reduction A → B

If we have algorithms for reduction and
interpretation:

• Given an algorithm to solve B, we can turn it
into an algorithm to solve A.

• This means that A might be easier to solve
than B, but cannot be harder.

Circuit SAT

Problem: Given a circuit C with several Boolean
inputs and one Boolean output, determine if
there is a set of inputs that give output 1.

Circuit SAT

Problem: Given a circuit C with several Boolean
inputs and one Boolean output, determine if
there is a set of inputs that give output 1.

x

y

z

out

Circuit SAT

Problem: Given a circuit C with several Boolean
inputs and one Boolean output, determine if
there is a set of inputs that give output 1.

x

y

z

out

Important Reduction:

Any NP decision problem → Circuit SAT

Any NP Decision Problem
→ Circuit SAT

• Any NP decision problem asks if there is some
X that satisfies a polynomial-time checkable
property.

Any NP Decision Problem
→ Circuit SAT

• Any NP decision problem asks if there is some
X that satisfies a polynomial-time checkable
property.

• In other words, for some polynomial-time
computable function F, it asks if there is an X
so that F(X) = 1.

Any NP Decision Problem
→ Circuit SAT

• Any NP decision problem asks if there is some
X that satisfies a polynomial-time checkable
property.

• In other words, for some polynomial-time
computable function F, it asks if there is an X
so that F(X) = 1.

• Create a circuit C that computes F. The
problem is equivalent to asking if there is an
input for which C outputs 1.

NP-Complete

Circuit-SAT is our first example of an
NP-Complete problem. That is a problem in NP that
is at least as hard as any other problem in NP.

NP-Complete

Circuit-SAT is our first example of an
NP-Complete problem. That is a problem in NP that
is at least as hard as any other problem in NP.

• Good news: If we find a polynomial time algorithm
for Circuit-SAT, we have a polynomial time algorithm
for all NP problems!

NP-Complete

Circuit-SAT is our first example of an
NP-Complete problem. That is a problem in NP that
is at least as hard as any other problem in NP.

• Good news: If we find a polynomial time algorithm
for Circuit-SAT, we have a polynomial time algorithm
for all NP problems!

• Bad news: If any problem in NP is hard, Circuit-SAT is
hard.

NP-Complete

Circuit-SAT is our first example of an
NP-Complete problem. That is a problem in NP that
is at least as hard as any other problem in NP.

• Good news: If we find a polynomial time algorithm
for Circuit-SAT, we have a polynomial time algorithm
for all NP problems!

• Bad news: If any problem in NP is hard, Circuit-SAT is
hard.

Note: Decision problems can be NP-Complete. For
optimization problems, it is called NP-Hard.

Other NP-Complete/Hard
Problems

The following are all NP-Complete/Hard:

• Formula SAT

• Maximum Independent Set

• TSP

• Hamiltonian Cycle

• Knapsack

Other NP-Complete/Hard
Problems

The following are all NP-Complete/Hard:

• Formula SAT

• Maximum Independent Set

• TSP

• Hamiltonian Cycle

• Knapsack

How do we show this? By finding reductions
from other NP-Hard/Complete Problems.

