
Announcements
• Homework 5 due today

– Q3: You should not assume that the Ti are
increasing

• Exam 3 next week

– Same format

– Topics:

• Huffman codes

• MSTs

• Dynamic Programming

• LCSS/Knapsack/CMM/All-pairs shortest path/MIS in 
trees/Travelling salesman



Today

• NP Problems and NP completeness



NP-Completeness (Ch 8)

• NP-Problems

• Reductions

• NP-Completeness & NP-Hardness

• SAT

• Hamiltonian Cycle

• Zero-One Equations

• Knapsack
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For almost every problem we have seen there 
has been a (usually bad) naïve algorithm that 
just considers every possible answer and 
returns the best one.

• Is there a path from s to t in G?

• What is the longest common subsequence?

• What is the closest pair of points?

• Does G have a topological ordering?
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NP

Such problems are said to be in Nondeterministic 
Polynomial time (NP).

NP-Decision problems ask if there is some object that 
satisfies a polynomial time-checkable property.

NP-Optimization problems ask for the object that 
maximizes (or minimizes) some polynomial time-
computable objective.



Optimization vs. Decision

Note that these are not too different.

• Every decision problem can be phrased as an 
optimization problem (objective has value 1 if 
the object satisfies the condition and 0 
otherwise).

• Every optimization problem has a decision 
form (can we find an example whose 
objective is more than x).



Examples of NP Problems

• SAT

• TSP

• Hamiltonian Cycle

• Knapsack

• Maximum Independent Set
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Problem: Formula-SAT

Given a logical formula in a number of Boolean 
variables, is there an assignment to the 
variables that causes the formula to be true?
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Problem: Formula-SAT

Given a logical formula in a number of Boolean 
variables, is there an assignment to the 
variables that causes the formula to be true?



Applications of SAT

• Circuit Design

• Logic Puzzles

• Cryptanalysis



Hamiltonian Cycle (in text as Rudruta 
Path)

Given an undirected graph G is there a cycle 
that visits every vertex exactly once?
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General Knapsack

Recall knapsack has a number of items each 
with a weight and a value. The goal is to find 
the set of items whose total value is as much 
as possible without the total weight going 
exceeding some capacity.

Have algorithm that runs in polynomial time 
in the weights.

If weights are allowed to be large (written in 
binary), don’t have a good algorithm.



Question: Decision vs. 
Optimization

Which of the following are NP-Decision 
problems? (Multiple correct answers)

A) SAT

B) Hamiltonian Cycle

C) General Knapsack

D) Maximum Independent Set

E) Travelling Salesman
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problems? (Multiple correct answers)

A) SAT

B) Hamiltonian Cycle

C) General Knapsack

D) Maximum Independent Set
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Brute Force Search

• Every NP problem has a brute force search 
algorithm.

• Throughout this class we have looked at 
problems with algorithms that substantially 
improve on brute force search.

• Does every NP problem have a better-than-
brute-force algorithm?
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P vs. NP

$1,000,000 Question: Is P = NP?

Is it the case that every problem in NP has a 
polynomial time algorithm?

• If yes, every NP problem has a reasonably 
efficient solution.

• If not, some NP problems are fundamentally 
difficult

Most computer scientists believe P ≠ NP. 
(But proving anything is very very hard)
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Hard Problems
In practice, at least some problems in NP appear to 

be hard. Despite decades of trying, people still 
don’t know particularly good algorithms.

So if you have a problem, how do you know if it is 
hard or not?

• Can search for algorithms (to show it’s easy).

• Can try to prove that it is hard, but this is 
extremely difficult.

• Can try to relate its difficulty to that of other 
problems.
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Reductions

Reductions are a method for proving that one 
problem is at least as hard as another.

How do we do this?

We show that if there is an algorithm for solving 
A, then we can use this algorithm to solve B. 
Therefore, B is no harder than A.
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Formally

• Given Ham. Cycle Instance G

• Create TSP Instance H

– Edges in G are cost 1

– Edges not in G are cost 2

• Solve TSP instance

– Have a cycle of cost |V| in H if and only if 
Hamiltonian cycle in G

• Use answer to solve initial problem

If, we have an 
algorithm that solves 
TSP, we can use it to 
solve Ham. Cycle.
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Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to 
problem B 
instance

Solution to 
problem A 
instance

Hypothetical 
algorithm for B

Solution to A

Create H with edge 
weights 1 and 2

See if solution has 
weight |V|
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Reduction A → B

If we have algorithms for reduction and 
interpretation:

• Given an algorithm to solve B, we can turn it 
into an algorithm to solve A.

• This means that A might be easier to solve 
than B, but cannot be harder.
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Problem: Given a circuit C with several Boolean 
inputs and one Boolean output, determine if 
there is a set of inputs that give output 1.

x

y

z

out

Important Reduction:

Any NP decision problem → Circuit SAT
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Any NP Decision Problem 
→ Circuit SAT

• Any NP decision problem asks if there is some 
X that satisfies a polynomial-time checkable 
property.

• In other words, for some polynomial-time 
computable function F, it asks if there is an X 
so that F(X) = 1.

• Create a circuit C that computes F. The 
problem is equivalent to asking if there is an 
input for which C outputs 1.
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NP-Complete

Circuit-SAT is our first example of an 
NP-Complete problem. That is a problem in NP that 
is at least as hard as any other problem in NP.

• Good news: If we find a polynomial time algorithm 
for Circuit-SAT, we have a polynomial time algorithm 
for all NP problems!

• Bad news: If any problem in NP is hard, Circuit-SAT is 
hard.

Note: Decision problems can be NP-Complete. For 
optimization problems, it is called NP-Hard.
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Other NP-Complete/Hard 
Problems

The following are all NP-Complete/Hard:

• Formula SAT

• Maximum Independent Set

• TSP

• Hamiltonian Cycle

• Knapsack

How do we show this?  By finding reductions 
from other NP-Hard/Complete Problems.


