
Announcements

• Homework 4 Solutions online

• Homework 5 online due Friday

Last Time

• Dynamic Programming

Dynamic Programming

Our final general algorithmic technique:

1. Break problem into smaller subproblems.

2. Find recursive formula solving one
subproblem in terms of simpler ones.

3. Tabulate answers and solve all subproblems.

Notes about DP

• General Correct Proof Outline:

– Prove by induction that each table entry is filled
out correctly

– Use base-case and recursion

• Runtime of DP:

– Usually
[Number of subproblems]x[Time per subproblem]

More Notes about DP

• Finding Recursion

– Often look at first or last choice and see what
things look like without that choice

• Key point: Picking right subproblem

– Enough information stored to allow recursion

– Not too many

Today

• Chain Matrix Multiplication

• All Pairs Shortest Path

Chain Matrix Multiplication

How long does it take to multiply matrices?

Chain Matrix Multiplication

How long does it take to multiply matrices?

Recall if C = A·B then

Cxz = Σ AxyByz.

Chain Matrix Multiplication

How long does it take to multiply matrices?

Recall if C = A·B then

Cxz = Σ AxyByz.

Suppose A is an nxm matrix and B is mxk. Then
for each entry of C (of which there are nk), we
need to sum m terms.

Chain Matrix Multiplication

How long does it take to multiply matrices?

Recall if C = A·B then

Cxz = Σ AxyByz.

Suppose A is an nxm matrix and B is mxk. Then
for each entry of C (of which there are nk), we
need to sum m terms.

Runtime O(nmk)*
*Can do slightly better with Strassen, but we’ll ignore this for now.

More than two Matrices

Next suppose that you want to multiply three
matrices ABC.

More than two Matrices

Next suppose that you want to multiply three
matrices ABC.

Can do it two different ways,

A(BC) OR (AB)C.

More than two Matrices

Next suppose that you want to multiply three
matrices ABC.

Can do it two different ways,

A(BC) OR (AB)C.

How long does it take?

Example
A is 2x3,

B is 3x3,

C is 3x1.

Example
A is 2x3,

B is 3x3,

C is 3x1.
A(BC)

Example
A is 2x3,

B is 3x3,

C is 3x1.
A(BC)

3·3·1 = 9

Example
A is 2x3,

B is 3x3,

C is 3x1.
A(BC)

3·3·1 = 9
2·3·1 = 6

Example
A is 2x3,

B is 3x3,

C is 3x1.
A(BC)

3·3·1 = 9
2·3·1 = 6

Runtime: 9 + 6 = 15

Example
A is 2x3,

B is 3x3,

C is 3x1.
A(BC)

3·3·1 = 9
2·3·1 = 6

Runtime: 9 + 6 = 15

(AB)C

Example
A is 2x3,

B is 3x3,

C is 3x1.
A(BC)

3·3·1 = 9
2·3·1 = 6

Runtime: 9 + 6 = 15

(AB)C
2·3·3 = 18

Example
A is 2x3,

B is 3x3,

C is 3x1.
A(BC)

3·3·1 = 9
2·3·1 = 6

Runtime: 9 + 6 = 15

(AB)C
2·3·3 = 18

2·3·1 = 6

Example
A is 2x3,

B is 3x3,

C is 3x1.
A(BC)

3·3·1 = 9
2·3·1 = 6

Runtime: 9 + 6 = 15

(AB)C
2·3·3 = 18

2·3·1 = 6

Runtime: 18 + 6 = 24

Example
A is 2x3,

B is 3x3,

C is 3x1.
A(BC)

3·3·1 = 9
2·3·1 = 6

Runtime: 9 + 6 = 15

(AB)C
2·3·3 = 18

2·3·1 = 6

Runtime: 18 + 6 = 24

Multiplication
order matters!

Problem Statement

Problem: Find the order to multiply matrices A1,
A2, A3,…,Am that requires the fewest total
operations.

Problem Statement

Problem: Find the order to multiply matrices A1,
A2, A3,…,Am that requires the fewest total
operations.

In particular, assume A1 is an n0 x n1 matrix, A2 is
n1 x n2, generally Ak is an nk-1 x nk matrix.

Recursion

• We need to find a recursive formulation.

Recursion

• We need to find a recursive formulation.

• Often we do this by considering the last step.

Recursion

• We need to find a recursive formulation.

• Often we do this by considering the last step.

• For some value of k, last step:
(A1A2…Ak)·(Ak+1Ak+2…Am)

Recursion

• We need to find a recursive formulation.

• Often we do this by considering the last step.

• For some value of k, last step:
(A1A2…Ak)·(Ak+1Ak+2…Am)

• Number of steps:

– CMM(A1,A2,…,Ak) to compute first product

– CMM(Ak+1,…,Am) to compute second product

– n0nknm to do final multiply

Recursion

• We need to find a recursive formulation.

• Often we do this by considering the last step.

• For some value of k, last step:
(A1A2…Ak)·(Ak+1Ak+2…Am)

• Number of steps:

– CMM(A1,A2,…,Ak) to compute first product

– CMM(Ak+1,…,Am) to compute second product

– n0nknm to do final multiply

• Recursion CMM(A1,…,Am) =
mink[CMM(A1,…,Ak)+CMM(Ak+1,…,Am)+n0nknm]

Subproblems

• What subproblems do we need to solve?

– We cannot afford to solve all possible CMM
problems.

Subproblems

• What subproblems do we need to solve?

– We cannot afford to solve all possible CMM
problems.

• CMM(A1,…,Am) requires CMM(A1,…,Ak) and
CMM(Ak,…,Am).

Subproblems

• What subproblems do we need to solve?

– We cannot afford to solve all possible CMM
problems.

• CMM(A1,…,Am) requires CMM(A1,…,Ak) and
CMM(Ak,…,Am).

• These require CMM(Ai,Ai+1,…,Aj), but nothing else.

Subproblems

• What subproblems do we need to solve?

– We cannot afford to solve all possible CMM
problems.

• CMM(A1,…,Am) requires CMM(A1,…,Ak) and
CMM(Ak,…,Am).

• These require CMM(Ai,Ai+1,…,Aj), but nothing else.

• Only need subproblems C(i,j) = CMM(Ai,Ai+1,…,Aj) for
1 ≤ i ≤ j ≤ m.

Subproblems

• What subproblems do we need to solve?

– We cannot afford to solve all possible CMM
problems.

• CMM(A1,…,Am) requires CMM(A1,…,Ak) and
CMM(Ak,…,Am).

• These require CMM(Ai,Ai+1,…,Aj), but nothing else.

• Only need subproblems C(i,j) = CMM(Ai,Ai+1,…,Aj) for
1 ≤ i ≤ j ≤ m.

– Fewer than m2 total subproblems.

Subproblems

• What subproblems do we need to solve?

– We cannot afford to solve all possible CMM
problems.

• CMM(A1,…,Am) requires CMM(A1,…,Ak) and
CMM(Ak,…,Am).

• These require CMM(Ai,Ai+1,…,Aj), but nothing else.

• Only need subproblems C(i,j) = CMM(Ai,Ai+1,…,Aj) for
1 ≤ i ≤ j ≤ m.

– Fewer than m2 total subproblems.

– Critical: Subproblem reuse.

Full Recursion

Base Case: C(i,i) = 0.
(With a single matrix, we don’t have to do
anything)

Full Recursion

Base Case: C(i,i) = 0.
(With a single matrix, we don’t have to do
anything)

Recursive Step:

C(i,j) = mini≤k<j[C(i,k)+C(k+1,j)+ninknj]

Full Recursion

Base Case: C(i,i) = 0.
(With a single matrix, we don’t have to do
anything)

Recursive Step:

C(i,j) = mini≤k<j[C(i,k)+C(k+1,j)+ninknj]

Solution order: Solve subproblems with smaller
j-i first. This ensures that the recursive calls
will already be in your table.

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94
Illegal
calls

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94
Base
Case

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94
2·5·4 = 40

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94
5·4·3 = 60

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94
4·3·6 = 60

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94
2·5·3+60=90
2·4·3+40=64

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94
5·4·5+60=160
5·3·5+60=135

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94
2·5·5+135=185
2·4·5+40+60
= 140
2·3·5+64=94

Example

Compute ABCD where
A is 2x5, B is 5x4, C is 4x3, D is 3x5

D

Start

Finish

CBA

A

B

C

D

X

X

X

X

X X

0

0

0

0

40

60

60

64

135

94
(((AB)C)D)

Runtime

Number of Subproblems: One for each
1 ≤ i ≤ j ≤ m. Total: O(m2).

Runtime

Number of Subproblems: One for each
1 ≤ i ≤ j ≤ m. Total: O(m2).

Time per Subproblem: Need to check each
i ≤ k < j. Each check takes constant time. O(m).

Runtime

Number of Subproblems: One for each
1 ≤ i ≤ j ≤ m. Total: O(m2).

Time per Subproblem: Need to check each
i ≤ k < j. Each check takes constant time. O(m).

Final Runtime: O(m3)

DP Setup

Sometimes there are many ways to create a DP
for a given problem, and how exactly you set it
up will have a large effect on runtime.

All Pairs Shortest Paths

Problem: Given a graph G with (possibly
negative) edge weights, compute the length of
the shortest path between every pair of
vertices.

All Pairs Shortest Paths

Problem: Given a graph G with (possibly
negative) edge weights, compute the length of
the shortest path between every pair of
vertices.

Note: Bellman-Ford computes single-source
shortest paths. Namely, for some fixed vertex
s it computes all of the shortest paths lengths
d(s,v) for every v.

Repeated Bellman-Ford

Easy Algorithm: Run Bellman-Ford with
source s for each vertex s.

Runtime: O(|V|2|E|)

Dynamic Program

• Let dk(u,v) be the length of the shortest u-v
path using at most k edges.

Dynamic Program

• Let dk(u,v) be the length of the shortest u-v
path using at most k edges.

• Consider last edge.

u
v

w

Dynamic Program

• Let dk(u,v) be the length of the shortest u-v
path using at most k edges.

• Consider last edge.

• Length k-1 path from u to w, edge from w to v.

• dk(u,v) = minw[dk-1(u,w)+ ℓ(w,v)]

u
v

w

Matrix Multiplication Method

• Bellman-Ford is slow in part because we
can only increase k by one step at a time.

Matrix Multiplication Method

• Bellman-Ford is slow in part because we
can only increase k by one step at a time.

• This happens because we cut off only the last
edge of the optimal path.

Matrix Multiplication Method

• Bellman-Ford is slow in part because we
can only increase k by one step at a time.

• This happens because we cut off only the last
edge of the optimal path.

• What if instead we cut it in the middle?

Recursion

u

v

≤2k edges

Recursion

u

vw

≤2k edges

≤k edges

≤k edges

Recursion

u

vw

≤2k edges

≤k edges

≤k edges

Algorithm

Base Case:

Algorithm

Base Case:

Recursion: Given dk(u,v) for all u, v compute
d2k(u,v) using

Algorithm

Base Case:

Recursion: Given dk(u,v) for all u, v compute
d2k(u,v) using

End Condition: Compute d1, d2, d4, … dm with
m > |V|.

Algorithm

Base Case:

Recursion: Given dk(u,v) for all u, v compute
d2k(u,v) using

End Condition: Compute d1, d2, d4, … dm with
m > |V|.

O(|V|2)

Algorithm

Base Case:

Recursion: Given dk(u,v) for all u, v compute
d2k(u,v) using

End Condition: Compute d1, d2, d4, … dm with
m > |V|.

O(|V|2)

O(|V|3)

Algorithm

Base Case:

Recursion: Given dk(u,v) for all u, v compute
d2k(u,v) using

End Condition: Compute d1, d2, d4, … dm with
m > |V|.

O(|V|2)

O(|V|3)

O(log|V|) iterations

Algorithm

Base Case:

Recursion: Given dk(u,v) for all u, v compute
d2k(u,v) using

End Condition: Compute d1, d2, d4, … dm with
m > |V|.

O(|V|2)

O(|V|3)

O(log|V|) iterations

Runtime: O(|V|3log|V|)

Floyd-Warshall Algorithm

• Label vertices v1, v2, …, vn.

Floyd-Warshall Algorithm

• Label vertices v1, v2, …, vn.

• Let dk(u,w) be the length of the shortest u-w
path using only v1, v2,…,vk as intermediate
vertices.

Floyd-Warshall Algorithm

• Label vertices v1, v2, …, vn.

• Let dk(u,w) be the length of the shortest u-w
path using only v1, v2,…,vk as intermediate
vertices.

• Base Case:

Recursion

Break into cases based on whether shortest path
uses vk.

Recursion

Break into cases based on whether shortest path
uses vk.

• The shortest path not using vk has length
dk-1(u,w).

Recursion

Break into cases based on whether shortest
path uses vk.

• The shortest path not using vk has length
dk-1(u,w).

• The shortest path using vk has length
dk-1(u,vk)+dk-1(vk,w).

u w

vk

Algorithm

Base Case:

Algorithm

Base Case:

Recursion: For each u, w compute:

Algorithm

Base Case:

Recursion: For each u, w compute:

End Condition: d(u,w) = dn(u,w) where n = |V|.

Algorithm

Base Case:

Recursion: For each u, w compute:

End Condition: d(u,w) = dn(u,w) where n = |V|.

O(|V|2)

Algorithm

Base Case:

Recursion: For each u, w compute:

End Condition: d(u,w) = dn(u,w) where n = |V|.

O(|V|2)

O(|V|2)

Algorithm

Base Case:

Recursion: For each u, w compute:

End Condition: d(u,w) = dn(u,w) where n = |V|.

O(|V|2)

O(|V|2)

O(|V|) Iterations

Algorithm

Base Case:

Recursion: For each u, w compute:

End Condition: d(u,w) = dn(u,w) where n = |V|.

O(|V|2)

O(|V|2)

O(|V|) Iterations

Runtime: O(|V|3)

Best Known Algorithm

Actually isn’t DP.

Best Known Algorithm

Actually isn’t DP.

1. Run Bellman-Ford once to compute d(v).

2. Problem equivalent to using
ℓ’(u,w) = ℓ(u,w)+d(u)-d(w) ≥ 0.

3. Run Dijkstra from every source.

Best Known Algorithm

Actually isn’t DP.

1. Run Bellman-Ford once to compute d(v).

2. Problem equivalent to using
ℓ’(u,w) = ℓ(u,w)+d(u)-d(w) ≥ 0.

3. Run Dijkstra from every source.

Runtime: O(|V||E|+|V|2log|V|)

