
Announcements

• Homework 4 Solutions online

• Homework 5 online due Friday



Last Time

• Dynamic Programming



Dynamic Programming

Our final general algorithmic technique:

1. Break problem into smaller subproblems.

2. Find recursive formula solving one 
subproblem in terms of simpler ones.

3. Tabulate answers and solve all subproblems.



Notes about DP

• General Correct Proof Outline:

– Prove by induction that each table entry is filled 
out correctly

– Use base-case and recursion

• Runtime of DP:

– Usually 
[Number of subproblems]x[Time per subproblem]



More Notes about DP

• Finding Recursion

– Often look at first or last choice and see what 
things look like without that choice

• Key point: Picking right subproblem

– Enough information stored to allow recursion

– Not too many



Today

• Chain Matrix Multiplication

• All Pairs Shortest Path
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Chain Matrix Multiplication

How long does it take to multiply matrices?

Recall if C = A·B then

Cxz = Σ AxyByz.

Suppose A is an nxm matrix and B is mxk. Then 
for each entry of C (of which there are nk), we 
need to sum m terms.

Runtime O(nmk)*
*Can do slightly better with Strassen, but we’ll ignore this for now.
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More than two Matrices

Next suppose that you want to multiply three 
matrices ABC.

Can do it two different ways,

A(BC)    OR    (AB)C.

How long does it take?
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Example
A is 2x3,  

B is 3x3,

C is 3x1.
A(BC)

3·3·1 = 9
2·3·1 = 6

Runtime: 9 + 6 = 15

(AB)C
2·3·3 = 18

2·3·1 = 6

Runtime: 18 + 6 = 24

Multiplication 
order matters!
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Problem Statement

Problem: Find the order to multiply matrices A1, 
A2, A3,…,Am that requires the fewest total 
operations.

In particular, assume A1 is an n0 x n1 matrix, A2 is 
n1 x n2, generally Ak is an nk-1 x nk matrix.



Recursion

• We need to find a recursive formulation.



Recursion

• We need to find a recursive formulation.

• Often we do this by considering the last step.



Recursion

• We need to find a recursive formulation.

• Often we do this by considering the last step.

• For some value of k, last step:
(A1A2…Ak)·(Ak+1Ak+2…Am)



Recursion

• We need to find a recursive formulation.

• Often we do this by considering the last step.

• For some value of k, last step:
(A1A2…Ak)·(Ak+1Ak+2…Am)

• Number of steps:

– CMM(A1,A2,…,Ak) to compute first product

– CMM(Ak+1,…,Am) to compute second product

– n0nknm to do final multiply



Recursion

• We need to find a recursive formulation.

• Often we do this by considering the last step.

• For some value of k, last step:
(A1A2…Ak)·(Ak+1Ak+2…Am)

• Number of steps:

– CMM(A1,A2,…,Ak) to compute first product

– CMM(Ak+1,…,Am) to compute second product

– n0nknm to do final multiply

• Recursion CMM(A1,…,Am) =
mink[CMM(A1,…,Ak)+CMM(Ak+1,…,Am)+n0nknm]
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Subproblems

• What subproblems do we need to solve?

– We cannot afford to solve all possible CMM 
problems.

• CMM(A1,…,Am) requires CMM(A1,…,Ak) and 
CMM(Ak,…,Am).

• These require CMM(Ai,Ai+1,…,Aj), but nothing else.

• Only need subproblems C(i,j) = CMM(Ai,Ai+1,…,Aj) for 
1 ≤ i ≤ j ≤ m.

– Fewer than m2 total subproblems.

– Critical: Subproblem reuse.
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Full Recursion

Base Case: C(i,i) = 0. 
(With a single matrix, we don’t have to do 
anything)

Recursive Step:

C(i,j) = mini≤k<j[C(i,k)+C(k+1,j)+ninknj]

Solution order: Solve subproblems with smaller 
j-i first. This ensures that the recursive calls 
will already be in your table.
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Runtime

Number of Subproblems: One for each 
1 ≤ i ≤ j ≤ m. Total: O(m2).

Time per Subproblem: Need to check each 
i ≤ k < j. Each check takes constant time. O(m).

Final Runtime: O(m3)



DP Setup

Sometimes there are many ways to create a DP 
for a given problem, and how exactly you set it 
up will have a large effect on runtime.



All Pairs Shortest Paths

Problem: Given a graph G with (possibly 
negative) edge weights, compute the length of 
the shortest path between every pair of 
vertices.



All Pairs Shortest Paths

Problem: Given a graph G with (possibly 
negative) edge weights, compute the length of 
the shortest path between every pair of 
vertices.

Note: Bellman-Ford computes single-source 
shortest paths. Namely, for some fixed vertex 
s it computes all of the shortest paths lengths 
d(s,v) for every v.



Repeated Bellman-Ford

Easy Algorithm: Run Bellman-Ford with 
source s for each vertex s.

Runtime: O(|V|2|E|)
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Dynamic Program

• Let dk(u,v) be the length of the shortest u-v 
path using at most k edges.

• Consider last edge.

• Length k-1 path from u to w, edge from w to v.

• dk(u,v) = minw[dk-1(u,w)+ ℓ(w,v)]

u
v

w
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Matrix Multiplication Method

• Bellman-Ford is slow in part because we 
can only increase k by one step at a time.

• This happens because we cut off only the last 
edge of the optimal path.

• What if instead we cut it in the middle?
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Recursion

u

vw
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≤k edges
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Algorithm

Base Case:

Recursion: Given dk(u,v) for all u, v compute 
d2k(u,v) using

End Condition: Compute d1, d2, d4, … dm with 
m > |V|. 

O(|V|2) 

O(|V|3) 

O(log|V|) iterations 

Runtime: O(|V|3log|V|)
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Floyd-Warshall Algorithm

• Label vertices v1, v2, …, vn.

• Let dk(u,w) be the length of the shortest u-w 
path using only v1, v2,…,vk as intermediate 
vertices. 

• Base Case:
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Recursion

Break into cases based on whether shortest 
path uses vk.

• The shortest path not using vk has length 
dk-1(u,w).

• The shortest path using vk has length
dk-1(u,vk)+dk-1(vk,w).

u w

vk
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Algorithm

Base Case:

Recursion: For each u, w compute:

End Condition: d(u,w) = dn(u,w) where n = |V|. 

O(|V|2) 

O(|V|2) 

O(|V|) Iterations 

Runtime: O(|V|3) 
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3. Run Dijkstra from every source.



Best Known Algorithm

Actually isn’t DP.

1. Run Bellman-Ford once to compute d(v).

2. Problem equivalent to using
ℓ’(u,w) = ℓ(u,w)+d(u)-d(w) ≥ 0.

3. Run Dijkstra from every source.

Runtime: O(|V||E|+|V|2log|V|)


