Announcements

- Homework 4 Solutions online
- Homework 5 online due Friday

Last Time

• Dynamic Programming

Dynamic Programming

Our final general algorithmic technique:

- 1. Break problem into smaller subproblems.
- 2. Find recursive formula solving one subproblem in terms of simpler ones.
- 3. Tabulate answers and solve all subproblems.

Notes about DP

- General Correct Proof Outline:
 - Prove by induction that each table entry is filled out correctly
 - Use base-case and recursion
- Runtime of DP:
 - Usually

[Number of subproblems]x[Time per subproblem]

More Notes about DP

- Finding Recursion
 - Often look at first or last choice and see what things look like without that choice
- Key point: Picking right subproblem
 - Enough information stored to allow recursion
 - Not too many

Today

- Chain Matrix Multiplication
- All Pairs Shortest Path

How long does it take to multiply matrices?

How long does it take to multiply matrices? Recall if $C = A \cdot B$ then

$$C_{xz} = \Sigma A_{xy}B_{yz}$$
.

How long does it take to multiply matrices? Recall if $C = A \cdot B$ then

$$C_{xz} = \Sigma A_{xy}B_{yz}.$$

Suppose A is an nxm matrix and B is mxk. Then for each entry of C (of which there are nk), we need to sum m terms.

How long does it take to multiply matrices? Recall if $C = A \cdot B$ then

$$C_{xz} = \Sigma A_{xy}B_{yz}.$$

Suppose A is an nxm matrix and B is mxk. Then for each entry of C (of which there are nk), we need to sum m terms.

Runtime O(nmk)*

*Can do slightly better with Strassen, but we'll ignore this for now.

More than two Matrices

Next suppose that you want to multiply three matrices ABC.

More than two Matrices

Next suppose that you want to multiply three matrices ABC.

Can do it two different ways, A(BC) OR (AB)C.

More than two Matrices

Next suppose that you want to multiply three matrices ABC.

Can do it two different ways, A(BC) OR (AB)C.

How long does it take?

Example

A is 2x3, B is 3x3, C is 3x1.

Example

A is 2x3, B is 3x3, C is 3x1.

A(BC)

Example Example B is 3x3,C is 3x1.A(BC) $3\cdot 3\cdot 1 = 9$

(AB)C

$$2 \cdot 3 \cdot 3 = 18$$
 (AB)C
 $2 \cdot 3 \cdot 3 = 18$ 2 · 3 · 1 = 6

Example
Example
$$B \text{ is } 3x3,$$

 $C \text{ is } 3x1.$
 $A(BC)$
 $3\cdot 3\cdot 1 = 9$
 $2\cdot 3\cdot 1 = 6$

Runtime: 18 + 6 = 24

Example A is 2x3,
B is 3x3,
C is 3x1.
$$A(BC)$$
$$2\cdot 3\cdot 1 = 6$$
$$3\cdot 3\cdot 1 = 9$$

Runtime: 9 + 6 = 15 Multiplication
order matters!
$$2\cdot 3\cdot 3 = 18$$
$$(AB)C$$
$$2\cdot 3\cdot 1 = 6$$

Problem Statement

Problem: Find the order to multiply matrices A₁, A₂, A₃,...,A_m that requires the fewest total operations.

Problem Statement

Problem: Find the order to multiply matrices A₁, A₂, A₃,...,A_m that requires the fewest total operations.

In particular, assume A_1 is an $n_0 \ge n_1$ matrix, A_2 is $n_1 \ge n_2$, generally A_k is an $n_{k-1} \ge n_k$ matrix.

• We need to find a recursive formulation.

- We need to find a recursive formulation.
- Often we do this by considering the last step.

- We need to find a recursive formulation.
- Often we do this by considering the last step.
- For some value of k, last step: (A₁A₂...A_k)·(A_{k+1}A_{k+2}...A_m)

- We need to find a recursive formulation.
- Often we do this by considering the last step.
- For some value of k, last step: (A₁A₂...A_k)·(A_{k+1}A_{k+2}...A_m)
- Number of steps:
 - CMM($A_1, A_2, ..., A_k$) to compute first product
 - CMM(A_{k+1} ,..., A_m) to compute second product
 - $n_0 n_k n_m$ to do final multiply

- We need to find a recursive formulation.
- Often we do this by considering the last step.
- For some value of k, last step: (A₁A₂...A_k)·(A_{k+1}A_{k+2}...A_m)
- Number of steps:
 - CMM($A_1, A_2, ..., A_k$) to compute first product
 - CMM($A_{k+1},...,A_m$) to compute second product
 - $n_0 n_k n_m$ to do final multiply
- Recursion CMM(A₁,...,A_m) = min_k[CMM(A₁,...,A_k)+CMM(A_{k+1},...,A_m)+n₀n_kn_m]

- What subproblems do we need to solve?
 - We cannot afford to solve <u>all</u> possible CMM problems.

- What subproblems do we need to solve?
 - We cannot afford to solve <u>all</u> possible CMM problems.
- CMM(A₁,...,A_m) requires CMM(A₁,...,A_k) and CMM(A_k,...,A_m).

- What subproblems do we need to solve?
 - We cannot afford to solve <u>all</u> possible CMM problems.
- CMM(A₁,...,A_m) requires CMM(A₁,...,A_k) and CMM(A_k,...,A_m).
- These require CMM(A_i,A_{i+1},...,A_i), but nothing else.

- What subproblems do we need to solve?
 - We cannot afford to solve <u>all</u> possible CMM problems.
- CMM(A₁,...,A_m) requires CMM(A₁,...,A_k) and CMM(A_k,...,A_m).
- These require CMM(A_i,A_{i+1},...,A_i), but nothing else.
- Only need subproblems $C(i,j) = CMM(A_i, A_{i+1}, ..., A_j)$ for $1 \le i \le j \le m$.

- What subproblems do we need to solve?
 - We cannot afford to solve <u>all</u> possible CMM problems.
- CMM(A₁,...,A_m) requires CMM(A₁,...,A_k) and CMM(A_k,...,A_m).
- These require CMM(A_i,A_{i+1},...,A_i), but nothing else.
- Only need subproblems $C(i,j) = CMM(A_i, A_{i+1}, ..., A_j)$ for $1 \le i \le j \le m$.

– Fewer than m² total subproblems.

- What subproblems do we need to solve?
 - We cannot afford to solve <u>all</u> possible CMM problems.
- CMM(A₁,...,A_m) requires CMM(A₁,...,A_k) and CMM(A_k,...,A_m).
- These require CMM(A_i,A_{i+1},...,A_i), but nothing else.
- Only need subproblems $C(i,j) = CMM(A_i, A_{i+1}, ..., A_j)$ for $1 \le i \le j \le m$.
 - Fewer than m² total subproblems.
 - Critical: Subproblem reuse.
Full Recursion

<u>Base Case:</u> C(i,i) = 0.

(With a single matrix, we don't have to do anything)

Full Recursion

Base Case: C(i,i) = 0.

(With a single matrix, we don't have to do anything)

Recursive Step:

$C(i,j) = \min_{i \le k < j} [C(i,k)+C(k+1,j)+n_in_kn_j]$

Full Recursion

<u>Base Case:</u> C(i,i) = 0.

(With a single matrix, we don't have to do anything)

Recursive Step:

$C(i,j) = min_{i \le k < j}[C(i,k)+C(k+1,j)+n_in_kn_j]$

Solution order: Solve subproblems with smaller

j-i first. This ensures that the recursive calls will already be in your table.

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

Illegal calls

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

Base Case

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

 $2 \cdot 5 \cdot 4 = 40$

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

 $5 \cdot 4 \cdot 3 = 60$

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

 $4 \cdot 3 \cdot 6 = 60$

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

2·5·3+60=90 2·4·3+40=64

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

 $5 \cdot 4 \cdot 5 + 60 = 160$ $5 \cdot 3 \cdot 5 + 60 = 135$

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

Compute ABCD where A is 2x5, B is 5x4, C is 4x3, D is 3x5 Finish

(((AB)C)D)

Runtime

<u>Number of Subproblems</u>: One for each $1 \le i \le j \le m$. Total: O(m²).

Runtime

Number of Subproblems: One for each 1 ≤ i ≤ j ≤ m. Total: O(m²).
Time per Subproblem: Need to check each

 $i \le k < j$. Each check takes constant time. O(m).

Runtime

Number of Subproblems:One for each $1 \le i \le j \le m$. Total: $O(m^2)$.Time per Subproblem:Need to check each $i \le k < j$. Each check takes constant time. O(m).Final Runtime: $O(m^3)$

DP Setup

Sometimes there are many ways to create a DP for a given problem, and how exactly you set it up will have a large effect on runtime.

All Pairs Shortest Paths

<u>**Problem:</u>** Given a graph G with (possibly negative) edge weights, compute the length of the shortest path between <u>every pair</u> of vertices.</u>

All Pairs Shortest Paths

<u>Problem</u>: Given a graph G with (possibly negative) edge weights, compute the length of the shortest path between <u>every pair</u> of vertices.

Note: Bellman-Ford computes single-source shortest paths. Namely, for some fixed vertex s it computes all of the shortest paths lengths d(s,v) for every v.

Repeated Bellman-Ford

Easy Algorithm: Run Bellman-Ford with
source s for each vertex s.
<u>Runtime:</u> O(|V|²|E|)

Dynamic Program

 Let d_k(u,v) be the length of the shortest u-v path using at most k edges.

Dynamic Program

 Let d_k(u,v) be the length of the shortest u-v path using at most k edges.

• Consider last edge.

Dynamic Program

 Let d_k(u,v) be the length of the shortest u-v path using at most k edges.

- Consider last edge.
- Length k-1 path from u to w, edge from w to v.
- $d_k(u,v) = \min_w[d_{k-1}(u,w) + \ell(w,v)]$

Matrix Multiplication Method

• Bellman-Ford is slow in part because we can only increase k by one step at a time.

Matrix Multiplication Method

- Bellman-Ford is slow in part because we can only increase k by one step at a time.
- This happens because we cut off only the last edge of the optimal path.

Matrix Multiplication Method

- Bellman-Ford is slow in part because we can only increase k by one step at a time.
- This happens because we cut off only the last edge of the optimal path.
- What if instead we cut it in the middle?

$$d_{2k}(u,v) = \min_{w \in V} (d_k(u,w) + d_k(w,v)).$$

Base Case:

$$d_1(u,v) = \begin{cases} 0 & \text{if } u = v \\ \ell(u,v) & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases}$$

Base Case:

$$d_1(u,v) = \begin{cases} 0 & \text{if } u = v \\ \ell(u,v) & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases}$$

<u>Recursion</u>: Given $d_k(u,v)$ for all u, v compute $d_{2k}(u,v)$ using $d_{2k}(u,v) = \min_{w \in V} (d_k(u,w) + d_k(w,v))$.

Base Case:

$$d_1(u,v) = \begin{cases} 0 & \text{if } u = v \\ \ell(u,v) & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases}$$

<u>Recursion</u>: Given $d_k(u,v)$ for all u, v compute $d_{2k}(u,v)$ using $d_{2k}(u,v) = \min_{w \in V} (d_k(u,w) + d_k(w,v))$.

End Condition: Compute d_1 , d_2 , d_4 , ... d_m with m > |V|.

Base Case:

$$d_1(u,v) = \begin{cases} 0 & \text{if } u = v \\ \ell(u,v) & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases}$$

 $O(|V|^2)$

<u>Recursion</u>: Given $d_k(u,v)$ for all u, v compute $d_{2k}(u,v)$ using $d_{2k}(u,v) = \min_{w \in V} (d_k(u,w) + d_k(w,v))$.

End Condition: Compute d_1 , d_2 , d_4 , ... d_m with m > |V|.

Base Case:

$$d_1(u,v) = \begin{cases} 0 & \text{if } u = v \\ \ell(u,v) & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases}$$

 $O(|V|^2)$

<u>Recursion</u>: Given $d_k(u,v)$ for all u, v compute $d_{2k}(u,v)$ using $d_{2k}(u,v) = \min_{w \in V} (d_k(u,w) + d_k(w,v))$. O($|V|^3$)

End Condition: Compute d_1 , d_2 , d_4 , ... d_m with m > |V|.

Base Case:

$$d_1(u,v) = \begin{cases} 0 & \text{if } u = v \\ \ell(u,v) & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases}$$

 $O(|V|^2)$

<u>Recursion</u>: Given $d_k(u,v)$ for all u, v compute $d_{2k}(u,v)$ using $d_{2k}(u,v) = \min_{w \in V} (d_k(u,w) + d_k(w,v))$. O($|V|^3$)

End Condition: Compute d_1 , d_2 , d_4 , ... d_m with m > |V|. O(log|V|) iterations
AlgorithmRuntime: O(|V|^3log|V|)O(|V|^2)Base Case: $d_1(u,v) = \begin{cases} 0 & \text{if } u = v \\ \ell(u,v) & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases}$

<u>Recursion</u>: Given $d_k(u,v)$ for all u, v compute $d_{2k}(u,v)$ using $d_{2k}(u,v) = \min_{w \in V} (d_k(u,w) + d_k(w,v))$.

End Condition: Compute d_1 , d_2 , d_4 , ... d_m with m > |V|. O(log|V|) iterations

Floyd-Warshall Algorithm

• Label vertices v₁, v₂, ..., v_n.

Floyd-Warshall Algorithm

- Label vertices v₁, v₂, ..., v_n.
- Let d_k(u,w) be the length of the shortest u-w path using only v₁, v₂,...,v_k as intermediate vertices.

Floyd-Warshall Algorithm

- Label vertices v₁, v₂, ..., v_n.
- Let d_k(u,w) be the length of the shortest u-w path using only v₁, v₂,...,v_k as intermediate vertices.
- <u>Base Case:</u> $d_0(u, w) = \begin{cases} 0 & \text{if } u = w \\ \ell(u, w) & \text{if } (u, w) \in E \\ \infty & \text{otherwise} \end{cases}$

Recursion

Break into cases based on whether shortest path uses v_k .

Recursion

Break into cases based on whether shortest path uses v_k.

The shortest path not using v_k has length d_{k-1}(u,w).

Recursion

Break into cases based on whether shortest path uses v_k.

- The shortest path not using v_k has length d_{k-1}(u,w).
- The shortest path using v_k has length d_{k-1}(u,v_k)+d_{k-1}(v_k,w).

Algorithm

Base Case:
$$d_0(u,w) = \begin{cases} 0 & \text{if } u = w \\ \ell(u,w) & \text{if } (u,w) \in E \\ \infty & \text{otherwise} \end{cases}$$

Algorithm

<u>Base Case:</u> $d_0(u,w) = \begin{cases} 0 & \text{if } u = w \\ \ell(u,w) & \text{if } (u,w) \in E \\ \infty & \text{otherwise} \end{cases}$

<u>Recursion</u>: For each u, w compute:

 $d_k(u, w) = \min(d_{k-1}(u, w), d_{k-1}(u, v_k) + d_{k-1}(v_k, w)).$

Algorithm

<u>Base Case:</u> $d_0(u,w) = \begin{cases} 0 & \text{if } u = w \\ \ell(u,w) & \text{if } (u,w) \in E \\ \infty & \text{otherwise} \end{cases}$

<u>**Recursion:</u>** For each u, w compute: $d_k(u, w) = \min(d_{k-1}(u, w), d_{k-1}(u, v_k) + d_{k-1}(v_k, w)).$ </u>

End Condition: $d(u,w) = d_n(u,w)$ where n = |V|.

AlgorithmBase Case: $0 \quad \text{if } u = w$ $d_0(u,w) = \begin{cases} 0 & \text{if } u = w \\ \ell(u,w) & \text{if } (u,w) \in E \\ \infty & \text{otherwise} \end{cases}$

<u>**Recursion:</u>** For each u, w compute: $d_k(u, w) = \min(d_{k-1}(u, w), d_{k-1}(u, v_k) + d_{k-1}(v_k, w)).$ </u>

End Condition: $d(u,w) = d_n(u,w)$ where n = |V|.

AlgorithmBase Case: $O(|V|^2)$ $d_0(u,w) = \begin{cases} 0 & \text{if } u = w \\ \ell(u,w) & \text{if } (u,w) \in E \\ \infty & \text{otherwise} \end{cases}$

<u>Recursion</u>: For each u, w compute: $O(|V|^2)$ $d_k(u, w) = \min(d_{k-1}(u, w), d_{k-1}(u, v_k) + d_{k-1}(v_k, w)).$ **<u>End Condition</u>:** $d(u, w) = d_n(u, w)$ where n = |V|.

Algorithm **<u>Base Case:</u>** $d_0(u,w) = \begin{cases} 0 & \text{if } u = w \\ \ell(u,w) & \text{if } (u,w) \in E \\ \infty & \text{otherwise} \end{cases}$ $O(|V|^2)$ O(|V|²) **Recursion:** For each u, w compute: $d_k(u, w) = \min(d_{k-1}(u, w), d_{k-1}(u, v_k) + d_{k-1}(v_k, w)).$ **End Condition:** $d(u,w) = d_n(u,w)$ where n = |V|.

O(|V|) Iterations

Algorithm untime: O(|V|^3)Base Case: $d_0(u,w) = \begin{cases} 0 & \text{if } u = w \\ \ell(u,w) & \text{if } (u,w) \in E \\ \infty & \text{otherwise} \end{cases}$ Runtime: O(|V|³) $O(|V|^2)$ O(|V|²) **Recursion:** For each u, w compute: $d_k(u, w) = \min(d_{k-1}(u, w), d_{k-1}(u, v_k) + d_{k-1}(v_k, w)).$ **End Condition:** $d(u,w) = d_n(u,w)$ where n = |V|.

O(|V|) Iterations

Best Known Algorithm

Actually isn't DP.

Best Known Algorithm

Actually isn't DP.

- Run Bellman-Ford once to compute d(v).
- Problem equivalent to using ℓ'(u,w) = ℓ(u,w)+d(u)-d(w) ≥ 0.
- 3. Run Dijkstra from every source.

Best Known Algorithm

Actually isn't DP.

- Run Bellman-Ford once to compute d(v).
- 2. Problem equivalent to using $\ell'(u,w) = \ell(u,w)+d(u)-d(w) \ge 0.$
- 3. Run Dijkstra from every source.

<u>Runtime</u>: $O(|V||E|+|V|^2\log|V|)$