
Announcements

• Exam 1 grades out

– B- cutoff ~ 55

– A- cutoff ~ 85

• Exam 2 on Friday

– In class

– 3Qs in 45 min

– Covers D&C and Greedy algorithms (through last 
week’s lectures)

• No class on Monday



Last Time

• Greedy Algorithms

• Minimum Spanning Tree

• Tree Facts



Greedy Algorithms

General Algorithmic Technique:

1. Find decision criterion

2. Make best choice according to criterion

3. Repeat until done

Surprisingly, this sometimes works.



Trees

Definition: A tree is a connected graph, with no cycles.

A spanning tree in a graph G, is a subset of the edges of 
G that connect all vertices and have no cycles. 

If G has weights, a minimum spanning tree is a 
spanning tree whose total weight is as small as 
possible.



Basic Facts about Trees

Lemma: For an undirected graph G, any two of 
the below imply the third:

1. |E| = |V|-1

2. G is connected

3. G has no cycles

Corollary: If G is a tree, then |E| = |V|-1.



Today

• Minimum Spanning Trees



Minimum Spanning Tree

Problem: Given a weighted, undirected graph G, 
find a spanning tree of G with the lowest 
possible weight.



Greedy Idea

How do you make an MST?



Greedy Idea

How do you make an MST?

• Try using the cheapest edges.



Greedy Idea

How do you make an MST?

• Try using the cheapest edges.

Proposition: In a graph G, let e be an edge of 
lightest weight. Then there exists an MST of G 
containing e. Furthermore, if e is the unique 
lightest edge, then all MSTs contain e.



Proof Idea

• Suppose that we have an MST T that does not 
contain e.



Proof Idea

• Suppose that we have an MST T that does not 
contain e.

• Modify T to get T’ that does contain e and has 
wt(T’) ≤ wt(T).



Proof Idea

• Suppose that we have an MST T that does not 
contain e.

• Modify T to get T’ that does contain e and has 
wt(T’) ≤ wt(T).

• T’ will be a MST as well.



Proof Idea

• Suppose that we have an MST T that does not 
contain e.

• Modify T to get T’ that does contain e and has 
wt(T’) ≤ wt(T).

• T’ will be a MST as well.

• Furthermore if e is the unique lightest edge, 
wt(T’) < wt(T), so T could not have been 
minimal.



Proof

• Consider tree T not 
containing e.



Proof

• Consider tree T not 
containing e.

e



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.

e



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.

e



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove edge e’ from cycle 
to get T’.

e

e’



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove edge e’ from cycle 
to get T’.

e

e’



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove edge e’ from cycle 
to get T’.
• |T’|=|V|-1, and connected, 
so T’ is a tree.

e

e’



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove edge e’ from cycle 
to get T’.
• |T’|=|V|-1, and connected, 
so T’ is a tree.
• wt(T’) = wt(T)+wt(e)-wt(e’)

≤ wt(T)
(because wt(e) is minimal).

e

e’



Example

• Lightest edge in MST.

1

234

5



Example

• Lightest edge in MST.

1

234

5



Example

• Lightest edge in MST.

– Then what?

1

234

5



Example

• Lightest edge in MST.

– Then what?

• Merge those vertices & repeat.

1

234

5



Example

• Lightest edge in MST.

– Then what?

• Merge those vertices & repeat.

1

234

5



Example

• Lightest edge in MST.

– Then what?

• Merge those vertices & repeat.

1

234

5



Example

• Lightest edge in MST.

– Then what?

• Merge those vertices & repeat.

1

234

5



Example

• Lightest edge in MST.

– Then what?

• Merge those vertices & repeat.

1

234

5



Example

• Lightest edge in MST.

– Then what?

• Merge those vertices & repeat.

1

234

5



Algorithm

• When more than one vertex, add lightest 
edge, and merge.

– Repeat and then undo merges.

• Easier: An edge hasn’t been merged away iff it 
does not create a cycle with already chosen 
edges.



Algorithm

Kruskal(G)

T ← {}

While(|T| < |V|-1)

Find lightest edge e that

doesn’t create cycle with T

Add e to T

Return T



Algorithm

Kruskal(G)

T ← {}

While(|T| < |V|-1)

Find lightest edge e that

doesn’t create cycle with T

Add e to T

Return T

O(|V|) Iterations



Algorithm

Kruskal(G)

T ← {}

While(|T| < |V|-1)

Find lightest edge e that

doesn’t create cycle with T

Add e to T

Return T

O(|V|) Iterations

O(|E|) edges



Algorithm

Kruskal(G)

T ← {}

While(|T| < |V|-1)

Find lightest edge e that

doesn’t create cycle with T

Add e to T

Return T

O(|V|) Iterations

O(|E|) edges

O(|V|+|E|) time to 
check for cycle



Algorithm

Kruskal(G)

T ← {}

While(|T| < |V|-1)

Find lightest edge e that

doesn’t create cycle with T

Add e to T

Return T

O(|V|) Iterations

O(|E|) edges

O(|V|+|E|) time to 
check for cycleRuntime:

O(|V||E|2)



Optimizations

Two things are slow here:

1) Testing every edge every iteration.

2) Needing to test connectivity for every edge.



Optimizations

Two things are slow here:

1) Testing every edge every iteration.

2) Needing to test connectivity for every edge.

To improve (1), if an edge forms a cycle, it will 
never later become viable.

Sort edges once and use in order.



Kruskal Version 2

Kruskal(G)

Sort edges by weight

T ← {}

For e ∈ E in increasing order

If e does not form cycle

Add e to T

Return T



Kruskal Version 2

Kruskal(G)

Sort edges by weight

T ← {}

For e ∈ E in increasing order

If e does not form cycle

Add e to T

Return T

O(|E| log|E|) 



Kruskal Version 2

Kruskal(G)

Sort edges by weight

T ← {}

For e ∈ E in increasing order

If e does not form cycle

Add e to T

Return T

O(|E|) Iterations

O(|E| log|E|) 



Kruskal Version 2

Kruskal(G)

Sort edges by weight

T ← {}

For e ∈ E in increasing order

If e does not form cycle

Add e to T

Return T

O(|E|) Iterations

O(|E| log|E|) 

O(|V|+|E|) 



Kruskal Version 2

Kruskal(G)

Sort edges by weight

T ← {}

For e ∈ E in increasing order

If e does not form cycle

Add e to T

Return T

O(|E|) Iterations

Runtime: O(|E|2)

O(|E| log|E|) 

O(|V|+|E|) 



Better Cycle Testing

How do we test if edge (v,w) forms a cycle?



Better Cycle Testing

How do we test if edge (v,w) forms a cycle?

If v and w are in the same connected 
component of the graph formed by T.



Better Cycle Testing

How do we test if edge (v,w) forms a cycle?

If v and w are in the same connected 
component of the graph formed by T.

Need a data structure. That can:

• Add edges to T.

• Test if two vertices in same CC.



Components



Components



Components



Components



Components



Components



Components



Components



Components



Components



Components



Components



Components



Components



Components



Components



Components



Union Find Data Structure

Maintains several sets. Each has a representative 
element.



Union Find Data Structure

Maintains several sets. Each has a representative 
element.

Operations:

• New(e) – Creates a new set with element e.



Union Find Data Structure

Maintains several sets. Each has a representative 
element.

Operations:

• New(e) – Creates a new set with element e.

• Rep(a) – Returns the representative element of a’s 
set.



Union Find Data Structure

Maintains several sets. Each has a representative 
element.

Operations:

• New(e) – Creates a new set with element e.

• Rep(a) – Returns the representative element of a’s 
set.

• Join(a,b) – Merges a’s set with b’s.



Union Find Data Structure

Maintains several sets. Each has a representative 
element.

Operations:

• New(e) – Creates a new set with element e.

• Rep(a) – Returns the representative element of a’s 
set.

• Join(a,b) – Merges a’s set with b’s.

Note: Check of v & w in same set by testing if Rep(v) = 
Rep(w).



Kruskal Version 3

Kruskal(G)

Sort edges by weight

T ← {}

Create Union Find

For v ∈ V, New(v)

For (v,w) ∈ E in increasing order

If Rep(v) ≠ Rep(w)

Add (v,w) to T

Join(v,w)

Return T



Kruskal Version 3

Kruskal(G)

Sort edges by weight

T ← {}

Create Union Find

For v ∈ V, New(v)

For (v,w) ∈ E in increasing order

If Rep(v) ≠ Rep(w)

Add (v,w) to T

Join(v,w)

Return T

O(|E| log|E|) 



Kruskal Version 3

Kruskal(G)

Sort edges by weight

T ← {}

Create Union Find

For v ∈ V, New(v)

For (v,w) ∈ E in increasing order

If Rep(v) ≠ Rep(w)

Add (v,w) to T

Join(v,w)

Return T

O(|E| log|E|) 

O(|V|) New’s 



Kruskal Version 3

Kruskal(G)

Sort edges by weight

T ← {}

Create Union Find

For v ∈ V, New(v)

For (v,w) ∈ E in increasing order

If Rep(v) ≠ Rep(w)

Add (v,w) to T

Join(v,w)

Return T

O(|E|) Iterations

O(|E| log|E|) 

O(|V|) New’s 



Kruskal Version 3

Kruskal(G)

Sort edges by weight

T ← {}

Create Union Find

For v ∈ V, New(v)

For (v,w) ∈ E in increasing order

If Rep(v) ≠ Rep(w)

Add (v,w) to T

Join(v,w)

Return T

O(|E|) Iterations

O(|E| log|E|) 

O(|V|) New’s 

O(1) Join + Rep



Kruskal Version 3

Kruskal(G)

Sort edges by weight

T ← {}

Create Union Find

For v ∈ V, New(v)

For (v,w) ∈ E in increasing order

If Rep(v) ≠ Rep(w)

Add (v,w) to T

Join(v,w)

Return T

O(|E|) Iterations

Runtime:O(|E|log|E|)
+|E|(Union-Find Ops)

O(|E| log|E|) 

O(|V|) New’s 

O(1) Join + Rep



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)
Rep: Follow pointers to root

- O(depth)



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)
Rep: Follow pointers to root

- O(depth)



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)
Rep: Follow pointers to root

- O(depth)



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)
Rep: Follow pointers to root

- O(depth)



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)
Rep: Follow pointers to root

- O(depth)



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)
Rep: Follow pointers to root

- O(depth)
Join: Have one Rep point to 
other.

- O(depth)



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)
Rep: Follow pointers to root

- O(depth)
Join: Have one Rep point to 
other.

- O(depth)



Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)
Rep: Follow pointers to root

- O(depth)
Join: Have one Rep point to 
other.

- O(depth)



Depth

Need to ensure depth isn’t too big.



Depth

Need to ensure depth isn’t too big.

Idea: Always have shallower tree point to 
deeper one.



Depth

Need to ensure depth isn’t too big.

Idea: Always have shallower tree point to 
deeper one.

Proposition: With the above rule any tree of 
depth n must have at least 2n nodes.



Depth

Need to ensure depth isn’t too big.

Idea: Always have shallower tree point to 
deeper one.

Proposition: With the above rule any tree of 
depth n must have at least 2n nodes.

Proof: Induction on n. n = 0, done.
To get a tree of depth n, need to join two trees 
of depth n-1. Total of at least 2n-1+2n-1 = 2n

nodes.



Runtime

Union-Find on n nodes runs operations in 
O(log(n)) time.



Runtime

Union-Find on n nodes runs operations in 
O(log(n)) time.

Kruskal runs in time O(|E| log|E|).



Runtime

Union-Find on n nodes runs operations in 
O(log(n)) time.

Kruskal runs in time O(|E| log|E|).

Note: Using path compressions, union-find 
actually runs in α(n) time per operation.



Other Algorithms

There are many other ways to create MST 
algorithms. Kruskal searches the whole graph for 
light edges, but you can also grow from a point.



Other Algorithms

There are many other ways to create MST 
algorithms. Kruskal searches the whole graph for 
light edges, but you can also grow from a point.

Proposition: In a graph G, with vertex v, let e be an 
edge of lightest weight adjacent to v. Then there 
exists an MST of G containing e. Furthermore, if e 
is the unique lightest edge, then all MSTs contain 
e.



Proof

• Consider tree T not 
containing e.

v



Proof

• Consider tree T not 
containing e.

e v



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.

e v



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.

e v



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove other edge e’ 
adjacent to v from cycle to 
get T’.

e

e’

v



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove other edge e’ 
adjacent to v from cycle to 
get T’.

e

e’

v



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove other edge e’ 
adjacent to v from cycle to 
get T’.
• |T’|=|V|-1, and connected, 
so T’ is a tree.

e

e’

v



Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove other edge e’ 
adjacent to v from cycle to 
get T’.
• |T’|=|V|-1, and connected, 
so T’ is a tree.
• wt(T’) = wt(T)+wt(e)-wt(e’)

≤ wt(T)
(because wt(e) is minimal).

e

e’

v



Prim’s Algorithm

So instead of checking all edges, you can just 
check edges from v.



Prim’s Algorithm

So instead of checking all edges, you can just 
check edges from v.

You can then contract edge and repeat.



Prim’s Algorithm

So instead of checking all edges, you can just 
check edges from v.

You can then contract edge and repeat.

Prim’s Algorithm: Add lightest edge that 
connects v to a new vertex.



Prim’s Algorithm

So instead of checking all edges, you can just 
check edges from v.

You can then contract edge and repeat.

Prim’s Algorithm: Add lightest edge that 
connects v to a new vertex.

Implementation very similar to Dijkstra.



Prim’s Algorithm
Prim(G,w)

Pick vertex s             \\ doesn’t matter which

For v ∈ V, b(v) ← ∞       \\ lightest edge into v 

T ← {}, b(s) ← 0

Priority Queue Q, add all v with key=b(v)

While(Q not empty)

u ← DeleteMin(Q)

If u ≠ s, add (u,Prev(u)) to T

For (u,v) ∈ E

If w(u,v) < b(v)

b(v) ← w(u,v)

Prev(v) ← u

DecreaseKey(v)

Return T



Prim’s Algorithm
Prim(G,w)

Pick vertex s             \\ doesn’t matter which

For v ∈ V, b(v) ← ∞       \\ lightest edge into v 

T ← {}, b(s) ← 0

Priority Queue Q, add all v with key=b(v)

While(Q not empty)

u ← DeleteMin(Q)

If u ≠ s, add (u,Prev(u)) to T

For (u,v) ∈ E

If w(u,v) < b(v)

b(v) ← w(u,v)

Prev(v) ← u

DecreaseKey(v)

Return T

Runtime:
O(|V|log|V| + |E|)
Slightly better than 
Kruskal



Analysis

At any stage, have some set S of vertices 
connected to s. Find cheapest edge 
connecting S to SC.



Analysis

At any stage, have some set S of vertices 
connected to s. Find cheapest edge 
connecting S to SC.

Proposition: In a graph G, with a cut C, let e be 
an edge of lightest weight crossing C. Then 
there exists an MST of G containing e. 
Furthermore, if e is the unique lightest edge, 
then all MSTs contain e.



Proof



Proof

e



Proof

e



Proof

e

e’

Cycle must have e’ 
crossing cut!



Proof

e

e’

Cycle must have e’ 
crossing cut!



Notes on MST

Minimum Spanning Tree is one of the best-
studied algorithmic problems and there are 
many known algorithms.



Notes on MST

Minimum Spanning Tree is one of the best-
studied algorithmic problems and there are 
many known algorithms.

• Randomized O(|V|+|E|) 
by [Karger-Klein-Tarjan]



Notes on MST

Minimum Spanning Tree is one of the best-
studied algorithmic problems and there are 
many known algorithms.

• Randomized O(|V|+|E|) 
by [Karger-Klein-Tarjan]

• O(|E| α(|E|)) by Chazelle



Notes on MST

Minimum Spanning Tree is one of the best-
studied algorithmic problems and there are 
many known algorithms.

• Randomized O(|V|+|E|) 
by [Karger-Klein-Tarjan]

• O(|E| α(|E|)) by Chazelle

• Best algorithm known
(not known whether it is O(|V|+|E|))


