
Announcements

• Exam 1 grades out

– B- cutoff ~ 55

– A- cutoff ~ 85

• Exam 2 on Friday

– In class

– 3Qs in 45 min

– Covers D&C and Greedy algorithms (through last 
week’s lectures)

• No class on Monday



Last Time

• Greedy Algorithms

• Minimum Spanning Tree

• Tree Facts



Greedy Algorithms

General Algorithmic Technique:

1. Find decision criterion

2. Make best choice according to criterion

3. Repeat until done

Surprisingly, this sometimes works.



Trees

Definition: A tree is a connected graph, with no cycles.

A spanning tree in a graph G, is a subset of the edges of 
G that connect all vertices and have no cycles. 

If G has weights, a minimum spanning tree is a 
spanning tree whose total weight is as small as 
possible.



Basic Facts about Trees

Lemma: For an undirected graph G, any two of 
the below imply the third:

1. |E| = |V|-1

2. G is connected

3. G has no cycles

Corollary: If G is a tree, then |E| = |V|-1.



Today

• Minimum Spanning Trees



Minimum Spanning Tree

Problem: Given a weighted, undirected graph G, 
find a spanning tree of G with the lowest 
possible weight.
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Greedy Idea

How do you make an MST?

• Try using the cheapest edges.

Proposition: In a graph G, let e be an edge of 
lightest weight. Then there exists an MST of G 
containing e. Furthermore, if e is the unique 
lightest edge, then all MSTs contain e.
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Proof Idea

• Suppose that we have an MST T that does not 
contain e.

• Modify T to get T’ that does contain e and has 
wt(T’) ≤ wt(T).

• T’ will be a MST as well.

• Furthermore if e is the unique lightest edge, 
wt(T’) < wt(T), so T could not have been 
minimal.
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Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove edge e’ from cycle 
to get T’.
• |T’|=|V|-1, and connected, 
so T’ is a tree.
• wt(T’) = wt(T)+wt(e)-wt(e’)

≤ wt(T)
(because wt(e) is minimal).

e

e’
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Algorithm

• When more than one vertex, add lightest 
edge, and merge.

– Repeat and then undo merges.

• Easier: An edge hasn’t been merged away iff it 
does not create a cycle with already chosen 
edges.
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Find lightest edge e that
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Algorithm

Kruskal(G)

T ← {}

While(|T| < |V|-1)

Find lightest edge e that

doesn’t create cycle with T

Add e to T

Return T

O(|V|) Iterations

O(|E|) edges

O(|V|+|E|) time to 
check for cycleRuntime:

O(|V||E|2)
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2) Needing to test connectivity for every edge.



Optimizations

Two things are slow here:

1) Testing every edge every iteration.

2) Needing to test connectivity for every edge.

To improve (1), if an edge forms a cycle, it will 
never later become viable.

Sort edges once and use in order.
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Kruskal Version 2

Kruskal(G)

Sort edges by weight

T ← {}

For e ∈ E in increasing order

If e does not form cycle

Add e to T

Return T

O(|E|) Iterations

Runtime: O(|E|2)

O(|E| log|E|) 

O(|V|+|E|) 
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Better Cycle Testing

How do we test if edge (v,w) forms a cycle?

If v and w are in the same connected 
component of the graph formed by T.

Need a data structure. That can:

• Add edges to T.

• Test if two vertices in same CC.
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Union Find Data Structure

Maintains several sets. Each has a representative 
element.

Operations:

• New(e) – Creates a new set with element e.

• Rep(a) – Returns the representative element of a’s 
set.

• Join(a,b) – Merges a’s set with b’s.

Note: Check of v & w in same set by testing if Rep(v) = 
Rep(w).
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For v ∈ V, New(v)

For (v,w) ∈ E in increasing order
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Kruskal Version 3

Kruskal(G)

Sort edges by weight

T ← {}

Create Union Find

For v ∈ V, New(v)

For (v,w) ∈ E in increasing order

If Rep(v) ≠ Rep(w)

Add (v,w) to T

Join(v,w)

Return T

O(|E|) Iterations

Runtime:O(|E|log|E|)
+|E|(Union-Find Ops)

O(|E| log|E|) 

O(|V|) New’s 

O(1) Join + Rep
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Union Find Implementation

Basic Idea: Each set is a rooted tree with edges 
pointing towards the representative.

New: Create new node – O(1)
Rep: Follow pointers to root

- O(depth)
Join: Have one Rep point to 
other.

- O(depth)
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Depth

Need to ensure depth isn’t too big.

Idea: Always have shallower tree point to 
deeper one.

Proposition: With the above rule any tree of 
depth n must have at least 2n nodes.

Proof: Induction on n. n = 0, done.
To get a tree of depth n, need to join two trees 
of depth n-1. Total of at least 2n-1+2n-1 = 2n

nodes.
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Runtime

Union-Find on n nodes runs operations in 
O(log(n)) time.

Kruskal runs in time O(|E| log|E|).

Note: Using path compressions, union-find 
actually runs in α(n) time per operation.
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Other Algorithms

There are many other ways to create MST 
algorithms. Kruskal searches the whole graph for 
light edges, but you can also grow from a point.

Proposition: In a graph G, with vertex v, let e be an 
edge of lightest weight adjacent to v. Then there 
exists an MST of G containing e. Furthermore, if e 
is the unique lightest edge, then all MSTs contain 
e.
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• Consider tree T not 
containing e.
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Proof

• Consider tree T not 
containing e.
• With extra edge, no longer 
a tree, must contain a cycle.
• Remove other edge e’ 
adjacent to v from cycle to 
get T’.
• |T’|=|V|-1, and connected, 
so T’ is a tree.
• wt(T’) = wt(T)+wt(e)-wt(e’)

≤ wt(T)
(because wt(e) is minimal).

e

e’

v
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Prim’s Algorithm

So instead of checking all edges, you can just 
check edges from v.

You can then contract edge and repeat.

Prim’s Algorithm: Add lightest edge that 
connects v to a new vertex.

Implementation very similar to Dijkstra.



Prim’s Algorithm
Prim(G,w)

Pick vertex s             \\ doesn’t matter which

For v ∈ V, b(v) ← ∞       \\ lightest edge into v 

T ← {}, b(s) ← 0

Priority Queue Q, add all v with key=b(v)

While(Q not empty)

u ← DeleteMin(Q)

If u ≠ s, add (u,Prev(u)) to T

For (u,v) ∈ E

If w(u,v) < b(v)

b(v) ← w(u,v)

Prev(v) ← u

DecreaseKey(v)

Return T



Prim’s Algorithm
Prim(G,w)

Pick vertex s             \\ doesn’t matter which

For v ∈ V, b(v) ← ∞       \\ lightest edge into v 

T ← {}, b(s) ← 0

Priority Queue Q, add all v with key=b(v)

While(Q not empty)

u ← DeleteMin(Q)

If u ≠ s, add (u,Prev(u)) to T

For (u,v) ∈ E

If w(u,v) < b(v)

b(v) ← w(u,v)

Prev(v) ← u

DecreaseKey(v)

Return T

Runtime:
O(|V|log|V| + |E|)
Slightly better than 
Kruskal
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Analysis

At any stage, have some set S of vertices 
connected to s. Find cheapest edge 
connecting S to SC.

Proposition: In a graph G, with a cut C, let e be 
an edge of lightest weight crossing C. Then 
there exists an MST of G containing e. 
Furthermore, if e is the unique lightest edge, 
then all MSTs contain e.
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Notes on MST

Minimum Spanning Tree is one of the best-
studied algorithmic problems and there are 
many known algorithms.

• Randomized O(|V|+|E|) 
by [Karger-Klein-Tarjan]

• O(|E| α(|E|)) by Chazelle

• Best algorithm known
(not known whether it is O(|V|+|E|))


