Announcements

Homework 3 Solutions online
No homework this week
Exam 2 on Friday

W 10:30-12:00 office hours (this week) will be
held online at:
https://ucsd.zoom.us/j/9296249412

https://urldefense.com/v3/__https://ucsd.zoom.us/j/9296249412__;!!Mih3wA!Bcq1-1jKVPsmcWrTMnYefnvjuUOy22mkW4hjM55WElW2pfKSPCo5Bl-OBFFSK9vzx2K8RZZy1nRblElXssKf$

Last Time

* Greedy Algorithms
* Exchange Arguments

Greedy Algorithms

General Algorithmic Technique:

1. Find decision criterion

2. Make best choice according to criterion
3. Repeat until done

Surprisingly, this sometimes works.

Exchange Argument

* Greedy algorithm makes a sequence of decisions D;,
D,, D,,...,D,, eventually reaching solution G.

* Need to show that for arbitrary solutions A that G >
A.

* Find sequence of solutions
A=A, A, A, A =G
so that:

o Ai < Ai+1
— A, agrees with D,,D,,...,D.

Exchange Argument

In particular, we need to show that given any A,
consistent with D,,...,D, we can find an A,,, so

that:
* A, isconsistent with D,,...,.D,,,
* A 2 A
Then we inductively construct sequence
A=A, <A A <..ZA =G
Thus, G > A for any A. So G is optimal.

Today

 Huffman Codes
* Minimum Spanning Trees

Huffman Codes

 Want to encode string of letters in binary.
Ex: ABCDACBDAD

Huffman Codes

 Want to encode string of letters in binary.
Ex: ABCDACBDAD
e A =00, B =201, C =10, D =11

Huffman Codes

* Want to encode string of letters in binary.
Ex: ABCDACBDAD
e A = 00, B =201, ¢ =10, D =11

A B C D A C B D A D
00 01 10 11 00 10 01 11 00 11

Huffman Codes

* Want to encode string of letters in binary.
Ex: ABCDACBDAD
e A = 00, B =201, ¢ =10, D =11

A B C D A C B D A D
00 01 10 11 00 10 01 11 00 11

e Use two bits to encode each letter.

Question: Encoding Length

Using the coding scheme from the last slide,
how many bits are needed to encode a string
of n As, Bs, Cs and Ds?

1) 2
2) n
3) 2n
4) 4n
5) n?

Question: Encoding Length

Using the coding scheme from the last slide,
how many bits are needed to encode a string
of n As, Bs, Cs and Ds?

1) 2

2) n You need two bits per letter.
3) 2n

4) 4n

5) n?

Non-Fix Length Encodings

* Suppose instead we had to decode:
AAABAACBAABADAAA

Non-Fix Length Encodings

* Suppose instead we had to decode:
AAABAACBAABADAAA

e 16 Letters requires 32 bits.

Non-Fix Length Encodings

* Suppose instead we had to decode:
AAABAACBAABADAAA

e 16 Letters requires 32 bits.

e Note that there are a lot of As here. If we

could find a way to encode them with fewer
bits, we could save a lot.

Unique Decoding

Cannot do any encoding we like.

Unique Decoding

Cannot do any encoding we like.

Suppose we tried:
A=0, B=1, ¢ =10, D= 01

Unique Decoding

Cannot do any encoding we like.
Suppose we tried:

A=0, B=1, ¢ =10, D= 01
How do you decode 017 Either AB or D.

Unique Decoding

Cannot do any encoding we like.
Suppose we tried:

A=0, B=1, ¢ =10, D= 01
How do you decode 017 Either AB or D.

Problem: The encoding for A is a prefix of the
encoding for D. When you see it, you don’t
know if it’s an A, or the start of a D.

Prefix Free Encodings

Definition: An encoding is prefix-free if the

encoding of no letter is a prefix of the
encoding of any other.

Prefix Free Encodings

Definition: An encoding is prefix-free if the

encoding of no letter is a prefix of the
encoding of any other.

Example:

Prefix Free Encodings

Definition: An encoding is prefix-free if the

encoding of no letter is a prefix of the
encoding of any other.

Example:
A =0, B=10, ¢ = 110, D =

Lemma: Any prefix-free encoding can be
uniquely decoded.

Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000

Example

A=90, B=10, C =110, D = 111

Decode:

00010001101000100111000

L
A

Example

A=0, B=10, C =110, D = 111

Decode:

00010001101000100111000
iy
AA

Example

A=90, B=10, C =110, D = 111

Decode:

00010001101000100111000

gty
AAA

Example

A=90, B=10, C =110, D = 111

Decode:

00010001101000100111000

L
AAA B

Example

A=90, B=10, C =110, D = 111

Decode:

00010001101000100111000

gy
AAA B

Example

A=0, B=10, C =110, D = 111

Decode:

00010001101000100111000

Py
AAA B AA

Example

A=0, B=10, C =110, D = 111

Decode:

00010001101000100111000

g
AAA B AA

Example

A=90, B=10, C =110, D = 111

Decode:

00010001101000100111000

P
AAA B AA C B

Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
Yyy—+—yyt— Iy

AAA B AA C B A

Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
e e !

AAA B AA C B AA

Example

A=0, B=10, C =110, D = 111

Decode:
00010001101000100111000
L e L

AAA B AA C B AA B

Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
Py

AAA C B AA B A

Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
'T”T”T”—l—”'r”'r" — =Yy

AAA C B AA BA D

Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
LSS G G i A C
AAA C B AA BA D A

Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
LSRN G il A e

AAA C B AA BA D AA

Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
LSRN i e et L

AAA C B AA BA D AAA

Example

A=90, B=10, C =110, D = 111

Decode:

00010001101000100111000
1SS et b ek St
AAA C B AA BA D AAA

Only 23 bits instead of 32!

Optimal Encoding

Problem: Given a string, S, find a prefix-free

encoding that encodes S using the fewest
number of bits.

How Long is the Encoding?

If for each letter x in our string, x appears f(x)
times and if we encode x as a string of length
£(x), the total encoding length is:

2 f(x)-8(x).

How Long is the Encoding?

If for each letter x in our string, x appears f(x)
times and if we encode x as a string of length
£(x), the total encoding length is:

2 f(x)-8(x).
Our example has:
11 As,3Bs,1C,1D.

How Long is the Encoding?

If for each letter x in our string, x appears f(x)
times and if we encode x as a string of length
£(x), the total encoding length is:

2 f(x)-8(x).
Our example has:
11 As,3Bs,1C,1D.

These are the frequencies. We need to find the
best encoding.

Tree Representation

Can represent prefix-free encoding as a tree.

Tree Representation

Can represent prefix-free encoding as a tree.

A

_etters are leaves. B
L ength of encoding =
Depth of leaf. C D

Question: Tree Decoding

What letter does the string 111 correspond to in
this tree?

Question: Tree Decoding

What letter does the string 111 correspond to in
this tree?

Placement of Leaves

Suppose we know the tree
structure. Where do we put the
letters?

Placement of Leaves

Suppose we know the tree
structure. Where do we put the
letters?

Objective = Z freqg(x)depth(x)

Placement of Leaves

Suppose we know the tree
structure. Where do we put the
letters?

Objective = Z freq(x)depth(x)

Want least frequent letters at
lowest depth.

Placement of Leaves

Suppose we know the tree

structure. Where do we put the

letters?

Objective = Z freq(x)depth(x)

Letter frequencies

Ax10, Bxl1lb5,
Want least frequent lettersat cx4, Dx22,

lowest depth. FEx31, Fx5,
Gx19

Placement of Leaves

Suppose we know the tree

structure. Where do we put the

letters?

Objective = Z freq(x)depth(x)

Letter frequencies

Ax10, Bxl1lb5,
Want least frequent lettersat cx4, Dx22,

lowest depth. FEx31, Fx5,
Gx19

Siblings

* No matter what the tree structure, two of the
deepest leaves are siblings.

Siblings

* No matter what the tree structure, two of the
deepest leaves are siblings.

e Can assume filled by two least frequent
elements.

Siblings

* No matter what the tree structure, two of the
deepest leaves are siblings.

e Can assume filled by two least frequent
elements.

* Can assume that two least frequent elements
are siblings!

Example

Frequencies:
Ax30, Bxl5, Cx2Z25, Dxb0, Ex65

Example

Frequencies:
Ax30, Bxl5, Cx25, Dxb0, Ex65

N

Example

Frequencies:
Ax30, Bxl5, Cx2Z25, Dxb0, Ex65

Example

Frequencies:
Ax30, Bxl5, Cx2Z25, Dxb0, Ex65

Think of as a

new node of
B OR C | «<— :
weight

/ \ 15+25=40
B C

30

Example

30

Example

B OR C
40

/N
B C
15 25

Example

A OR (B OR C)

70

\
B OR C
40

/N

30 15 25 50

B C D

Example

A OR (B OR C)
70
\
B OR C
40
A B C
30| [15| |25

D OR E
115

/N

Example

(A OR (B OR C))

A OR (B OR C) | |1g5
70
\ /
B OR C D OR E
40 115
A B C D E
30 15 25 50 65

Algorithm

/E;ffmanTree(L)
While(at least two left)

X, YV « Two least frequent

Xx and y children of =z

\\¥Return remaining elt of L

N

z new node f(z) « f£(x)+£f(y)

Replace x and y with z 1n L

J

Algorithm

/E;ffmanTree(L)
While(at least two left)

X, YV « Two least frequent

X and y children of z

\\‘Return remalning elt of L

N

z new node f(z) « f£(x)+£f(y)

Replace x and y with z 1n L

J

Better with priority queue.

Optimized Algorithm

/1;;ffmanTree(L)

Priority queue Q
Insert all elements of L to Q
While (|Q| 2 2)

X « Q.DeleteMin ()

Yy « Q.DeleteMin ()

Create z, f(z) = f(x) + f£(y)

X and y children of z

Q.Insert (z)
\\\;Return QO.DeleteMin ()

N

Optimized Algorithm

/1;;ffmanTree(L) ‘\\\

Priority queue Q } O(n log(n))
Q

Insert all elements of L to
While (|Q| =2 2)

X « Q.DeleteMin ()

Yy « Q.DeleteMin ()

Create z, f(z) = f£(x) + f(y)

x and y children of z

Q.Insert (z)
\\\;Return QO.DeleteMin () 4///

Optimized Algorithm

/1;;ffmanTree(L)

While(|Q] =2

Create 2z,

Priority queue Q

Insert all elements of L to O

2) } O(n) Iterations

X « Q.DeleteMin ()
Yy « Q.DeleteMin ()

f(z) = £(x) + £(y)

X and y children of z

)

Q.Insert(z
\\\;Return QO.DeleteMin ()

N

O(n log(n))

Optimized Algorithm

/1;;ffmanTree(L)

While(|Q] =2

Create 2z,

X « Q.DeleteMin ()
vy « Q.DeleteMin () O(log(n))

x and y children of z

Q.Insert (z)
\\\;Return QO.DeleteMin () - 4///

N

Priority queue Q O(n log(n))
Insert all elements of L to O

2) } O(n) Iterations

f(z) = £(x) + £(y)p-

Optimized Algorithm

//;;ffmanTree(L)

While(|Q]| =2

Create 2z,

Priority queue Q

Insert all elements of L to O

N

O(n log(n))

2) } O(n) Iterations

X « Q.DeleteMin
Yy « Q.DeleteMin

f(z)

)

()
()

T (x)

X and y children of z

Q.Insert (z
\\\;Return Q.DeleteMin ()

+ £ (y)

S

O(log(n))

/

Runtime: O(n log(n))

Proof of Correctness

e Know that there is a correct solution with
lightest elements as siblings

* [f we require that lightest elements are
siblings, problem is equivalent to smaller
Huffman tree problem

* By induction, smaller problem is solved
correctly

Minimum Spanning Trees

e Suppose that you have a
collection of cities that you
would like to connect by
roads.

Minimum Spanning Trees

e Suppose that you have a °
collection of cities that you
would like to connect by
roads. °

Minimum Spanning Trees

e Suppose that you have a °
collection of cities that you
would like to connect by
roads. °

* There are several potential
roads you could build.

Minimum Spanning Trees

e Suppose that you have a

collection of cities that you
would like to connect by
roads.

* There are several potential
roads you could build.

Minimum Spanning Trees

e Suppose that you have a

collection of cities that you
would like to connect by
roads.

* There are several potential
roads you could build.

e Each has a cost.

Minimum Spanning Trees

e Suppose that you have a
collection of cities that you
would like to connect by
roads.

* There are several potential
roads you could build.

e Each has a cost.

Minimum Spanning Trees

Suppose that you have a
collection of cities that you
would like to connect by
roads.

There are several potential 4
roads you could build.

Each has a cost.

What is the cheapest way to
connect them?

Minimum Spanning Trees

Suppose that you have a
collection of cities that you
would like to connect by
roads.

There are several potential
roads you could build.

Each has a cost.

What is the cheapest way to
connect them?

Minimum Spanning Trees

Suppose that you have a
collection of cities that you
would like to connect by
roads.

There are several potential 4
roads you could build.

Each has a cost.

What is the cheapest way to
connect them? 1+1+1+2+2=7

Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.

Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.

Definition: A tree is a connected graph, with no cycles.

Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.

Definition: A tree is a connected graph, with no cycles.

A spanning tree in a graph G, is a subset of the edges of
G that connect all vertices and have no cycles.

Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.

/Definition: A tree is a connected graph, with no cycles.\

A spanning tree in a graph G, is a subset of the edges of
G that connect all vertices and have no cycles.

If G has weights, a minimum spanning tree is a
spanning tree whose total weight is as small as

K possible. /

Question: MST

What is the weight of the minimum spanning
tree of the graph below?

A) 5 1
B) 6
C) 7 4
D) 8 ®
E) 9

Question: MST

What is the weight of the minimum spanning
tree of the graph below?

A) 5 1
B) 6
C) 7 4
D) 8 ®
E) 9

Basic Facts about Trees

Lemma: For an undirected graph G, any two of
the below imply the third:

1. |E| =|V]-1
2. Gis connected
3. G has no cycles

Basic Facts about Trees

Lemma: For an undirected graph G, any two of
the below imply the third:

1. |E| =|V]-1
2. Gis connected
3. G has no cycles

Corollary: If G is a tree, then |E| = |V]-1.

Proof Idea

e Start with a graph with no edges.

Proof Idea

e Start with a graph with no edges.

Proof Idea

e Start with a graph with no edges.
* Add edges one at a time.

Proof Idea

e Start with a graph with no edges.
* Add edges one at a time.

Proof Idea

e Start with a graph with no edges.
* Add edges one at a time.

Proof Idea

e Start with a graph with no edges.
* Add edges one at a time.

Proof Idea

e Start with a graph with no edges.
* Add edges one at a time.
* Count number of connected components.

Extra Edge

An extra edge decreases the number of CCs by 1
unless it creates a cycle.

Extra Edge

An extra edge decreases the number of CCs by 1
unless it creates a cycle.

Combines
CCs

Extra Edge

An extra edge decreases the number of CCs by 1
unless it creates a cycle.

Creates
Cycle

Number of Components

* Starts with |V].
* Each edge decreases by 1 unless a cycle.
* Final graph is connected if it reduces to 1.

Number of Components

* Starts with |V].
* Each edge decreases by 1 unless a cycle.

* Final graph is connected if it reduces to 1.
If |[E|=]V]|-1and no cycle, then only 1 CC left.

Number of Components

* Starts with |V].

* Each edge decreases by 1 unless a cycle.

If
If

El=
El=

V
V

~inal graph is connected if it reduces to 1.

-1 and no cycle, then only 1 CC left.
-1 and connected, each edge must

decrease by 1, so no cycles.

Number of Components

* Starts with |V].

* Each edge decreases by 1 unless a cycle.

* Final graph is connected if it reduces to 1.

If |E|=
If |E|=

V
V

-1 and no cycle, then only 1 CC left.
-1 and connected, each edge must

decrease by 1, so no cycles.

If connected and no cycles, each edge decreases
by 1, so must be |V|-1 edges.

