Announcements

Homework 3 Solutions online
No homework this week
Exam 2 on Friday

W 10:30-12:00 office hours (this week) will be
held online at:
https://ucsd.zoom.us/j/9296249412



https://urldefense.com/v3/__https://ucsd.zoom.us/j/9296249412__;!!Mih3wA!Bcq1-1jKVPsmcWrTMnYefnvjuUOy22mkW4hjM55WElW2pfKSPCo5Bl-OBFFSK9vzx2K8RZZy1nRblElXssKf$

Last Time

* Greedy Algorithms
* Exchange Arguments



Greedy Algorithms

General Algorithmic Technique:

1. Find decision criterion

2. Make best choice according to criterion
3. Repeat until done

Surprisingly, this sometimes works.



Exchange Argument

* Greedy algorithm makes a sequence of decisions D;,
D,, D,,...,D,, eventually reaching solution G.

* Need to show that for arbitrary solutions A that G >
A.

* Find sequence of solutions
A=A, A, A, A =G
so that:

o Ai < Ai+1
— A, agrees with D,,D,,...,D.



Exchange Argument

In particular, we need to show that given any A,
consistent with D,,...,D, we can find an A,,, so

that:
* A, isconsistent with D,,...,.D,,,
* A 2 A
Then we inductively construct sequence
A=A, <A A <..ZA =G
Thus, G > A for any A. So G is optimal.



Today

 Huffman Codes
* Minimum Spanning Trees
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Ex: ABCDACBDAD
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* Want to encode string of letters in binary.
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e A = 00, B =201, ¢ =10, D =11

A B C D A C B D A D
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Huffman Codes

* Want to encode string of letters in binary.
Ex: ABCDACBDAD
e A = 00, B =201, ¢ =10, D =11

A B C D A C B D A D
00 01 10 11 00 10 01 11 00 11

e Use two bits to encode each letter.



Question: Encoding Length

Using the coding scheme from the last slide,
how many bits are needed to encode a string
of n As, Bs, Cs and Ds?

1) 2
2) n
3) 2n
4) 4n
5) n?



Question: Encoding Length

Using the coding scheme from the last slide,
how many bits are needed to encode a string
of n As, Bs, Cs and Ds?

1) 2

2) n You need two bits per letter.
3) 2n

4) 4n

5) n?
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* Suppose instead we had to decode:
AAABAACBAABADAAA
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Non-Fix Length Encodings

* Suppose instead we had to decode:
AAABAACBAABADAAA

e 16 Letters requires 32 bits.

e Note that there are a lot of As here. If we

could find a way to encode them with fewer
bits, we could save a lot.
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Unique Decoding

Cannot do any encoding we like.
Suppose we tried:

A=0, B=1, ¢ =10, D= 01
How do you decode 017 Either AB or D.

Problem: The encoding for A is a prefix of the
encoding for D. When you see it, you don’t
know if it’s an A, or the start of a D.




Prefix Free Encodings

Definition: An encoding is prefix-free if the

encoding of no letter is a prefix of the
encoding of any other.
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Definition: An encoding is prefix-free if the
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Prefix Free Encodings

Definition: An encoding is prefix-free if the

encoding of no letter is a prefix of the
encoding of any other.

Example:
A =0, B=10, ¢ = 110, D =

Lemma: Any prefix-free encoding can be
uniquely decoded.




Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
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A=90, B=10, C =110, D = 111

Decode:

00010001101000100111000

gy
AAA B
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Example

A=0, B=10, C =110, D = 111

Decode:

00010001101000100111000
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Example

A=90, B=10, C =110, D = 111

Decode:

00010001101000100111000

P
AAA B AA C B




Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
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Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
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Example
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Example

A=90, B=10, C =110, D = 111

Decode:
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Example

A=90, B=10, C =110, D = 111

Decode:
00010001101000100111000
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Example

A=90, B=10, C =110, D = 111

Decode:

00010001101000100111000
1SS et b ek St
AAA C B AA BA D AAA

Only 23 bits instead of 32!



Optimal Encoding

Problem: Given a string, S, find a prefix-free

encoding that encodes S using the fewest
number of bits.




How Long is the Encoding?

If for each letter x in our string, x appears f(x)
times and if we encode x as a string of length
£(x), the total encoding length is:

2 f(x)-8(x).
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How Long is the Encoding?

If for each letter x in our string, x appears f(x)
times and if we encode x as a string of length
£(x), the total encoding length is:

2 f(x)-8(x).
Our example has:
11 As,3Bs,1C,1D.

These are the frequencies. We need to find the
best encoding.



Tree Representation

Can represent prefix-free encoding as a tree.




Tree Representation

Can represent prefix-free encoding as a tree.

A

_etters are leaves. B
L ength of encoding =
Depth of leaf. C D




Question: Tree Decoding

What letter does the string 111 correspond to in
this tree?
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this tree?
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Suppose we know the tree
structure. Where do we put the
letters?
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Suppose we know the tree
structure. Where do we put the
letters?

Objective = Z freq(x)depth(x)

Want least frequent letters at
lowest depth.
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structure. Where do we put the
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lowest depth. FEx31, Fx5,
Gx19




Placement of Leaves

Suppose we know the tree

structure. Where do we put the

letters?

Objective = Z freq(x)depth(x)

Letter frequencies

Ax10, Bxl1lb5,
Want least frequent lettersat  cx4, Dx22,

lowest depth. FEx31, Fx5,
Gx19
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* No matter what the tree structure, two of the
deepest leaves are siblings.
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* No matter what the tree structure, two of the
deepest leaves are siblings.

e Can assume filled by two least frequent
elements.



Siblings

* No matter what the tree structure, two of the
deepest leaves are siblings.

e Can assume filled by two least frequent
elements.

* Can assume that two least frequent elements
are siblings!



Example

Frequencies:
Ax30, Bxl5, Cx2Z25, Dxb0, Ex65
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Frequencies:
Ax30, Bxl5, Cx2Z25, Dxb0, Ex65




Example

Frequencies:
Ax30, Bxl5, Cx2Z25, Dxb0, Ex65

Think of as a

new node of
B OR C | «<— :
weight

/ \ 15+25=40
B C




30

Example
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Example

B OR C
40

/N
B C
15 25




Example

A OR (B OR C)

70

\
B OR C
40

/N

30 15 25 50

B C D




Example

A OR (B OR C)
70
\
B OR C
40
A B C
30| [15| |25

D OR E
115

/N




Example

(A OR (B OR C))

A OR (B OR C) | |1g5
70
\ /
B OR C D OR E
40 115
A B C D E
30 15 25 50 65




Algorithm

/E;ffmanTree(L)
While(at least two left)

X, YV « Two least frequent

Xx and y children of =z

\\¥Return remaining elt of L

N

z new node f(z) « f£(x)+£f(y)

Replace x and y with z 1n L

J




Algorithm

/E;ffmanTree(L)
While(at least two left)

X, YV « Two least frequent

X and y children of z

\\‘Return remalning elt of L

N

z new node f(z) « f£(x)+£f(y)

Replace x and y with z 1n L

J

Better with priority queue.



Optimized Algorithm

/1;;ffmanTree(L)

Priority queue Q
Insert all elements of L to Q
While (|Q| 2 2)

X « Q.DeleteMin ()

Yy « Q.DeleteMin ()

Create z, f(z) = f(x) + f£(y)

X and y children of z

Q.Insert (z)
\\\;Return QO.DeleteMin ()

N




Optimized Algorithm

/1;;ffmanTree(L) ‘\\\

Priority queue Q } O(n log(n))
Q

Insert all elements of L to
While (|Q| =2 2)

X « Q.DeleteMin ()

Yy « Q.DeleteMin ()

Create z, f(z) = f£(x) + f(y)

x and y children of z

Q.Insert (z)
\\\;Return QO.DeleteMin () 4///




Optimized Algorithm

/1;;ffmanTree(L)

While(|Q] =2

Create 2z,

Priority queue Q

Insert all elements of L to O

2) } O(n) Iterations

X « Q.DeleteMin ()
Yy « Q.DeleteMin ()

f(z) = £(x) + £(y)

X and y children of z

)

Q.Insert(z
\\\;Return QO.DeleteMin ()

N

O(n log(n))




Optimized Algorithm

/1;;ffmanTree(L)

While(|Q] =2

Create 2z,

X « Q.DeleteMin ()
vy « Q.DeleteMin () O(log(n))

x and y children of z

Q.Insert (z)
\\\;Return QO.DeleteMin () - 4///

N

Priority queue Q O(n log(n))
Insert all elements of L to O

2) } O(n) Iterations

f(z) = £(x) + £(y)p-




Optimized Algorithm

//;;ffmanTree(L)

While(|Q]| =2

Create 2z,

Priority queue Q

Insert all elements of L to O

N

O(n log(n))

2) } O(n) Iterations

X « Q.DeleteMin
Yy « Q.DeleteMin

f(z)

)

()
()

T (x)

X and y children of z

Q.Insert (z
\\\;Return Q.DeleteMin ()

+ £ (y)

S

O(log(n))

/

Runtime: O(n log(n))



Proof of Correctness

e Know that there is a correct solution with
lightest elements as siblings

* [f we require that lightest elements are
siblings, problem is equivalent to smaller
Huffman tree problem

* By induction, smaller problem is solved
correctly



Minimum Spanning Trees

e Suppose that you have a
collection of cities that you
would like to connect by
roads.
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Minimum Spanning Trees

Suppose that you have a
collection of cities that you
would like to connect by
roads.

There are several potential 4
roads you could build.

Each has a cost.

What is the cheapest way to
connect them? 1+1+1+2+2=7




Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.
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G that connect all vertices and have no cycles.




Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.

/Definition: A tree is a connected graph, with no cycles.\

A spanning tree in a graph G, is a subset of the edges of
G that connect all vertices and have no cycles.

If G has weights, a minimum spanning tree is a
spanning tree whose total weight is as small as

K possible. /




Question: MST

What is the weight of the minimum spanning
tree of the graph below?

A) 5 1
B) 6
C) 7 4
D) 8 ®
E) 9
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Basic Facts about Trees

Lemma: For an undirected graph G, any two of
the below imply the third:

1. |E| =|V]-1
2. Gis connected
3. G has no cycles




Basic Facts about Trees

Lemma: For an undirected graph G, any two of
the below imply the third:

1. |E| =|V]-1
2. Gis connected
3. G has no cycles

Corollary: If G is a tree, then |E| = |V]-1.
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e Start with a graph with no edges.
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Proof Idea

e Start with a graph with no edges.
* Add edges one at a time.




Proof Idea

e Start with a graph with no edges.
* Add edges one at a time.
* Count number of connected components.




Extra Edge

An extra edge decreases the number of CCs by 1
unless it creates a cycle.
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Extra Edge

An extra edge decreases the number of CCs by 1
unless it creates a cycle.

Creates
Cycle



Number of Components

* Starts with |V].
* Each edge decreases by 1 unless a cycle.
* Final graph is connected if it reduces to 1.
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Number of Components

* Starts with |V].

* Each edge decreases by 1 unless a cycle.

* Final graph is connected if it reduces to 1.

If |E|=
If |E|=

V
V

-1 and no cycle, then only 1 CC left.
-1 and connected, each edge must

decrease by 1, so no cycles.

If connected and no cycles, each edge decreases
by 1, so must be |V|-1 edges.



