
Announcements

• Homework 3 Solutions online

• No homework this week

• Exam 2 on Friday

• W 10:30-12:00 office hours (this week) will be 
held online at: 
https://ucsd.zoom.us/j/9296249412

https://urldefense.com/v3/__https://ucsd.zoom.us/j/9296249412__;!!Mih3wA!Bcq1-1jKVPsmcWrTMnYefnvjuUOy22mkW4hjM55WElW2pfKSPCo5Bl-OBFFSK9vzx2K8RZZy1nRblElXssKf$


Last Time

• Greedy Algorithms

• Exchange Arguments



Greedy Algorithms

General Algorithmic Technique:

1. Find decision criterion

2. Make best choice according to criterion

3. Repeat until done

Surprisingly, this sometimes works.



Exchange Argument

• Greedy algorithm makes a sequence of decisions D1, 
D2, D3,…,Dn eventually reaching solution G.

• Need to show that for arbitrary solutions A that G ≥ 
A.

• Find sequence of solutions
A=A0, A1, A2,…,An = G 
so that:

– Ai ≤ Ai+1

– Ai agrees with D1,D2,…,Di



Exchange Argument

In particular, we need to show that given any Ai

consistent with D1,…,Di we can find an Ai+1 so 
that:

• Ai+1 is consistent with D1,…,Di+1

• Ai+1 ≥ Ai

Then we inductively construct sequence

A=A0 ≤ A1 ≤ A2 ≤ … ≤ An = G

Thus, G ≥ A for any A. So G is optimal.



Today

• Huffman Codes

• Minimum Spanning Trees
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Huffman Codes

• Want to encode string of letters in binary.

Ex: ABCDACBDAD

• A = 00, B = 01, C = 10, D = 11

A  B  C  D  A  C  B  D  A  D

00 01 10 11 00 10 01 11 00 11

• Use two bits to encode each letter.



Question: Encoding Length

Using the coding scheme from the last slide, 
how many bits are needed to encode a string 
of n As, Bs, Cs and Ds?

1) 2

2) n

3) 2n

4) 4n

5) n2



Question: Encoding Length

Using the coding scheme from the last slide, 
how many bits are needed to encode a string 
of n As, Bs, Cs and Ds?

1) 2

2) n

3) 2n

4) 4n

5) n2

You need two bits per letter.
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Non-Fix Length Encodings

• Suppose instead we had to decode:

AAABAACBAABADAAA

• 16 Letters requires 32 bits.

• Note that there are a lot of As here. If we 
could find a way to encode them with fewer 
bits, we could save a lot.
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Unique Decoding

Cannot do any encoding we like.

Suppose we tried:

A = 0, B = 1, C = 10, D = 01

How do you decode 01? Either AB or D.

Problem: The encoding for A is a prefix of the 
encoding for D. When you see it, you don’t 
know if it’s an A, or the start of a D.
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Prefix Free Encodings

Definition: An encoding is prefix-free if the 
encoding of no letter is a prefix of the 
encoding of any other.

Example:

A = 0, B = 10, C = 110, D = 111

Lemma: Any prefix-free encoding can be 
uniquely decoded.
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Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA B A D AAA



Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA B A D AAA

Only 23 bits instead of 32!



Optimal Encoding

Problem: Given a string, S, find a prefix-free 
encoding that encodes S using the fewest 
number of bits.



How Long is the Encoding?

If for each letter x in our string, x appears f(x) 
times and if we encode x as a string of length 
ℓ(x), the total encoding length is:

Σ f(x)·ℓ(x).
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How Long is the Encoding?

If for each letter x in our string, x appears f(x) 
times and if we encode x as a string of length 
ℓ(x), the total encoding length is:

Σ f(x)·ℓ(x).

Our example has:

11 As, 3 Bs, 1 C, 1 D.

These are the frequencies. We need to find the 
best encoding.
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Can represent prefix-free encoding as a tree.
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Tree Representation

Can represent prefix-free encoding as a tree.

A

B

C D

0

0

0

1

1

1
Letters are leaves.
Length of encoding = 
Depth of leaf.
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What letter does the string 111 correspond to in 
this tree?
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Question: Tree Decoding

What letter does the string 111 correspond to in 
this tree?

A

B C D

0

0

0

1

1

1

E

0 1
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Letter frequencies

Ax10, Bx15,
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Siblings

• No matter what the tree structure, two of the 
deepest leaves are siblings.

• Can assume filled by two least frequent 
elements.

• Can assume that two least frequent elements 
are siblings!
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Example

Frequencies: 

Ax30, Bx15, Cx25, Dx50, Ex65

B C

B OR C

Think of as a 
new node of 
weight 
15+25=40
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Example

A

30

B

15

C

25

D

50

E

65

B OR C

40

A OR (B OR C)

70

D OR E

115

(A OR (B OR C)) 

OR (D OR E)

185



Algorithm

HuffmanTree(L)

While(at least two left)

x, y ← Two least frequent

z new node f(z) ← f(x)+f(y)

x and y children of z

Replace x and y with z in L

Return remaining elt of L



Algorithm

HuffmanTree(L)

While(at least two left)

x, y ← Two least frequent

z new node f(z) ← f(x)+f(y)

x and y children of z

Replace x and y with z in L

Return remaining elt of L

Better with priority queue.



Optimized Algorithm

HuffmanTree(L)

Priority queue Q

Insert all elements of L to Q

While(|Q| ≥ 2)

x ← Q.DeleteMin()

y ← Q.DeleteMin()

Create z, f(z) = f(x) + f(y)

x and y children of z

Q.Insert(z)

Return Q.DeleteMin()
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Optimized Algorithm

HuffmanTree(L)

Priority queue Q

Insert all elements of L to Q

While(|Q| ≥ 2)

x ← Q.DeleteMin()

y ← Q.DeleteMin()

Create z, f(z) = f(x) + f(y)

x and y children of z

Q.Insert(z)

Return Q.DeleteMin()

O(n log(n))

O(n) Iterations

O(log(n))

Runtime: O(n log(n))



Proof of Correctness

• Know that there is a correct solution with 
lightest elements as siblings

• If we require that lightest elements are 
siblings, problem is equivalent to smaller 
Huffman tree problem

• By induction, smaller problem is solved 
correctly
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roads.
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Minimum Spanning Trees

• Suppose that you have a 
collection of cities that you 
would like to connect by 
roads.

• There are several potential 
roads you could build.

• Each has a cost.

• What is the cheapest way to 
connect them?

1

1

1

2

2

2

3

3

34

1+1+1+2+2=7
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Trees

Note: In this problem, you will never want to build 
more roads than necessary. This means, you will 
never want to have a cycle.

Definition: A tree is a connected graph, with no cycles.

A spanning tree in a graph G, is a subset of the edges of 
G that connect all vertices and have no cycles. 

If G has weights, a minimum spanning tree is a 
spanning tree whose total weight is as small as 
possible.



Question: MST

What is the weight of the minimum spanning 
tree of the graph below?

A) 5

B) 6

C) 7

D) 8

E) 9
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1. |E| = |V|-1

2. G is connected

3. G has no cycles



Basic Facts about Trees

Lemma: For an undirected graph G, any two of 
the below imply the third:

1. |E| = |V|-1

2. G is connected

3. G has no cycles

Corollary: If G is a tree, then |E| = |V|-1.
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Proof Idea

• Start with a graph with no edges.

• Add edges one at a time.

• Count number of connected components.
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unless it creates a cycle.



Extra Edge

An extra edge decreases the number of CCs by 1 
unless it creates a cycle.

Combines
CCs



Extra Edge

An extra edge decreases the number of CCs by 1 
unless it creates a cycle.

Creates
Cycle
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Number of Components

• Starts with |V|.

• Each edge decreases by 1 unless a cycle.

• Final graph is connected if it reduces to 1.

If |E|=|V|-1 and no cycle, then only 1 CC left.

If |E|=|V|-1 and connected, each edge must 
decrease by 1, so no cycles.

If connected and no cycles, each edge decreases 
by 1, so must be |V|-1 edges.


