
Announcements

• Homework 3 Solutions online

• No homework this week

• Exam 2 on Friday

• W 10:30-12:00 office hours (this week) will be
held online at:
https://ucsd.zoom.us/j/9296249412

https://urldefense.com/v3/__https://ucsd.zoom.us/j/9296249412__;!!Mih3wA!Bcq1-1jKVPsmcWrTMnYefnvjuUOy22mkW4hjM55WElW2pfKSPCo5Bl-OBFFSK9vzx2K8RZZy1nRblElXssKf$

Last Time

• Greedy Algorithms

• Exchange Arguments

Greedy Algorithms

General Algorithmic Technique:

1. Find decision criterion

2. Make best choice according to criterion

3. Repeat until done

Surprisingly, this sometimes works.

Exchange Argument

• Greedy algorithm makes a sequence of decisions D1,
D2, D3,…,Dn eventually reaching solution G.

• Need to show that for arbitrary solutions A that G ≥
A.

• Find sequence of solutions
A=A0, A1, A2,…,An = G
so that:

– Ai ≤ Ai+1

– Ai agrees with D1,D2,…,Di

Exchange Argument

In particular, we need to show that given any Ai

consistent with D1,…,Di we can find an Ai+1 so
that:

• Ai+1 is consistent with D1,…,Di+1

• Ai+1 ≥ Ai

Then we inductively construct sequence

A=A0 ≤ A1 ≤ A2 ≤ … ≤ An = G

Thus, G ≥ A for any A. So G is optimal.

Today

• Huffman Codes

• Minimum Spanning Trees

Huffman Codes

• Want to encode string of letters in binary.

Ex: ABCDACBDAD

Huffman Codes

• Want to encode string of letters in binary.

Ex: ABCDACBDAD

• A = 00, B = 01, C = 10, D = 11

Huffman Codes

• Want to encode string of letters in binary.

Ex: ABCDACBDAD

• A = 00, B = 01, C = 10, D = 11

A B C D A C B D A D

00 01 10 11 00 10 01 11 00 11

Huffman Codes

• Want to encode string of letters in binary.

Ex: ABCDACBDAD

• A = 00, B = 01, C = 10, D = 11

A B C D A C B D A D

00 01 10 11 00 10 01 11 00 11

• Use two bits to encode each letter.

Question: Encoding Length

Using the coding scheme from the last slide,
how many bits are needed to encode a string
of n As, Bs, Cs and Ds?

1) 2

2) n

3) 2n

4) 4n

5) n2

Question: Encoding Length

Using the coding scheme from the last slide,
how many bits are needed to encode a string
of n As, Bs, Cs and Ds?

1) 2

2) n

3) 2n

4) 4n

5) n2

You need two bits per letter.

Non-Fix Length Encodings

• Suppose instead we had to decode:

AAABAACBAABADAAA

Non-Fix Length Encodings

• Suppose instead we had to decode:

AAABAACBAABADAAA

• 16 Letters requires 32 bits.

Non-Fix Length Encodings

• Suppose instead we had to decode:

AAABAACBAABADAAA

• 16 Letters requires 32 bits.

• Note that there are a lot of As here. If we
could find a way to encode them with fewer
bits, we could save a lot.

Unique Decoding

Cannot do any encoding we like.

Unique Decoding

Cannot do any encoding we like.

Suppose we tried:

A = 0, B = 1, C = 10, D = 01

Unique Decoding

Cannot do any encoding we like.

Suppose we tried:

A = 0, B = 1, C = 10, D = 01

How do you decode 01? Either AB or D.

Unique Decoding

Cannot do any encoding we like.

Suppose we tried:

A = 0, B = 1, C = 10, D = 01

How do you decode 01? Either AB or D.

Problem: The encoding for A is a prefix of the
encoding for D. When you see it, you don’t
know if it’s an A, or the start of a D.

Prefix Free Encodings

Definition: An encoding is prefix-free if the
encoding of no letter is a prefix of the
encoding of any other.

Prefix Free Encodings

Definition: An encoding is prefix-free if the
encoding of no letter is a prefix of the
encoding of any other.

Example:

A = 0, B = 10, C = 110, D = 111

Prefix Free Encodings

Definition: An encoding is prefix-free if the
encoding of no letter is a prefix of the
encoding of any other.

Example:

A = 0, B = 10, C = 110, D = 111

Lemma: Any prefix-free encoding can be
uniquely decoded.

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

A

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AA

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B A

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B A

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA B

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA B A

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA B A D

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA B A D A

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA B A D AA

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA B A D AAA

Example

A = 0, B = 10, C = 110, D = 111

Decode:

00010001101000100111000

AAA B AA C B AA B A D AAA

Only 23 bits instead of 32!

Optimal Encoding

Problem: Given a string, S, find a prefix-free
encoding that encodes S using the fewest
number of bits.

How Long is the Encoding?

If for each letter x in our string, x appears f(x)
times and if we encode x as a string of length
ℓ(x), the total encoding length is:

Σ f(x)·ℓ(x).

How Long is the Encoding?

If for each letter x in our string, x appears f(x)
times and if we encode x as a string of length
ℓ(x), the total encoding length is:

Σ f(x)·ℓ(x).

Our example has:

11 As, 3 Bs, 1 C, 1 D.

How Long is the Encoding?

If for each letter x in our string, x appears f(x)
times and if we encode x as a string of length
ℓ(x), the total encoding length is:

Σ f(x)·ℓ(x).

Our example has:

11 As, 3 Bs, 1 C, 1 D.

These are the frequencies. We need to find the
best encoding.

Tree Representation

Can represent prefix-free encoding as a tree.

A

B

C D

0

0

0

1

1

1

Tree Representation

Can represent prefix-free encoding as a tree.

A

B

C D

0

0

0

1

1

1
Letters are leaves.
Length of encoding =
Depth of leaf.

Question: Tree Decoding

What letter does the string 111 correspond to in
this tree?

A

B C D

0

0

0

1

1

1

E

0 1

Question: Tree Decoding

What letter does the string 111 correspond to in
this tree?

A

B C D

0

0

0

1

1

1

E

0 1

Placement of Leaves

Suppose we know the tree
structure. Where do we put the
letters?

C F

A B G

D E

Placement of Leaves

Suppose we know the tree
structure. Where do we put the
letters?

Objective = Σ freq(x)depth(x)

C F

A B G

D E

Placement of Leaves

Suppose we know the tree
structure. Where do we put the
letters?

Objective = Σ freq(x)depth(x)

Want least frequent letters at
lowest depth.

C F

A B G

D E

Placement of Leaves

Suppose we know the tree
structure. Where do we put the
letters?

Objective = Σ freq(x)depth(x)

Want least frequent letters at
lowest depth.

C F

A B G

D E

Letter frequencies

Ax10, Bx15,

Cx4, Dx22,

Ex31, Fx5,

Gx19

Placement of Leaves

Suppose we know the tree
structure. Where do we put the
letters?

Objective = Σ freq(x)depth(x)

Want least frequent letters at
lowest depth.

C F

A B G

D E

Letter frequencies

Ax10, Bx15,

Cx4, Dx22,

Ex31, Fx5,

Gx19

Siblings

• No matter what the tree structure, two of the
deepest leaves are siblings.

Siblings

• No matter what the tree structure, two of the
deepest leaves are siblings.

• Can assume filled by two least frequent
elements.

Siblings

• No matter what the tree structure, two of the
deepest leaves are siblings.

• Can assume filled by two least frequent
elements.

• Can assume that two least frequent elements
are siblings!

Example

Frequencies:

Ax30, Bx15, Cx25, Dx50, Ex65

Example

Frequencies:

Ax30, Bx15, Cx25, Dx50, Ex65

B C

Example

Frequencies:

Ax30, Bx15, Cx25, Dx50, Ex65

B C

B OR C

Example

Frequencies:

Ax30, Bx15, Cx25, Dx50, Ex65

B C

B OR C

Think of as a
new node of
weight
15+25=40

Example

A

30

B

15

C

25

D

50

E

65

Example

A

30

B

15

C

25

D

50

E

65

B OR C

40

Example

A

30

B

15

C

25

D

50

E

65

B OR C

40

A OR (B OR C)

70

Example

A

30

B

15

C

25

D

50

E

65

B OR C

40

A OR (B OR C)

70

D OR E

115

Example

A

30

B

15

C

25

D

50

E

65

B OR C

40

A OR (B OR C)

70

D OR E

115

(A OR (B OR C))

OR (D OR E)

185

Algorithm

HuffmanTree(L)

While(at least two left)

x, y ← Two least frequent

z new node f(z) ← f(x)+f(y)

x and y children of z

Replace x and y with z in L

Return remaining elt of L

Algorithm

HuffmanTree(L)

While(at least two left)

x, y ← Two least frequent

z new node f(z) ← f(x)+f(y)

x and y children of z

Replace x and y with z in L

Return remaining elt of L

Better with priority queue.

Optimized Algorithm

HuffmanTree(L)

Priority queue Q

Insert all elements of L to Q

While(|Q| ≥ 2)

x ← Q.DeleteMin()

y ← Q.DeleteMin()

Create z, f(z) = f(x) + f(y)

x and y children of z

Q.Insert(z)

Return Q.DeleteMin()

Optimized Algorithm

HuffmanTree(L)

Priority queue Q

Insert all elements of L to Q

While(|Q| ≥ 2)

x ← Q.DeleteMin()

y ← Q.DeleteMin()

Create z, f(z) = f(x) + f(y)

x and y children of z

Q.Insert(z)

Return Q.DeleteMin()

O(n log(n))

Optimized Algorithm

HuffmanTree(L)

Priority queue Q

Insert all elements of L to Q

While(|Q| ≥ 2)

x ← Q.DeleteMin()

y ← Q.DeleteMin()

Create z, f(z) = f(x) + f(y)

x and y children of z

Q.Insert(z)

Return Q.DeleteMin()

O(n log(n))

O(n) Iterations

Optimized Algorithm

HuffmanTree(L)

Priority queue Q

Insert all elements of L to Q

While(|Q| ≥ 2)

x ← Q.DeleteMin()

y ← Q.DeleteMin()

Create z, f(z) = f(x) + f(y)

x and y children of z

Q.Insert(z)

Return Q.DeleteMin()

O(n log(n))

O(n) Iterations

O(log(n))

Optimized Algorithm

HuffmanTree(L)

Priority queue Q

Insert all elements of L to Q

While(|Q| ≥ 2)

x ← Q.DeleteMin()

y ← Q.DeleteMin()

Create z, f(z) = f(x) + f(y)

x and y children of z

Q.Insert(z)

Return Q.DeleteMin()

O(n log(n))

O(n) Iterations

O(log(n))

Runtime: O(n log(n))

Proof of Correctness

• Know that there is a correct solution with
lightest elements as siblings

• If we require that lightest elements are
siblings, problem is equivalent to smaller
Huffman tree problem

• By induction, smaller problem is solved
correctly

Minimum Spanning Trees

• Suppose that you have a
collection of cities that you
would like to connect by
roads.

Minimum Spanning Trees

• Suppose that you have a
collection of cities that you
would like to connect by
roads.

Minimum Spanning Trees

• Suppose that you have a
collection of cities that you
would like to connect by
roads.

• There are several potential
roads you could build.

Minimum Spanning Trees

• Suppose that you have a
collection of cities that you
would like to connect by
roads.

• There are several potential
roads you could build.

Minimum Spanning Trees

• Suppose that you have a
collection of cities that you
would like to connect by
roads.

• There are several potential
roads you could build.

• Each has a cost.

Minimum Spanning Trees

• Suppose that you have a
collection of cities that you
would like to connect by
roads.

• There are several potential
roads you could build.

• Each has a cost.

1

1

1

2

2

2

3

3

34

Minimum Spanning Trees

• Suppose that you have a
collection of cities that you
would like to connect by
roads.

• There are several potential
roads you could build.

• Each has a cost.

• What is the cheapest way to
connect them?

1

1

1

2

2

2

3

3

34

Minimum Spanning Trees

• Suppose that you have a
collection of cities that you
would like to connect by
roads.

• There are several potential
roads you could build.

• Each has a cost.

• What is the cheapest way to
connect them?

1

1

1

2

2

2

3

3

34

Minimum Spanning Trees

• Suppose that you have a
collection of cities that you
would like to connect by
roads.

• There are several potential
roads you could build.

• Each has a cost.

• What is the cheapest way to
connect them?

1

1

1

2

2

2

3

3

34

1+1+1+2+2=7

Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.

Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.

Definition: A tree is a connected graph, with no cycles.

Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.

Definition: A tree is a connected graph, with no cycles.

A spanning tree in a graph G, is a subset of the edges of
G that connect all vertices and have no cycles.

Trees

Note: In this problem, you will never want to build
more roads than necessary. This means, you will
never want to have a cycle.

Definition: A tree is a connected graph, with no cycles.

A spanning tree in a graph G, is a subset of the edges of
G that connect all vertices and have no cycles.

If G has weights, a minimum spanning tree is a
spanning tree whose total weight is as small as
possible.

Question: MST

What is the weight of the minimum spanning
tree of the graph below?

A) 5

B) 6

C) 7

D) 8

E) 9

1

234

5

Question: MST

What is the weight of the minimum spanning
tree of the graph below?

A) 5

B) 6

C) 7

D) 8

E) 9

1

234

5

Basic Facts about Trees

Lemma: For an undirected graph G, any two of
the below imply the third:

1. |E| = |V|-1

2. G is connected

3. G has no cycles

Basic Facts about Trees

Lemma: For an undirected graph G, any two of
the below imply the third:

1. |E| = |V|-1

2. G is connected

3. G has no cycles

Corollary: If G is a tree, then |E| = |V|-1.

Proof Idea

• Start with a graph with no edges.

Proof Idea

• Start with a graph with no edges.

Proof Idea

• Start with a graph with no edges.

• Add edges one at a time.

Proof Idea

• Start with a graph with no edges.

• Add edges one at a time.

Proof Idea

• Start with a graph with no edges.

• Add edges one at a time.

Proof Idea

• Start with a graph with no edges.

• Add edges one at a time.

Proof Idea

• Start with a graph with no edges.

• Add edges one at a time.

• Count number of connected components.

Extra Edge

An extra edge decreases the number of CCs by 1
unless it creates a cycle.

Extra Edge

An extra edge decreases the number of CCs by 1
unless it creates a cycle.

Combines
CCs

Extra Edge

An extra edge decreases the number of CCs by 1
unless it creates a cycle.

Creates
Cycle

Number of Components

• Starts with |V|.

• Each edge decreases by 1 unless a cycle.

• Final graph is connected if it reduces to 1.

Number of Components

• Starts with |V|.

• Each edge decreases by 1 unless a cycle.

• Final graph is connected if it reduces to 1.

If |E|=|V|-1 and no cycle, then only 1 CC left.

Number of Components

• Starts with |V|.

• Each edge decreases by 1 unless a cycle.

• Final graph is connected if it reduces to 1.

If |E|=|V|-1 and no cycle, then only 1 CC left.

If |E|=|V|-1 and connected, each edge must
decrease by 1, so no cycles.

Number of Components

• Starts with |V|.

• Each edge decreases by 1 unless a cycle.

• Final graph is connected if it reduces to 1.

If |E|=|V|-1 and no cycle, then only 1 CC left.

If |E|=|V|-1 and connected, each edge must
decrease by 1, so no cycles.

If connected and no cycles, each edge decreases
by 1, so must be |V|-1 edges.

