
Announcements

• Homework 3 online, due today

• Exam 2 Next Friday

Exam 2

• In class

• 6 one-sided pages of notes

• No textbooks or electronic aids

• Assigned seats

• 3Qs in 45 minutes

Topics

• Divide and Conquer

– Basic paradigm

– Master Theorem

– Karatsuba Multiplication

– MergeSort

– Order statistics

– Binary Search

– Closest Pair of Points

• Greedy algorithms

– Basic paradigm

– Exchange arguments

– Interval packing

– Optimal Caching

Last Time

• Greedy Algorithms

• Interval Scheduling

Greedy Algorithms

Often when trying to find the optimal solution
to some problem you need to consider all
your possible choices and how they might
interact with other choices down the line.

But sometimes you don’t. Sometimes you can
just take what looks like the best option for
now and repeat.

Greedy Algorithms

General Algorithmic Technique:

1. Find decision criterion

2. Make best choice according to criterion

3. Repeat until done

Surprisingly, this sometimes works.

Interval Scheduling

Problem: Given a collection C of intervals, find a
subset S ⊆ C so that:

1. No two intervals in S overlap.

2. Subject to (1), |S| is as large as possible.

Algorithm: Repeatedly add the interval with the
smallest maximum that doesn’t overlap with
already chosen intervals.

Proofs

As it is very easy to write down plausible greedy
algorithms for problems, but more difficult to
find correct ones, it is very important to be
able to prove that your algorithm is correct.

Fortunately, there is a standard proof technique
for greedy algorithms.

Today

• Exchange arguments

• Optimal caching

• Huffman codes

Exchange Argument

• Greedy algorithm makes a sequence of decisions D1,
D2, D3,…,Dn eventually reaching solution G.

Exchange Argument

• Greedy algorithm makes a sequence of decisions D1,
D2, D3,…,Dn eventually reaching solution G.

• Need to show that for arbitrary solutions A that G ≥
A.

Exchange Argument

• Greedy algorithm makes a sequence of decisions D1,
D2, D3,…,Dn eventually reaching solution G.

• Need to show that for arbitrary solutions A that G ≥
A.

• Find sequence of solutions
A=A0, A1, A2,…,An = G
so that:

Exchange Argument

• Greedy algorithm makes a sequence of decisions D1,
D2, D3,…,Dn eventually reaching solution G.

• Need to show that for arbitrary solutions A that G ≥
A.

• Find sequence of solutions
A=A0, A1, A2,…,An = G
so that:

– Ai ≤ Ai+1

– Ai agrees with D1,D2,…,Di

Exchange Argument

In particular, we need to show that given any Ai

consistent with D1,…,Di we can find an Ai+1 so
that:

• Ai+1 is consistent with D1,…,Di+1

• Ai+1 ≥ Ai

Exchange Argument

In particular, we need to show that given any Ai

consistent with D1,…,Di we can find an Ai+1 so
that:

• Ai+1 is consistent with D1,…,Di+1

• Ai+1 ≥ Ai

Then we inductively construct sequence

A=A0 ≤ A1 ≤ A2 ≤ … ≤ An = G

Exchange Argument

In particular, we need to show that given any Ai

consistent with D1,…,Di we can find an Ai+1 so
that:

• Ai+1 is consistent with D1,…,Di+1

• Ai+1 ≥ Ai

Then we inductively construct sequence

A=A0 ≤ A1 ≤ A2 ≤ … ≤ An = G

Thus, G ≥ A for any A. So G is optimal.

Exchange Argument for Interval
Packing

• What decisions does greedy algorithm make?

Exchange Argument for Interval
Packing

• What decisions does greedy algorithm make?

– Di, i
th interval equals Ji.

Exchange Argument for Interval
Packing

• What decisions does greedy algorithm make?

– Di, i
th interval equals Ji.

• Need to show that IF we have a solution that
agrees with first i decisions, can make it agree
with i+1 without making it worse.

Exchange Argument for Interval
Packing

• What decisions does greedy algorithm make?

– Di, i
th interval equals Ji.

• Need to show that IF we have a solution that
agrees with first i decisions, can make it agree
with i+1 without making it worse.

• Have solution: J1,J2,…,Ji,Ki+1,…,Km

– Need to modify to use interval Ji+1.

Inductive Step

Greedy solution: J1,J2,…,Jn Ji = [xi,yi]

Current solution: J1,J2,…,Ji,Ki+1,…,Km Ki = [wi,zi]

Inductive Step

Greedy solution: J1,J2,…,Jn Ji = [xi,yi]

Current solution: J1,J2,…,Ji,Ki+1,…,Km Ki = [wi,zi]

Claim: J1,J2,…,Ji,Ji+1,Ki+2,…,Km is a valid solution.

Inductive Step

Greedy solution: J1,J2,…,Jn Ji = [xi,yi]

Current solution: J1,J2,…,Ji,Ki+1,…,Km Ki = [wi,zi]

Claim: J1,J2,…,Ji,Ji+1,Ki+2,…,Km is a valid solution.

Proof: Need to verify that Ji+1 doesn’t overlap
anything:

• xi+1 > yi: This is because Ji, Ji+1 don’t overlap.

Inductive Step

Greedy solution: J1,J2,…,Jn Ji = [xi,yi]

Current solution: J1,J2,…,Ji,Ki+1,…,Km Ki = [wi,zi]

Claim: J1,J2,…,Ji,Ji+1,Ki+2,…,Km is a valid solution.

Proof: Need to verify that Ji+1 doesn’t overlap
anything:

• xi+1 > yi: This is because Ji, Ji+1 don’t overlap.

• wi+2 > yi+1: This is because wi+2 > zi+1 ≥ yi+1.

Example

Greedy Solution

Example

Greedy Solution Arbitrary Solution

Example

Greedy Solution Arbitrary Solution

Example

Greedy Solution Arbitrary Solution

Optimal Caching (not in textbook)

• Communication between disk and CPU is slow.

CPU
Disk

Optimal Caching (not in textbook)

• Communication between disk and CPU is slow.

• Have much smaller cache close to CPU.

CPU
Disk Cache

Optimal Caching (not in textbook)

• Communication between disk and CPU is slow.

• Have much smaller cache close to CPU.

• Store only a bit in cache at a time.

CPU
Disk Cache

Optimal Caching (not in textbook)

• Communication between disk and CPU is slow.

• Have much smaller cache close to CPU.

• Store only a bit in cache at a time.

• If need to access some other location, will need
to load into cache (slow).

CPU
Disk Cache

Model

• k words in cache at a
time.

Cache:

Location: 1011

Location: 0001

Location: 1110

Location: 0101

Model

• k words in cache at a
time.

• CPU asks for memory
access. Cache:

Location: 1011

Location: 0001

Location: 1110

Location: 0101

CPU Needs:

Location: 0001

Model

• k words in cache at a
time.

• CPU asks for memory
access.

• If in cache already, easy.

Cache:

Location: 1011

Location: 0001

Location: 1110

Location: 0101

CPU Needs:

Location: 0001

Model

• k words in cache at a
time.

• CPU asks for memory
access.

• If in cache already, easy.

• Otherwise, need to load
into cache replacing
something else, slow.

Cache:

Location: 1011

Location: 0001

Location: 1110

Location: 0101

CPU Needs:

Location: 0001

Location: 1001

Model

• k words in cache at a
time.

• CPU asks for memory
access.

• If in cache already, easy.

• Otherwise, need to load
into cache replacing
something else, slow.

Cache:

Location: 1011

Location: 0001

Location: 1110

Location: 0101

CPU Needs:

Location: 0001

Location: 1001

Model

• k words in cache at a
time.

• CPU asks for memory
access.

• If in cache already, easy.

• Otherwise, need to load
into cache replacing
something else, slow.

Cache:

Location: 1011

Location: 0001

Location: 0101

CPU Needs:

Location: 0001

Location: 1001

Location: 1001

Location: 1110

Model

• k words in cache at a
time.

• CPU asks for memory
access.

• If in cache already, easy.

• Otherwise, need to load
into cache replacing
something else, slow.

Cache:

Location: 1011

Location: 0001

Location: 0101

CPU Needs:

Location: 0001

Location: 1001

Location: 1001

Location: 1110

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Optimal Caching

Problem: Given sequence of memory accesses
and cache size, find a cache schedule that
involves fewest possible number of swaps with
disk.

8 Cache misses.

CPU

Cache 1

Cache 2

A B A C A D E C B C A C

A

-

A

B

A

B

A

C

A

C

A

D

A

E

C

E

C

B

C

B

C

A

C

A

Observation

• No need to get new entries in cache ahead of
time.

• Only make replacements when new value is
called for.

• Only question algorithm needs to answer is
which memory cells to overwrite.

Question

What is a good candidate greedy procedure for
deciding which cell to overwrite?

Furthest In The Future (FITF)

• For each cell consider the next time that
memory location will be called for.

• Replace cell whose next call is the furthest in
the future.

Furthest In The Future (FITF)

• For each cell consider the next time that
memory location will be called for.

• Replace cell whose next call is the furthest in
the future.

A

B

C

X A Y A B B X C

A

B

X

Furthest In The Future (FITF)

• For each cell consider the next time that
memory location will be called for.

• Replace cell whose next call is the furthest in
the future.

A

B

C

X A Y A B B X C

A

B

X

Furthest In The Future (FITF)

• For each cell consider the next time that
memory location will be called for.

• Replace cell whose next call is the furthest in
the future.

A

B

C

X A Y A B B X C

A

B

X

Furthest In The Future (FITF)

• For each cell consider the next time that
memory location will be called for.

• Replace cell whose next call is the furthest in
the future.

A

B

C

X A Y A B B X C

A

B

X

Furthest In The Future (FITF)

• For each cell consider the next time that
memory location will be called for.

• Replace cell whose next call is the furthest in
the future.

A

B

C

X A Y A B B X C

A

B

X

Proof of Optimality

• Exchange argument

Proof of Optimality

• Exchange argument

• nth decision: What to do at nth time step.

Proof of Optimality

• Exchange argument

• nth decision: What to do at nth time step.

• Given schedule S that agrees with FITF for first
n time steps, create schedule S’ that agrees
for n+1 and has no more cache misses.

Case 1: S agrees with FITF on step n+1

Nothing to do. S’ = S.

Case 2: S Makes Unnecessary
Replacement

If S replaces some element of memory that was
not immediately called for, put it off.

Case 2: S Makes Unnecessary
Replacement

If S replaces some element of memory that was
not immediately called for, put it off.

A

B

C

A

A

B

X

Case 2: S Makes Unnecessary
Replacement

If S replaces some element of memory that was
not immediately called for, put it off.

A

B

C

A

A

B

X

A

B

C

A

A

B

C X

Case 2: S Makes Unnecessary
Replacement

If S replaces some element of memory that was
not immediately called for, put it off.

A

B

C

A

A

B

X

A

B

C

A

A

B

C X

Can assume that S only replaces elements if
there’s a cache miss.

Case 3

The remaining case is that there is a cache miss
at step n+1 and that S replaces the wrong
thing.

Case 3

The remaining case is that there is a cache miss
at step n+1 and that S replaces the wrong
thing.

A

B

C

X

X

B

C

A

B

C

X

A

X

C

S FITF

Case 3a: S throws out B before using it

A

B

C

X

X

B

C

S

Y

B

B

No B

Z

Case 3a: S throws out B before using it

A

B

C

X

X

B

C

S

Y

B

B

No B

A

B

C

X

X

A

C

S’

Y

B

Z

No B

Z A

Case 3b: S keeps B until it is used

A

B

C

X

X

B

C

S

B

B

Z

A

Case 3b: S keeps B until it is used

A

B

C

X

X

B

C

S

B

B

Z

• B is FITF

A

Case 3b: S keeps B until it is used

A

B

C

X

X

B

C

S

B

B

Z

• B is FITF
• A is used sometime
before B.A

Case 3b: S keeps B until it is used

A

B

C

X

X

B

C

S

B

B

Z

• B is FITF
• A is used sometime
before B.
• A must be loaded into
memory somewhere
else.

A

A

Case 3b: S keeps B until it is used

A

B

C

X

X

B

C

S

B

B

Z

A

A Y

Case 3b: S keeps B until it is used

A

B

C

X

X

B

C

S

B

B

Z

A

A

A

B

C

X

X

BC

S’

B

B

Z

A

A A

Y

Y

Case 3b: S keeps B until it is used

A

B

C

X

X

B

C

S

B

B

Z

A

A

A

B

C

X

X

BC

S’

B

B

Z

A

A A

Y

Y

Instead of replacing A and then bringing it back,
we can replace B and then bring it back.

Least Recently Used

Unfortunately, FITF requires that you know
exactly what future memory accesses are
needed. This makes it hard to use in practice.

Least Recently Used

Unfortunately, FITF requires that you know
exactly what future memory accesses are
needed. This makes it hard to use in practice.

Instead, people often throw out the Least
Recently Used (LRU) memory location. This is
not always optimal, but it can be shown to be
competitive with the optimal.

