
CSE 101 Final Exam Review

NP-Completeness (Ch 8)

• NP-Problems

• Reductions

• NP-Completeness & NP-Hardness

• SAT

• Hamiltonian Cycle

• Zero-One Equations

• Knapsack

NP

Problems with brute force search algorithms are said to
be in Nondeterministic Polynomial time (NP).

NP-Decision problems ask if there is some object that
satisfies a polynomial time-checkable property.

NP-Optimization problems ask for the object that
maximizes (or minimizes) some polynomial time-
computable objective.

Examples of NP Problems

• SAT

• TSP

• Hamiltonian Cycle

• Knapsack

• Maximum Independent Set

SAT

Problem: Formula-SAT

Given a logical formula in a number of Boolean
variables, is there an assignment to the
variables that causes the formula to be true?

Hamiltonian Cycle (in text as
Rudruta Path)

Given an undirected graph G is there a cycle that
visits every vertex exactly once?

P vs. NP

$1,000,000 Question: Is P = NP?

Is it the case that every problem in NP has a
polynomial time algorithm?

• If yes, every NP problem has a reasonably
efficient solution.

• If not, some NP problems are fundamentally
difficult

Most computer scientists believe P ≠ NP.
(But proving anything is very very hard)

Reductions

Reductions are a method for proving that one
problem is at least as hard as another.

We show that if there is an algorithm for solving
A, then we can use this algorithm to solve B.
Therefore, B is no harder than A.

Hamiltonian Cycle → TSP

Hamiltonian
Cycle Instance TSP Instance

Cost = 1

Cost = 2

Reduction A → B

Instance of
problem A

Instance of
problem B

Solution to
problem B
instance

Solution to
problem A
instance

Polynomial time
reduction algorithm

Hypothetical
algorithm for B

Polynomial time
interpretation
algorithm

Solution to A

Reduction A → B

If we have algorithms for reduction and
interpretation:

• Given an algorithm to solve B, we can turn it
into an algorithm to solve A.

• This means that A might be easier to solve
than B, but cannot be harder.

Circuit SAT

Problem: Given a circuit C with several Boolean
inputs and one Boolean output, determine if
there is a set of inputs that give output 1.

x

y

z

out

Important Reduction:

Any NP decision problem → Circuit SAT

Any NP Decision Problem
→ Circuit SAT

• Any NP decision problem asks if there is some
X that satisfies a polynomial-time checkable
property.

• In other words, for some polynomial-time
computable function F, it asks if there is an X
so that F(X) = 1.

• Create a circuit C that computes F. The
problem is equivalent to asking if there is an
input for which C outputs 1.

NP-Complete

Circuit-SAT is our first example of an
NP-Complete problem. That is a problem in NP that
is at least as hard as any other problem in NP.

• Good news: If we find a polynomial time algorithm
for Circuit-SAT, we have a polynomial time algorithm
for all NP problems!

• Bad news: If any problem in NP is hard, Circuit-SAT is
hard.

Note: Decision problems can be NP-Complete. For
optimization problems, it is called NP-Hard.

Other NP-Complete/Hard Problems

The following are all NP-Complete/Hard:

• Formula SAT

• Maximum Independent Set

• TSP

• Hamiltonian Cycle

• Knapsack

How do we show this? By finding reductions
from other NP-Hard/Complete Problems.

3-SAT

3-SAT is a special case of formula-SAT where the
formula is an AND of clauses and each clause
is an OR of at most 3 variables or their
negations.

Example:

Circuit-SAT → 3-SAT

• Start with circuit

x

y

z

out

• Create variable for each wire

• Create formula with clause for each gate and
output

w

v

u

t

These Aren’t 3-SAT Clauses

We have 3-variable clauses that aren’t 3-SAT
clauses. Write it in terms of them.

• Write truth table
• Each 3-SAT clause sets
one output to false.

X
X

X

X

Another Look at 3-SAT

Lemma: A 3-SAT instance is satisfiable if and
only if it is possible to select one term from
each clause without selecting both a variable
and its negation.

Proof

If satisfiable:

• Satisfying assignment causes at least one term
in each clause to be true.

• Select one such term from each clause.

• Cannot contradict each other.

Proof

If there is a way to select terms:

• Set those variables to be true

– Can do this without contradiction

• Set other variables arbitrarily

• Causes whole statement to be true

3-SAT → Maximum Independent
Set

Want to encode this select
one term from each
clause as a graph.

• Create one vertex for
each term in each
clause.

• Edges between terms in
same clause.

• Edges between
contradictory terms.

Example:

x

y

z

x ̄

y

y ̅

x ̄

Analysis

An independent set in this graph has:

• At most one vertex from each clause.

• No vertices representing contradictory terms.

It has an independent set of size #Clauses if and
only if, you can select one term form each
clause without a contradiction.

Therefore, |MIS| = #Clauses if and only if the 3-
SAT has a solution.

Zero-One Equations

Problem: Given a matrix A with only 0 and 1 as
entries and b a vector of 1s, determine
whether or not there is an x with 0 and 1
entries so that

Ax = b.

3-SAT → ZOE

Basic Idea:

• Use the one term from each clause
formulation of 3-SAT.

• Create one variable for each term to denote
whether or not it has been selected.

• Add equations to enforce exactly one term
from each clause, no contradictory terms
selected.

General Construction

• Create one variable per term

• For each clause, create one equation

• For each pair of contradictory term, create an
equation with those two and a new variable

Another Way of Looking at ZOE

Recall if A = [v1 v2 v3 … vn],

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn.

Example:

x1*[1 0 0 1] +

x2*[0 0 1 1] +

x3*[1 1 1 0]

= [1 1 1 1]

What if we treated these as numbers rather than vectors?

x1* 1 0 0 1 +

x2* 0 0 1 1 +

x3* 1 1 1 0

= 1 1 1 1

Subset Sum

Problem: Given a set S of numbers and a target
number C, is there a subset T ⊆ S whose
elements sum to C.

Alternatively: Can we find xy ∈ {0,1} so that

Reduction: ZOE → Subset Sum.

Subset Sum → Knapsack

• Create Knapsack problem where for each item
Value(item) = Weight(item).

• Maximizing value is the same as maximizing
weight (without going over capacity).

• We can achieve value = capacity if and only if
there is a subset of the items with total weight
equal to capacity.

ZOE -> Hamiltonian Cycle

• Start with a cycle
• Double up some edges
• Cycle must pick one edge
from each pair.

• This provides a nice
set of binary variables

• Need a way to add
restrictions so that we
can’t just use any choices.

Gadget

• Must use these edges.
• Two ways to fill out.

Gadget Use

• Hook gadget up
between a pair of
edges.
• Hamiltonian Cycle
must use exactly one
of the connected
edges.
• This allows us to
force logic upon our
choices.

Construction

By doing this for several pairs of edges we can
construct Hamiltonian Cycle problems
equivalent to the following:

• You are given a number of choices where you
need to pick one from several options (of
multi-edges).

• You have several constraints, that say of two
choices you must have picked exactly one of
them.

Full Construction

Choices:

• For each variable, choose either 0 or 1.

• For each equation, choose one variable.

Constraints:

• For each variable that appears in an equation,
exactly one of the following should be
selected:

– That variable in that equation

– That variable equal to 0

Reduction Summary

Any NP
Decision
Problem

Circuit SAT

3-SAT

Maximum
Independent Set

Zero-One
Equations

Subset
Sum

Knapsack

Hamiltonian
Cycle

Travelling
Salesman
Problem

Dealing With NP-Completeness
(Ch 9)

• Backtracking/Branch and Bound

• Heuristic Search

• Approximation Algorithms

Deductions

One way to progress is so make deductions.

• Use the rules to show that some square can
only be filled out in one way.

• Use that information to help fill out more
squares.

• Hopefully, you can keep going until the entire
problem is solved.

Getting Stuck

Deductions are very useful when you can make
them, but for hard problems, you will often
get stuck quickly and be unable to make more
deductions.

Option 1: Stronger deductive rules.

Option 2: Guess and Check

Guess and Check

• Make a guess for some entry.

• Try to solve the resulting puzzle (perhaps
doing more guessing).

• If you find a solution, great!

• If not, you have deduced that your original
guess was wrong.

Backtracking

Backtracking(P,S)

 If you can deduce unsolveable

 Return óno solutionsô

 Split S into parts S1,S2,é

 For each i,

 Run Backtracking(P,Si)

 Return any solutions found

Splitting

How do you split S into parts?

• Pick variable xi and set xi = True, or xi = False

• Try all possible numbers in a square in Sudoku

• Try all possible edges in Hamiltonian Cycle

Which variable do we guess?

• Often helps to pick a variable that shows up a
lot. Then guessing it’s value will make later
deductions easier.

Runtime

These problems are still NP-Hard. Worst case,
backtracking will still take exponential time.
But it is usually much better than brute force.

SAT Solvers can use these ideas to solve
problems with hundreds of variables, many
many more than would be practical by brute
force.

Optimization Version

Backtracking works well for decision/search
problems (where a potential solution works or
doesn’t work), but not so well for optimization
problems (where many solutions work, but
you need to find the best one).

If most solutions work, how do you weed out
bad paths?

Branch & Bound

To get rid of bad paths do two things:

1) Keep track of the best solution you have
found so far.

2) Try to prove upper bounds on your
subproblems.

If an upper bound is smaller than your best
solution so far, it cannot contain the
optimum.

Branch and Bound

BranchAndBound(Best,S)

 If UpperBound(S) Ò Best

 Return óno improvementô

 If S a full solution

 Return value of S

 Split S into S1,S2,é

 For each Si

 New Ŷ BranchAndBound(Best,Si)

 Best = Max(New,Best)

 Return Best

Local Search

Many optimization problems have a structure
where solutions “nearby” a good solution will
likely also be good.

This leads to a natural algorithmic idea:

• Find an OK solution

• Search nearby for better solutions

• Repeat

Local Search

LocalSearch(f)

\\ Try to maximize f(x)

 x Ŷ Random initial point

 Try all y close to x

 If f(y) > f(x) for some y

 x Ŷ y

 Repeat

 Else Return x

MAXCUT

Problem: Given a graph G find a way to color the
vertices of G black and white so that as many
edges as possible have endpoints of different
colors.

This is NP-Hard.

How to Get Unstuck

• Randomized Restart

– If you try many starting points, hopefully, you will
find one that finds you the true maximum.

• Expand Search Area

– Look for changes to 2 or 3 vertices rather than 1.

• Larger area means harder to get stuck

• Larger area also takes more work per step

• Still no guarantee of finding the actual
maximum in polynomial time.

Simulated Annealing

• At the start of algorithm take big random
steps.

– Hopefully, this will get you onto the right “hill”.

• As the algorithm progresses, the
“temperature” decreases and the algorithm
starts to fine tune more precisely.

• Works well in practice on a number of
problems.

Approximation Algorithms

An α-approximation algorithm to an
optimization problem is a (generally
polynomial time) algorithm that is guaranteed
to produce a solution within an α-factor of the
best solution.

Our local search algorithm for MAXCUT is a 2-
approximation algorithm.

Vertex Cover

Problem (Vertex Cover): Given a graph G find a
set S of vertices so that every edge of G
contains a vertex of S and so that |S| is as
small as possible.

Also, NP-Hard.

Greedy Algorithm

GreedyVertexCover(G)

 S Ŷ {}

 While(S doesnôt cover G)

 (u,v) Ŷ some uncovered edge

 Add u and v to S

 Return S

Analysis

Algorithm finds k edges and 2k vertices.

• Edges are vertex-disjoint.

• Any cover must have at least one vertex on
each of these edges.

• Optimum cover has size at least k.

• We have a 2-approximation.

Knapsack

Even though general knapsack is NP-Hard, we
have a polynomial time algorithm if all
weights are small integers (or more generally
small integer multiples of some common
value).

Small Values Dynamic Program

Let Lightest≤k(V) be the weight of the lightest
collection of the first k items with total value V.

We have a recursion

Lightest≤k(V) =
min{Lightest≤k-1(V),Wt(k)+ Lightest≤k-1(V-Val(k))}

This gives a DP.

#subprobs = [Total Value][#items]

Time/Subproblem = O(1).

Approximation Algorithm

1) Throw away items that don’t fit in sac.

2) Let V0 be highest value of item.

3) Round each item’s value to closest multiple
of δV0.

4) Run the small integer values DP.

Runtime: Values integer multiples of δV0. Total
value at most [#items]V0 = ([#items]/δ) δV0.

Total runtime O([#items]2/δ).

Approximation Analysis

Optimal value at least V0.

Rounding changes the value of any set of items
by at most [#items]δV0.

The solution we find is at least as good as the
optimal after round.

Our solution is within [#items]δV0 of optimal.

Combining

Let δ = ε/[#items].

OPT ≥ V0.

Our solution is at most εV0 worse.

Have a (1+ε)-approximation algorithm.

Runtime = O([#items]3/ε)

For any ε > 0, have a (1+ε)-approximation in
polynomial time. (known as a PTAS).

