
CSE 101 Final Exam Review 



NP-Completeness (Ch 8) 

• NP-Problems 

• Reductions 

• NP-Completeness & NP-Hardness 

• SAT 

• Hamiltonian Cycle 

• Zero-One Equations 

• Knapsack 



NP 

Problems with brute force search algorithms are said to 
be in Nondeterministic Polynomial time (NP). 

 

NP-Decision problems ask if there is some object that 
satisfies a polynomial time-checkable property. 

 

NP-Optimization problems ask for the object that 
maximizes (or minimizes) some polynomial time-
computable objective. 



Examples of NP Problems 

• SAT 

• TSP 

• Hamiltonian Cycle 

• Knapsack 

• Maximum Independent Set 



SAT 

Problem: Formula-SAT 

Given a logical formula in a number of Boolean 
variables, is there an assignment to the 
variables that causes the formula to be true? 



Hamiltonian Cycle (in text as 
Rudruta Path) 

Given an undirected graph G is there a cycle that 
visits every vertex exactly once? 



P vs. NP 

$1,000,000 Question: Is P = NP? 

Is it the case that every problem in NP has a 
polynomial time algorithm? 

• If yes, every NP problem has a reasonably 
efficient solution. 

• If not, some NP problems are fundamentally 
difficult 

Most computer scientists believe P ≠ NP.  
(But proving anything is very very hard) 



Reductions 

Reductions are a method for proving that one 
problem is at least as hard as another. 

 

We show that if there is an algorithm for solving 
A, then we can use this algorithm to solve B. 
Therefore, B is no harder than A. 

 



Hamiltonian Cycle → TSP 

Hamiltonian 
Cycle Instance TSP Instance 

Cost = 1 

Cost = 2 



Reduction A → B 

Instance of 
problem A 

Instance of 
problem B 

Solution to 
problem B 
instance 

Solution to 
problem A 
instance 

Polynomial time 
reduction algorithm 

Hypothetical 
algorithm for B 

Polynomial time 
interpretation 
algorithm 

Solution to A 



Reduction A → B 

If we have algorithms for reduction and 
interpretation: 

• Given an algorithm to solve B, we can turn it 
into an algorithm to solve A. 

• This means that A might be easier to solve 
than B, but cannot be harder. 



Circuit SAT 

Problem: Given a circuit C with several Boolean 
inputs and one Boolean output, determine if 
there is a set of inputs that give output 1. 

x 

y 

z 

out 

Important Reduction: 

Any NP decision problem → Circuit SAT 



Any NP Decision Problem  
→ Circuit SAT 

• Any NP decision problem asks if there is some 
X that satisfies a polynomial-time checkable 
property. 

• In other words, for some polynomial-time 
computable function F, it asks if there is an X 
so that F(X) = 1. 

• Create a circuit C that computes F. The 
problem is equivalent to asking if there is an 
input for which C outputs 1. 



NP-Complete 

Circuit-SAT is our first example of an  
NP-Complete problem. That is a problem in NP that 
is at least as hard as any other problem in NP. 

• Good news: If we find a polynomial time algorithm 
for Circuit-SAT, we have a polynomial time algorithm 
for all NP problems! 

• Bad news: If any problem in NP is hard, Circuit-SAT is 
hard. 

Note: Decision problems can be NP-Complete. For 
optimization problems, it is called NP-Hard. 



Other NP-Complete/Hard Problems 

The following are all NP-Complete/Hard: 

• Formula SAT 

• Maximum Independent Set 

• TSP 

• Hamiltonian Cycle 

• Knapsack 

How do we show this?  By finding reductions 
from other NP-Hard/Complete Problems. 



3-SAT 

3-SAT is a special case of formula-SAT where the 
formula is an AND of clauses and each clause 
is an OR of at most 3 variables or their 
negations. 

Example: 



Circuit-SAT → 3-SAT 

• Start with circuit 

x 

y 

z 

out 

• Create variable for each wire 

• Create formula with clause for each gate and 
output 

w 

v 

u 

t 



These Aren’t 3-SAT Clauses 

We have 3-variable clauses that aren’t 3-SAT 
clauses. Write it in terms of them. 

• Write truth table 
• Each 3-SAT clause sets 
one output to false. 

X 
X 

X 

X 



Another Look at 3-SAT 

Lemma: A 3-SAT instance is satisfiable if and 
only if it is possible to select one term from 
each clause without selecting both a variable 
and its negation. 



Proof 

If satisfiable:  

• Satisfying assignment causes at least one term 
in each clause to be true. 

• Select one such term from each clause. 

• Cannot contradict each other. 



Proof 

If there is a way to select terms: 

• Set those variables to be true 

– Can do this without contradiction 

• Set other variables arbitrarily 

• Causes whole statement to be true 



3-SAT → Maximum Independent 
Set 

Want to encode this select 
one term from each 
clause as a graph. 

• Create one vertex for 
each term in each 
clause. 

• Edges between terms in 
same clause. 

• Edges between 
contradictory terms. 

Example: 

x 

y 

z 

x ̄

y 

y ̅

x ̄



Analysis 

An independent set in this graph has: 

• At most one vertex from each clause. 

• No vertices representing contradictory terms. 

It has an independent set of size #Clauses if and 
only if, you can select one term form each 
clause without a contradiction. 

Therefore, |MIS| = #Clauses if and only if the 3-
SAT has a solution. 



Zero-One Equations 

Problem: Given a matrix A with only 0 and 1 as 
entries and b a vector of 1s, determine 
whether or not there is an x with 0 and 1 
entries so that 

Ax = b. 

 



3-SAT → ZOE 

Basic Idea: 

• Use the one term from each clause 
formulation of 3-SAT. 

• Create one variable for each term to denote 
whether or not it has been selected. 

• Add equations to enforce exactly one term 
from each clause, no contradictory terms 
selected. 



General Construction 

• Create one variable per term 

• For each clause, create one equation 

• For each pair of contradictory term, create an 
equation with those two and a new variable 



Another Way of Looking at ZOE 

Recall if A = [v1 v2 v3 … vn ], 

Ax = x1 v1 + x2 v2 + x3 v3 + … + xn vn. 

Example: 

x1*[ 1 0 0 1 ] + 

x2*[ 0 0 1 1 ] + 

x3*[ 1 1 1 0 ] 

---------------- 

=  [ 1 1 1 1 ] 

What if we treated these as numbers rather than vectors? 

x1*  1 0 0 1   + 

x2*  0 0 1 1   + 

x3*  1 1 1 0   

---------------- 

=    1 1 1 1   



Subset Sum 

Problem: Given a set S of numbers and a target 
number C, is there a subset T ⊆ S whose 
elements sum to C. 

Alternatively: Can we find xy ∈ {0,1} so that  

 

 

Reduction: ZOE → Subset Sum. 



Subset Sum → Knapsack 

• Create Knapsack problem where for each item 
Value(item) = Weight(item). 

• Maximizing value is the same as maximizing 
weight (without going over capacity). 

• We can achieve value = capacity if and only if 
there is a subset of the items with total weight 
equal to capacity. 



ZOE -> Hamiltonian Cycle 

• Start with a cycle 
• Double up some edges 
• Cycle must pick one edge 
from each pair. 

• This provides a nice 
set of binary variables 

• Need a way to add 
restrictions so that we 
can’t just use any choices. 



Gadget 

• Must use these edges. 
• Two ways to fill out. 



Gadget Use 

• Hook gadget up 
between a pair of 
edges. 
• Hamiltonian Cycle 
must use exactly one 
of the connected 
edges. 
• This allows us to 
force logic upon our 
choices. 



Construction 

By doing this for several pairs of edges we can 
construct Hamiltonian Cycle problems 
equivalent to the following: 

• You are given a number of choices where you 
need to pick one from several options (of 
multi-edges). 

• You have several constraints, that say of two 
choices you must have picked exactly one of 
them. 



Full Construction 

Choices: 

• For each variable, choose either 0 or 1. 

• For each equation, choose one variable. 

Constraints: 

• For each variable that appears in an equation, 
exactly one of the following should be 
selected: 

– That variable in that equation 

– That variable equal to 0 



Reduction Summary 

Any NP 
Decision 
Problem 

Circuit SAT 

3-SAT 

Maximum 
Independent Set 

Zero-One 
Equations 

Subset 
Sum 

Knapsack 

Hamiltonian 
Cycle 

Travelling 
Salesman 
Problem 



Dealing With NP-Completeness  
(Ch 9) 

• Backtracking/Branch and Bound 

• Heuristic Search 

• Approximation Algorithms 



Deductions 

One way to progress is so make deductions. 

• Use the rules to show that some square can 
only be filled out in one way. 

• Use that information to help fill out more 
squares. 

• Hopefully, you can keep going until the entire 
problem is solved. 



Getting Stuck 

Deductions are very useful when you can make 
them, but for hard problems, you will often 
get stuck quickly and be unable to make more 
deductions. 

 

Option 1: Stronger deductive rules. 

Option 2: Guess and Check 



Guess and Check 

• Make a guess for some entry. 

• Try to solve the resulting puzzle (perhaps 
doing more guessing). 

• If you find a solution, great! 

• If not, you have deduced that your original 
guess was wrong. 



Backtracking 

Backtracking(P,S) 

  If you can deduce unsolveable 

    Return óno solutionsô 

  Split S into parts S1,S2,é 

  For each i,  

    Run Backtracking(P,Si) 

  Return any solutions found 



Splitting 

How do you split S into parts? 

• Pick variable xi and set xi = True, or xi = False 

• Try all possible numbers in a square in Sudoku 

• Try all possible edges in Hamiltonian Cycle 

Which variable do we guess? 

• Often helps to pick a variable that shows up a 
lot. Then guessing it’s value will make later 
deductions easier. 



Runtime 

These problems are still NP-Hard. Worst case, 
backtracking will still take exponential time. 
But it is usually much better than brute force. 

 

SAT Solvers can use these ideas to solve 
problems with hundreds of variables, many 
many more than would be practical by brute 
force. 



Optimization Version 

Backtracking works well for decision/search 
problems (where a potential solution works or 
doesn’t work), but not so well for optimization 
problems (where many solutions work, but 
you need to find the best one). 

 

If most solutions work, how do you weed out 
bad paths? 



Branch & Bound 

To get rid of bad paths do two things: 

1) Keep track of the best solution you have 
found so far. 

2) Try to prove upper bounds on your 
subproblems.  

If an upper bound is smaller than your best 
solution so far, it cannot contain the 
optimum. 



Branch and Bound 

BranchAndBound(Best,S) 

  If UpperBound(S) Ò Best 

    Return óno improvementô 

  If S a full solution 

    Return value of S 

  Split S into S1,S2,é 

  For each Si 

    New Ŷ BranchAndBound(Best,Si) 

    Best = Max(New,Best) 

  Return Best 



Local Search 

Many optimization problems have a structure 
where solutions “nearby” a good solution will 
likely also be good. 

This leads to a natural algorithmic idea: 

• Find an OK solution 

• Search nearby for better solutions 

• Repeat 



Local Search 

LocalSearch(f) 

\\ Try to maximize f(x) 

  x Ŷ Random initial point 

  Try all y close to x 

    If f(y) > f(x) for some y 

      x Ŷ y 

      Repeat 

    Else Return x 



MAXCUT 

Problem: Given a graph G find a way to color the 
vertices of G black and white so that as many 
edges as possible have endpoints of different 
colors. 

 

This is NP-Hard. 



How to Get Unstuck 

• Randomized Restart 

– If you try many starting points, hopefully, you will 
find one that finds you the true maximum. 

• Expand Search Area 

– Look for changes to 2 or 3 vertices rather than 1. 

• Larger area means harder to get stuck 

• Larger area also takes more work per step 

• Still no guarantee of finding the actual 
maximum in polynomial time. 



Simulated Annealing 

• At the start of algorithm take big random 
steps. 

– Hopefully, this will get you onto the right “hill”. 

• As the algorithm progresses, the 
“temperature” decreases and the algorithm 
starts to fine tune more precisely. 

• Works well in practice on a number of 
problems. 



Approximation Algorithms 

An α-approximation algorithm to an 
optimization problem is a (generally 
polynomial time) algorithm that is guaranteed 
to produce a solution within an α-factor of the 
best solution. 

 

Our local search algorithm for MAXCUT is a 2-
approximation algorithm. 



Vertex Cover 

Problem (Vertex Cover): Given a graph G find a 
set S of vertices so that every edge of G 
contains a vertex of S and so that |S| is as 
small as possible. 

 

Also, NP-Hard. 



Greedy Algorithm 

GreedyVertexCover(G) 

  S Ŷ {} 

  While(S doesnôt cover G) 

    (u,v) Ŷ some uncovered edge 

    Add u and v to S 

  Return S 

 



Analysis 

Algorithm finds k edges and 2k vertices. 

• Edges are vertex-disjoint. 

• Any cover must have at least one vertex on 
each of these edges. 

• Optimum cover has size at least k. 

• We have a 2-approximation. 



Knapsack 

Even though general knapsack is NP-Hard, we 
have a polynomial time algorithm if all 
weights are small integers (or more generally 
small integer multiples of some common 
value). 



Small Values Dynamic Program 

Let Lightest≤k(V) be the weight of the lightest 
collection of the first k items with total value V. 

We have a recursion 

Lightest≤k(V) =  
min{Lightest≤k-1(V),Wt(k)+ Lightest≤k-1(V-Val(k))}  

This gives a DP. 

#subprobs = [Total Value][#items] 

Time/Subproblem = O(1). 



Approximation Algorithm 

1) Throw away items that don’t fit in sac. 

2) Let V0 be highest value of item. 

3) Round each item’s value to closest multiple 
of δV0. 

4) Run the small integer values DP. 

Runtime: Values integer multiples of δV0. Total 
value at most [#items]V0 = ([#items]/δ) δV0. 

Total runtime O([#items]2/δ). 



Approximation Analysis 

Optimal value at least V0. 

Rounding changes the value of any set of items 
by at most [#items]δV0. 

The solution we find is at least as good as the 
optimal after round. 

Our solution is within [#items]δV0 of optimal. 



Combining 

Let δ = ε/[#items]. 

OPT ≥ V0.  

Our solution is at most εV0 worse. 

Have a (1+ε)-approximation algorithm. 

Runtime = O([#items]3/ε) 

For any ε > 0, have a (1+ε)-approximation in 
polynomial time. (known as a PTAS). 


