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Abstract

As the gap between memory and processor performance
continues to widen, it becomes increasingly important to
exploit cache memory e�ectively. Both hardware and soft-
ware approaches can be explored to optimize cache per-
formance. Hardware designers focus on cache organiza-
tion issues, including replacement policy, associativity, line
size and the resulting cache access time. Software writ-
ers use various optimization techniques, including software
prefetching, data scheduling and code reordering. Our fo-
cus is on improving memory usage through code reordering
compiler techniques.

In this paper we present a link-time procedure map-
ping algorithm which can signi�cantly improve the e�ec-
tiveness of the instruction cache. Our algorithm produces
an improved program layout by performing a color mapping
of procedures to cache lines, taking into consideration the
procedure size, cache size, cache line size, and call graph.
We use cache line coloring to guide the procedure mapping,
indicating which cache lines to avoid when placing a pro-
cedure in the program layout. Our algorithm reduces on
average the instruction cache miss rate by 40% over the
original mapping and by 17% over the mapping algorithm
of Pettis and Hansen [12].

1 Introduction

The increasing gap between processor and main mem-

ory speeds has forced computer designers to exploit cache

memories. A cache is smaller than the main memory and,

if properly managed, can hold a major part of the work-

ing set of a program [7]. The goal of memory subsys-

tem designers is to improve the average memory access

time. Reducing the cache miss rate is one factor for im-

proving memory access performance. Cache misses occur

for a number of reasons: cold start, capacity, and colli-

sions [13]. A number of cache line replacement algorithms

have been proposed to reduce the number of cache colli-

sions [2, 14, 19].

Instead of concentrating on cache organization we con-

centrate on the layout of a program on the memory space.

Bershad et.al. suggested remapping cache addresses dy-

namically to avoid conict misses in large direct-mapped

caches [3]. An alternative approach is to perform code

repositioning at compile or link-time [4, 9, 11, 12, 16, 20].

The idea is to place frequently used sections of a program

next to each other in the address space, thereby reduc-

ing the chances of cache conicts while increasing spatial

locality within the program.

Code reordering algorithms for improved memory per-

formance can span several di�erent levels of granularity,

from basic blocks, to loops, and to procedures. Research

has shown that basic block reordering and procedure re-

ordering can signi�cantly improve a program's execution

performance. Pettis and Hansen [12] found that the re-

duction in execution time when using procedure reorder-

ing was around 8%, and the reduction in execution time

for basic block reordering was around 12% on an HP-UX

825 architecture with a 16K direct mapped uni�ed cache.

When both of the optimizations were applied together an

average improvement of 15% was achieved.

The mapping algorithm we propose in this paper im-

proves upon prior work, particularly when a program's

control ow graph is larger than the cache capacity. Since

we are interested in dealing with graphs that are larger

than the target instruction cache, we concentrate our dis-

cussion in this paper on reordering procedures. Even so,

our algorithm can also be used with, and can bene�t

from, basic block reordering and procedure splitting, as

described later in x5.

Our research di�ers from prior research in procedure

reordering because our algorithm uses the cache size, cache

line size, and the procedure size to perform a color mapping

of cache lines to procedures. This color mapping allows our

algorithm to intelligently place procedures in the layout by

preserving color dependencies with a procedure's parents

and children in the call graph, resulting in fewer instruction

cache conicts.

In this paper we will describe our algorithm and

demonstrate its merit through trace-driven cache simula-

tion. In x2 we describe our color mapping algorithm and

compare our algorithm with prior work in code reordering.

The methodology used to gather our results is described

in x3. In x4 we provide quantitative results using our im-

proved procedure ordering algorithm. We then discuss im-

plications and future work for our algorithm in x5, and we

summarize our contributions in x6.
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2 Procedure Mapping

In this section we describe our procedure mapping algo-

rithm. For the following description, we will assume that

the instruction cache is direct mapped (in x5 we discuss

how to apply our algorithm to set-associative caches). The

basic idea behind the algorithm is to treat the memory

address space as two dimensional by breaking up the ad-

dress space into pieces that are equivalent to the size of the

cache, and using the cache lines occupied by each proce-

dure to guide the mapping. In contrast, previous research

has treated memory layout as a one dimensional address

space. Employing a second dimension allows our algorithm

to intelligently avoid cache conicts when mapping a pro-

cedure for the �rst time, and it provides the ability to

move procedures that have already been mapped in order

to eliminate additional conicts as they arise. To avoid

conicts, we keep track of the colors each procedure is

mapped to and a set of colors indicating which colors are

currently unavailable to that procedure. We will refer to

this set of colors as the unavailable-set.

For a given procedure, the unavailable-set of colors rep-

resents the colors occupied (i.e., cache lines used) by all of

the immediate parents and children of that procedure in

the call graph, which have already been mapped to cache

lines. Our algorithm uses a call graph with weighted pro-

cedure call edges for indicating the importance of mapping

procedures next to each other. The algorithm concen-

trates on only eliminating �rst-generation cache conicts,
which are the conicts between a procedure and the im-

mediate parents and children of that procedure in the call

graph. When mapping a procedure, our algorithm tries

to avoid cache conicts by avoiding cache line colors in

its unavailable-set. Once a procedure has been mapped,

a procedure can later be moved to a new location with-

out causing cache conicts, as long as it does not move

to a location (color) which is in its unavailable-set. Using

the color mapping to place and move procedures in this

way, guarantees that the new location will not increase

the number of �rst-generation conicts for the procedures

in the call graph.

One of the hurdles in a mapping algorithm where code

is allowed to move after it has already been mapped, is

the problem of how to handle the empty space left behind

by the moved procedures. If possible, this gap should be

�lled since the program is laid out in a contiguous memory

space. Therefore, moving a procedure should be followed

by �lling the space left by the procedure with other pro-

cedures, otherwise this can result in a chain of relocations

that are hard to manage.

Studies of program behaviors show that 10% to 30% of

a program accounts for 90% of its execution time [6]. The

rest of the code is rarely visited or not visited at all. Our al-

gorithm takes advantage of this property by dividing each

program into frequently visited (popular) and infrequently

visited (unpopular) procedures. The unpopular procedures
are treated as u� or glue, and are used to �ll the empty

space left behind by moved procedures in our algorithm.

We will not worry about conicts when positioning un-

popular procedures, since these parts of a program do not

signi�cantly contribute to the number of �rst level cache

conicts.

2.1 Cache Coloring Algorithm

We will now describe the details of our cache line coloring

algorithm and use an example to demonstrate how to lay-

out procedures. Figure 1 presents an example call graph,

containing 7 procedures A through G, where nodes repre-
sent procedures and the edges represent procedure calls.

Each edge contains a weight indicating how many times

that procedure was called. The Figure also contains a ta-

ble indicating the number of cache lines each procedure

occupies. In this example and algorithm description, we

assume the instruction cache is direct mapped and con-

tains only 4 cache lines.

Figure 2 shows the steps taken by our algorithm in

mapping the example call graph given in Figure 1. The

cache is divided into a set of colors, one color for each

cache line. The four cache lines are given the colors red,
green, blue, and yellow. In Figure 2, the �rst column

shows at each step which edge or procedure is being pro-

cessed. The second column shows which of the four edge

processing cases the current step corresponds to in our al-

gorithm. The third column shows the current mapping

of the processed procedures and edges over the colored

4 block (line) cache space. The last column shows the

changes to the unavailable-set of colors for the procedures

being processed at each step. If a procedure spans multi-

ple cache lines (as does C in our example), it will generate

multiple mappable elements (e.g., C1 and C2), as is shown
in Figure 2.

Our algorithm maintains three important pieces of

state for each procedure: the number of cache lines (colors)

needed to hold the procedure, the cache colors used to map

the procedure, and the unavailable-set of colors which rep-

resents the cache lines where the procedure should not be

mapped to. We do not actually store the unavailable-set

of colors. Instead, each procedure contains pointers to its

parents and children in the call graph. The unavailable-set

of colors is then constructed for a procedure as needed by

unioning all the colors used to map each of the procedure's

parents and children. A parent or child is only included

in this unavailable-set if the edge joining the procedure

to the parent or child has already been processed in the

algorithm.

Our algorithm starts by building a procedure call

graph, similar to the one shown in Figure 1. Every proce-

dure in the program is represented by a node in the graph,

and each edge between nodes represents a procedure call.

Multiple call sites to the same procedure from a single pro-

cedure are represented as a single edge in our call graph.

The edge values represent the number of times each edge

(i.e., call path) was traversed. The sum of the edge weights

entering and exiting a node indicates the number of incom-

ing and outgoing procedure calls and this determines that

procedure's popularity.

After the call graph is built, the popularity of each

procedure is considered. Based on popularity, the graph

is split into the popular procedures and edges and the un-
popular procedures and edges. The popular procedure set

contains those procedures which are frequently a caller or

a callee, and the popular edge set contains the frequently

executed procedure call edges. The unpopular procedures

and edges are those not included in the above two popu-

lar sets. Note, there is a di�erence between popular pro-

cedures and time consuming procedures (procedures that

consume a noticeable portion of a program's overall execu-
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Figure 1: Example call graph. Each node represents a procedure and each edge represents a procedure call. The numbers

associated with each edge indicates the number of times the procedure call was executed. The table shows for each

procedure how many cache lines is needed to hold the procedure.
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Figure 2: Procedure mapping using cache line coloring. The �rst column indicates the steps taken in our color mapping

algorithm, and each edge and procedure processed at each step. The second column shows which of the four edge processing

cases the current step corresponds to in our algorithm. The third column shows the address space divided into sizes equal

to the instruction cache, and shows the mapping of the program at each step. The instruction cache contains 4 lines

labeled: red, green, blue, and yellow. The last column shows the unavailable-sets as they are changed for the procedures

at each step in the algorithm.
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tion time). A time consuming procedure may be labeled

unpopular because it rarely switches control ow to an-

other procedure. If a procedure rarely switches control

ow, it is not as important to eliminate cache conicts be-

tween this procedure and the rest of the call graph. In the

example in Figure 1, popular procedures are A, B, C, D,

and E, and the unpopular procedures are F and G since

they are never executed. The popular edges are A ! B,
B ! C, C ! D, A ! E, and E ! C, and the unpop-

ular edges are E ! F and F ! G. The algorithm then

sorts the popular edges in descending order using the edge

weights. The unpopular procedures are sorted by proce-

dure size, and are used to �ll in spaces created by our color

mapping.

After the program's popularity has been decided, we

process all of the popular edges starting with the most

frequently executed and ending with the least frequently

executed. There are four possible cases when processing an

edge in our algorithm. The �rst case occurs when an edge

connects two procedures that have not yet been mapped.

In this case, the two procedures are merged into a com-
pound node. The two procedures are placed next to each

other in the layout and they are assigned cache line col-

ors starting at an arbitrary color (position). Each pro-

cedure is assigned the number of cache line colors equal

to (procedure0s size in bytes)=(cache line size in bytes).
After the colors have been assigned, the unavailable-set

for each procedure includes the colors (cache lines) used

by the other procedure at the other end of the call edge.

The remaining three cases encountered when processing an

edge include: when the call edge links two procedures in

two di�erent compound nodes, when the edge is between

an unprocessed procedure and a procedure in a compound

node, and when the edge being processed is a call between

two procedures in the same compound node. The follow-

ing four paragraphs discuss the details for the four edge

processing cases in the algorithm.

Case I: The �rst case, when an edge connects two un-

mapped procedures, is shown in the �rst two steps of Fig-

ure 2. The algorithm starts with the heaviest edge (most

heavily traversed) in the call graph's set of popular edges,

E ! C, and forms a compound node E � C. This com-

pound node is arbitrarily mapped to the cache line colors.

The unavailable-set of colors for E now includes blue and
yellow (the colors C maps to) and the unavailable-set for

C now includes red and green (the colors E maps to). The

second step in Figure 2 processes the edge A! B between

two unmapped procedures. The two procedures are com-

bined into a compound node, and their unavailable-sets are

shown in the Figure. Note that the unavailable-set for A
does not include colors red and green, even though there is
an edge A! E in the call graph and node E is mapped to

the colors red and green. This is because the procedure's
unavailable-set only includes parent and children proce-

dures connected by edges that have been processed, and

the edge A ! E has not yet been processed. We chose

this restriction since the unavailable-set of colors is used

to restrict where to place procedures, and when placing a

procedure, the procedure should only be restricted by the

edges with the heaviest (most important) weights.

Case II: The second case occurs when the edge be-

ing processed connects two procedures in di�erent com-

pound nodes. For this case, the two compound nodes are

merged together, concatenating the compound node that

is shorter in length (number of procedures) to the larger

compound node. This is shown in step 3 of Figure 2 for

edge B ! C, which combines two compound nodes E �C
and A � B. The compound nodes both contain the same

number of procedures, so we arbitrarily choose A � B to

be the smaller compound node. Our algorithm now de-

cides where to map, and how to order, A� B since there

are four possibilities: A � B � E � C, B � A � E � C,
E � C � A � B and E � C � B � A. The �rst decision

to make is on which side of compound node E�C should

A � B be placed. This is decided by taking the shortest

(distance to proc in compound node) mod (cache size).
For our example, the distance to C is used and is calculated

to be the distance in the number of cache line colors from

the middle of procedure C to each end of the compound

node. From the mapping in step 1 of Figure 2, this distance

is 1 cache line to the right of C in the compound node E�C
and 3 cache lines to the left of C in compound node E�C.
Therefore the algorithm decides to place A�B to the right

of E � C. The (distance to procedure) mod (cache size)
heuristic is used to increase the probability of being able

to easily map the 2nd compound node to non-conicting

cache colors. Note, that placing A � B to the right of

E � C produces a mapping where no cache conicts oc-

cur, whereas if we would had chosen to put A�B on the

left side of E �C this would have caused a cache coloring

conict. The next decision our algorithm makes is which

order to place A�B, either E�C�A�B or E�C�B�A.
This is decided by choosing the ordering so the two proce-

dures connected by the edge being processed (i.e., B ! C)
are closest to each other in the program layout. Thus we

arrive at a mapping of E � C � B � A. After this is de-

cided, the algorithm makes sure that the two nodes for the

edge being processed, B and C, have no cache lines that

conict. This is done by comparing the colors used by C
with the colors used by B. If there is a conict, the smaller
compound node is shifted away from the larger compound

node until there is no longer a conict. The space left

in the mapping will be �lled with unpopular procedures.

If a conict cannot be avoided then the original location

(placing B adjacent to C) is used. When the �nal po-

sition for the smaller compound node is determined, the

algorithm goes through each procedure and updates the

colors (cache lines) used by each procedure. Notice that

this changes the unavailable-set of colors: A's set of un-
available colors changes to red and B's changes to green,
blue and yellow.

Case III: The third type of edge connects an un-

mapped procedure and a procedure in a compound node.

We process this case similarly to case II as described

in the previous paragraph. In this situation, the un-

mapped procedure is placed on either end of the com-

pound node, which side is decided by using the shortest

(distance to procedure) mod (cache size) heuristic as de-

scribed above. Once a side is chosen, the cache line colors

used by the newly mapped procedure are checked against

the colors used by its corresponding procedure in the com-

pound node. If there is a conict, space is inserted in the

address space between the newly mapped procedure and

the compound node until the newly mapped procedure can

be assigned colors which do not conict. If this is not pos-
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sible, the procedure is left at its original position, adjacent

to the compound node. Step 4 in Figure 2 shows this sce-

nario. The algorithm next processes edge C ! D, where

C is contained in a compound node and D has not yet been

mapped. The algorithm �rst decides on which side of the

compound node to place D. Since both of the distances to

the middle of C are the same (3 cache lines), the algorithm

arbitrarily chooses a side and D is placed to the left of the

compound node. The colors used for D at this location

are blue and yellow. This would create a conict since

those colors overlap with the colors used by C. Therefore
the algorithm shifts D to the left until it �nds a suitable

location (if possible) where D no longer conicts with C.
This location for D is found at the colors red and green.
This leaves a space in the compound node, as shown in

step 4. If a space is created inside of a compound node,

the space is �lled with the largest unpopular procedure

which will �t. This is shown in step 5 of Figure 2, where

the space created by shifting D is �lled with the unpopular

procedure G.

Case IV: The fourth and �nal case to handle occurs

when the edge being processed has both procedures be-

longing to the same compound node. This is a very im-

portant case since the algorithm �nally gets to use the

unavailable-set to avoid cache conicts. If the colors used

by the two procedures of the edge overlap (conict), then

the procedure closest (in terms of cache lines) to either end

of the compound node is moved past the end of the com-

pound node, creating a space or gap in the compound node

where it use to be located. This space will later be �lled by

an unpopular procedure or procedures. The unavailable-

set for the procedure that is moved past the end of the

compound node is updated to include the colors of the

corresponding procedure left inside the compound node.

The algorithm then checks to see if the current colors used

by the procedure conict with any of its unavailable col-

ors. If there is a conict, the procedure is shifted away

from the compound node in the address space until there

is no longer a conict with its unavailable-set of colors.

If we are unable to �nd a non-conicting location for the

procedure, the original location inside the compound node

is used. This �nal scenario is shown in step 6 in Figure 2,

where the edge from A! E is processed and its two pro-

cedures are in the same compound node. In examining the

colors used by both A and E, we see that the two proce-

dures' colors conict since they map to the same cache line

(green). The algorithm tries to eliminate this conict by

choosing to move A, since it is the closest to an end of the

compound node. The algorithm moves A past the end of

the compound node, mapping it to the color blue. When

checking A's new mapping against its unavailable-set (red
and green), no conicts are found, so this is an acceptable

location for procedure A. Using the unavailable-set in this

way guarantees that previous mappings for A take prece-

dence over the edge A! E, because those mappings were
more important. Finally, since A was moved in step 6, it

created a space in the compound node, as shown in Fig-

ure 2. After any space is made inside of a compound node,

that gap is �lled with a procedure(s) from the unpopular

list. In our example, the remaining procedure F is used to

�ll the gap. We then arrive at the �nal mapping as shown

in step 7, which has no �rst-generation cache conicts.

This process is repeated, until all of the edges in the

popular set have been processed. Any remaining proce-

dures in the unpopular list are mapped using a simple

depth-�rst traversal of the unpopular edges that join these

unpopular procedures. The �nal mapping can result in

several disjoint compound nodes. These nodes are then

ordered in the �nal layout, from the most frequently exe-

cuted to the least frequently executed.

2.2 Comparison to Previous Work

There has been considerable work in the area of pro�le-

driven program optimizations and procedure reordering.

We now discuss relevant previous work and how it relates

to our algorithm.

2.2.1 Knowledge of Cache Size

McFarling examined improving instruction cache perfor-

mance by not caching infrequently used instructions and

by performing code reordering compiler optimizations [11].

His mapping algorithm works at the basic block level and

concentrates on laying out the code based on loop struc-

tures in the program. The algorithm constructs a control

ow graph with basic block, procedure, and loop nodes.

It then tries to partition the graph, concentrating on the

loop nodes, so that the height of each partitioned tree (i.e.,

graph) is less than the size of the cache. If this is the case,

then all of the nodes inside of the tree can be trivially

mapped since they will not interfere with each other in

the cache. If this is not the case, then some nodes in the

mapping might conict with others in the cache.

The notion of wanting the mapped tree size smaller

than the cache size also applies to our algorithm when we

partition the call graph into popular and unpopular proce-

dures and edges. Partitioning the the call graph actually

splits the graph into several disjoint subgraphs comprised

of the popular procedures and edges. This has the e�ect

of breaking the call graph into smaller, and more man-

ageable, pieces. If the sum of all the procedure sizes in a

subgraph is smaller than the size of the instruction cache,

then there will be no conicting colors when laying out all

of the procedures in the subgraph and the mapping can

be done trivially as suggested by McFarling. The bene�t

of our algorithm over McFarling's is that instead of just

taking into consideration the cache size we also take into

consideration the exact cache lines used by each procedure

in the mapping. This allows our algorithm to e�ectively

eliminate �rst-generation cache conicts, even when the

popular subgraph size is larger than the instruction cache,

by using the color mapping and the unavailable-set of col-

ors.

Torrellas, Xia and Daigle [20] (TXD) also described

an algorithm for code layout for operating system inten-

sive workloads. Their work takes into consideration the

size of the cache and the popularity of code. Their algo-

rithm partitions the operating system code into executed

and non-executed parts at the basic block level. It then

repeatedly creates sequences of basic blocks from the ex-

ecuted code. All the basic blocks with weights above a

threshold value are removed from the graph and put into

a sequence, which is a list of basic blocks. All the basic

blocks in a sequence are then layed out together in the ad-

dress space. The threshold value is then lowered and the

process is repeated until all the executed basic blocks have
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Figure 3: Procedure mapping for a greedy depth-�rst traversal of the call graph.

been put into sequences. Their algorithm takes into con-

sideration the cache size by mapping the most frequently

executed sequence into a special area in the cache. The rest

of the sequences are then mapped to areas in the cache,

avoiding this special area. This creates gaps in the pro-

gram layout which are then �lled by the non-executed ba-

sic blocks. The TXD algorithm is designed for mapping

operating system code to increase performance, by keep-

ing commonly used system code in the cache. Our algo-

rithm is designed for application code and tries to eliminate

as many �rst-generation conicts as possible. These two

goals are di�erent and may require the use of di�erent algo-

rithms. The techniques used by TXD, which work well for

operating system code, may not work as well to eliminate

�rst-generation cache conicts in application code.

As described in x2.1, our algorithm uses unpopular pro-

cedures in a manner similar to how TXD uses non-executed

operating system basic blocks. We use the unpopular code

in an application to �ll in spaces created when mapping

procedures. The two approaches di�er in that our algo-

rithm uses the unpopular procedures to try to eliminate

cache conicts for all popular procedures by performing a

color mapping that gives priority to the procedures that

switch control ow most often. In comparison, TXD uses

the non-executed code to eliminate cache conicts for only

some of the popular basic blocks: the most frequently ex-

ecuted sequence(s). Keeping track of the colors used by

each procedure, and using the unavailable-set and unpop-

ular procedures to eliminate as many conicts as possible,

makes our algorithm more general for eliminating �rst-

generation conicts.

Another technique used by TXD, which works well for

operating system code, but may not work as well for appli-

cation code, is recursively breaking up the basic blocks into

sequences using a threshold value. This technique does not

take into consideration the connectivity of the basic blocks

in the sequence. Therefore a sequence could be layed out

together in the address space, with the basic blocks having

little or no temporal locality, and the basic blocks in one

sequence could cause conict misses with basic blocks in

another sequence. For application code, our coloring algo-

rithm o�ers better performance over a recursive threshold

partitioning algorithm since we take into consideration the

connectivity of the graph.

2.2.2 Procedure Mapping

Hwu and Chang described an algorithm for improving in-

struction cache performance using inlining, basic block

reordering, and procedure reordering compiler optimiza-

tions [9]. Their algorithm builds a call graph with weighted

call edges produced by pro�ling. For the procedure re-

ordering, their algorithm processes the call graph depth

�rst, mapping the procedures to the address space in depth

�rst order. Their depth-�rst traversal is guided by the

edge weights determined by the pro�le, where a heavier

edge is traversed (layed out) before an infrequently exe-

cuted edge. In using the call graph shown in Figure 1,

a depth-�rst traversal following the most frequently exe-

cuted edges would traverse the edges in order of A ! B,
B ! C, C ! D, A ! E, E ! C, E ! F , and F ! G.
Figure 3 represents the �nal mapping achieved by their

algorithm. The drawback of this approach occurs when

the depth-�rst traversal follows an unimportant path in

the control ow graph, which will then lay out unpopular

procedures before considering procedures on a more impor-

tant path. This is seen in Figure 1 where their algorithm

processes the edge C ! D before the edge E ! C. This
can create signi�cant �rst-generation cache conicts in the

call graph, as seen by the conict between procedures E
and C in Figure 3.

Pettis and Hansen [12] also described a number of tech-

niques for improving code layout that include: basic block

reordering, procedure splitting, and procedure reordering.

Their algorithm employs a closest-is-best strategy to per-

form procedure reordering. The reordering starts with the

heaviest executed call edge in the program call graph. The

two nodes connected by the heaviest edge will be placed

next to each other in the �nal link order. This is taken care

of by merging the two nodes into a chain. The remaining
edges entering and exiting the chain node are coalesced.

This process continues until the whole call graph is merged

into chains which can no longer be merged. Figure 4 shows

the key points of the Pettis and Hansen [12] procedure

mapping algorithm when processing the call graph in Fig-

ure 1. Their algorithm starts by processing edge E ! C,
merging nodes E and C into a chain E�C. This is followed
by edge A ! B, where A and B are merged into a chain

A � B. The next edge to be processed is B ! C. This

brings the algorithm to the �rst point shown in Figure 4,

which is how to merge the chains E�C and A�B. At this
point their algorithm uses a closest-is-best heuristic, and
chooses to place procedure B next to C, since the edge

B ! C has a stronger weight than A! E. The next edge
to be processed is C ! D. This means procedure D needs

to be placed at the front or end of chain E � C � B � A.
Figure 4 shows that, no matter which side of the chain D
is placed, a �rst-generation cache conict will occur with
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C D
(70)

Figure 4: Procedure mapping for the Pettis and Hansen greedy algorithm.

C. This illustrates the main drawback of their approach,

which is that the algorithm fails to monitor the chain size.

Therefore, once a chain becomes larger than the size of the

instruction cache, the e�ectiveness of their closest-is-best

strategy and node merging strategy, decreases. In looking

at the �nal mapping in Figure 4, we see that the mapping

has �rst-generation conicts between procedures A and E,
and procedures C and D.

Our algorithm improves on the Hwu and Chang and

the Pettis and Hansen procedure reordering algorithms

by keeping track of the cache lines (colors) used by each

mapped procedure when performing the procedure map-

ping. This allows us to e�ectively map procedures, elimi-

nating cache conicts when the compound node size grows

larger than the instruction cache. Neither of their algo-

rithms take into consideration the attributes of the cache,

such as cache size, line size, and associativity. They also

do not consider leaving spaces in their layout, which can be

used to reduce the number of cache conicts. As shown in

Figure 2, when using our color mapping algorithm, no �rst-

generation cache conicts occur for the call graph shown

in Figure 1. In comparison, Figure 3 and Figure 4 show

that both the Hwu and Chang and the Pettis and Hansen

algorithms su�er from �rst-generation cache conicts for

the reasons discussed above.

3 Methodology

To evaluate the performance of our algorithm, we modi�ed

gcc version 2.7.2 to use our new procedure mapping algo-

rithm when linking an application. This has restricted

the type of applications we can examine in this study

to programs that can be compiled with gcc. Therefore,

the programs we examined are from the SPECInt95 suite,

SPECInt92 suite, and three gnu applications.

We used trace driven simulation to quantify the in-

struction cache performance of our algorithm [10]. The

trace driven simulations were obtained using ATOM, an

execution-driven simulation tool available from Digital

Equipment Corporation [18]. ATOM allows instrumenta-

tion of binaries on DEC Alpha processors and can produce

the necessary information about the frequency of proce-

dure calls, procedure sizes, and the program's control ow

graph. In our simulations we model a direct-mapped 8

kilobyte instruction cache with a 32 byte line size, similar

to the size used for the DEC Alpha 21064 and DEC Alpha

21164 �rst-level instruction cache. Therefore, in our color

mapping, the number of colors is equal to 256, which is

equal to the number of direct mapped cache lines.

Table 1 describes the static and dynamic attributes for

the programs we studied. The �rst column contains the

program name, and the second column shows the input

used to pro�le each program. The third column shows

the number of instructions traced for the input used. The

fourth column shows the size of each program in kilobytes,

and the �fth column shows the number of static proce-

dures in the program. The next two columns show results

for the popular procedures in the program as determined

by our color mapping algorithm described in x2.1. The

sixth column shows the percentage of the program that

contains only the popular procedures, and the seventh col-

umn shows the percentage of static procedures which are

considered popular. The �nal column shows the percent-

age of the program which were unpopular procedures used

as �ller to �ll in spaces created in the color mapping (as de-

scribed in x2.1). We used pro�le information to guide the

partitioning of the program into popular and unpopular
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# Instrs Traced Exe Size # Static Popular Procedures Unpopular Filler
Program Input in Millions K-Bytes Procs % Exe Size % Procs % Exe Size
li li input 6938 M 417 K 575 6% (24 K) 15% 0.5% (2 K)
m88ksim dcrand.lit 27942 M 557 K 460 7% (41 K) 9% 0.9% (5 K)
perl scrabbl 29612 M 819 K 557 4% (20 K) 4% 0.6% (5 K)
espresso tial 1145 M 516 K 539 12% (60 K) 17% 0.5% (3 K)
eqntott int pri 3 2021 M 400 K 498 11% (46 K) 7% 0.8% (3 K)
bison objc parse 77 M 352 K 369 9% (32 K) 10% 1.0% (4 K)
ex �xit.l 24 M 492 K 668 11% (52 K) 8% 0.8% (4 K)
gzip gcc-2.7.2.tar 9242 M 344 K 140 3% (10 K) 21% 0% (0 K)

Table 1: Measured attributes of traced programs. The input is used to both pro�le the program and gather performance

results. The attributes include the number of instructions traced when simulating the program, the executable size of

the program, and the number of static procedures in the program. Also shown is the percentage of the executable and

the percentage of static procedures that the popular procedures account for after partitioning the program into popular

and unpopular procedures when using the color mapping algorithm. The last column shows the percentage of unpopular

procedures in terms of the size of the executable that were used as u� (to �ll in spaces) in the color mapping algorithm.

parts. All the procedures and edges that account for less

than 1% of the switches in control ow in the call graph

are labeled as unpopular. We can see that by splitting

each program into popular and unpopular sets, that the

popular procedures make up only 3% to 12% of the static

executable size, and this accounts for 4% to 21% of the

static procedures in the program. Mapping these proce-

dures correctly will eliminate most of the cache conicts

in the application for the inputs we examined.

4 Results

To evaluate the performance of our color mapping algo-

rithm we also implemented the Pettis and Hansen algo-

rithm described in Section x2.2. Table 2 shows the in-

struction cache miss rates for the original program, the

Pettis and Hansen algorithm, and our cache coloring al-

gorithm. For the results shown, the same input used in

Table 1 was used for both pro�ling the program and gath-

ering the results. The second column provides the cache

miss ratio for the Original program using the standard

link order for the benchmark executables as speci�ed in

the make�le provided with the programs. The next col-

umn indicates the cache miss ratio after applying the Pettis

and Hansen (P&H) algorithm. The fourth column, labeled
Color, refers to the new link order produced by our cache

color mapping algorithm. The next two columns show the

percent reduction in the cache miss rate when using our

algorithm in comparison to the original mapping and the

P&H mapping. The last three columns show the number

of instruction cache misses for the original program, P&H

layout, and our color mapping.
1

As seen in Table 2, when using the color mapping al-

gorithm the miss rate of the original program is decreased

on average by 37%, with reductions as high as 99% for

gzip. In comparison to the P&H algorithm our color map-

ping reduces the miss rate on average by 14%. The Table

shows that in comparison to P&H our algorithm provides

a substantial reduction in the cache miss rate for the 4 pro-

grams m88ksim, espresso, eqntott, and bison, provides a

smaller improvement for perl, and has approximately the

same instruction cache miss ratio for li, flex, and gzip.

1Only averages are shown for the miss rate columns, since the

averages for the other columns in the table are not meaningful.

Our algorithm performs better for programs like

m88ksim, espresso, and bison because the size of the pop-

ular call graph for these applications is larger than the

size of the instruction cache. This allows our algorithm to

fully exploit cache line coloring, arriving at a layout that

signi�cantly reduces the number of �rst-generation cache

conicts.

For programs such as flex and gzip, the reason why

our algorithm and the P&H algorithm have approximately

the same miss rate can be seen by looking at the parti-

tioning part of our algorithm. Here, the program is parti-

tioned into popular and unpopular procedures and edges.

In performing this partitioning, these programs are split

into disjoint subgraphs where most of the subgraphs are

smaller than the size of the cache. Since these popular

subgraphs easily �t within the instruction cache, we can

arbitrarily map their procedures. For example, gzip vis-

its only a small number of very popular procedures when

processing the input �le gcc-2.7.2.tar. This is seen in

Table 1, where the size of the popular procedures for gzip

amount to only 10K (3% of the total executable size), and

the simulated instruction cache size we used is 8K. For ap-

plications where the popular subgraphs �t within the size

of the instruction cache, our color mapping algorithm and

the Pettis and Hansen algorithm will have similar perfor-

mance.

Table 2 shows that for eqntott, the instruction cache

miss rate when applying the P&H mapping is larger than

the miss rate of the original mapping. This e�ect occurs

for two reasons. One reason is the poor choice made by

the P&H algorithm when merging chains that sum to a

size larger than the instruction cache, creating cache con-

icts within the newly merged chain. The second reason

is that both our algorithm and the P&H algorithm only

model �rst-generation conicts in the call graphs. The

call graph used in this study only models the frequency

of procedure calls between a procedure and its direct chil-

dren. It does not model the temporal locality between a

procedure and all of the procedures that it can possibly

reach in the call graph, and any of these reachable proce-

dures can cause cache conicts. This emphasizes the fact

that �nding an optimal mapping to minimize conicts is

NP-complete [11]. In the next section we suggest further
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I-Cache Miss Rate Miss Rate Reduction Over # Instruction Cache Misses
Program Original P&H Color Original P&H Original P&H Color
li 1.4% 0.3% 0.3% 79% 0% 97,127,676 23,786,704 19,943,570
m88ksim 3.0% 1.7% 1.4% 53% 18% 838,249,456 475,008,025 391,183,079
perl 5.2% 4.8% 4.6% 12% 4% 1,525,851,473 1,412,732,981 1,350,781,406
espresso 0.9% 0.9% 0.5% 44% 44% 10,308,276 10,211,819 6,435,699
eqntott 0.2% 0.3% 0.1% 50% 66% 4,042,293 6,741,562 2,730,813
bison 1.5% 1.5% 1.1% 27% 27% 1,153,805 1,132,929 842,057
ex 2.2% 1.7% 1.7% 23% 0% 525,433 407,423 399,784
gzip 1.1% 0.0% 0.0% 99% 0% 101,667,137 33,950 29,370

Average 1.9% 1.4% 1.2%

Table 2: Instruction cache performance for the Original mapping, Pettis and Hansen (P&H) mapping, and our Color

mapping algorithm. The �rst three column shows the instruction cache miss rates. The next two columns show the

percent reduction in the miss rates when using our Color mapping algorithm in comparison to the Original and P&H

procedure mapping. The last three columns show the number of instruction cache misses.

I-Cache Miss Rate # Instruction Cache Misses
Program Input Original P&H Color Original P&H Color
li li short 1.2% 0.3% 0.3% 19,590,740 4,947,711 4,165,895
m88ksim dhry.lit 4.3% 2.9% 2.3% 2,165,135,958 1,435,239,250 1,144,552,965
perl primes 4.6% 3.8% 3.2% 858,072,764 714,884,396 591,110,580
espresso Z5xp1 1.3% 1.3% 0.9% 383,390 377,091 256,792

bca 0.2% 0.2% 0.1% 1,306,820 1,255,329 681,001
cps 0.4% 0.4% 0.3% 2,514,798 2,471,459 1,659,891
dc1 2.6% 2.5% 2.1% 23,570 22,917 19,306
mlp4 1.1% 1.1% 0.8% 944,483 930,846 659,793
opa 0.6% 0.6% 0.4% 883,401 867,858 644,822
ti 0.5% 0.5% 0.3% 3,874,952 3,769,353 2,691,281

bison c-parse.y 1.7% 1.7% 1.3% 816,872 800,556 604,087
ex un�xit.l 2.7% 2.1% 2.1% 327,781 254,345 250,005
gzip bison-1.25.tar 1.1% 0% 0% 4,152,085 33,950 1,961

Average 2.1% 1.5% 1.2%

Table 3: Instruction cache performance using multiple inputs for the Original mapping, Pettis and Hansen (P&H) mapping,

and our Color mapping algorithm. In calculating the overall average, a value for espresso is included only once, which is

the average miss rate for espresso on all of the inputs shown.
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optimizations to our algorithm in order to address misses

beyond �rst-generation cache conicts.

The results in Table 2 are all gathered using the same

input that was also used to pro�le the program. An im-

portant issue involving pro�led-based optimizations is how

well does a single input capture the typical behavior of fu-

ture runs of the program. Several researchers have inves-

tigated this problem and have found that programs have

predictable behavior between di�erent inputs [5, 8, 21].

Even so, care must be taken when choosing the inputs to

guide optimizations. In this vein, we took the optimized

programs used to produce the results in Table 2 and ran

them using di�erent inputs. Table 3 shows the cache miss

rates for these programs using di�erent inputs. For these

di�erent inputs, the results show that the miss rate was

reduce by 43% when comparing our color mapping algo-

rithm to the original layout, and the reduction in miss

rate for our algorithm when compared to P&H was 20%

on average. In general, when examining di�erent inputs

our algorithm shows signi�cant reductions in the original

instruction cache miss ratios, while consistently showing

an advantage over P&H.

To examine the impact procedure reordering optimiza-

tions have on the performance of these programs, Figures 5

and 6 show the estimated performance in instructions is-

sued per cycle (IPC) for the original program, P&H map-

ping, and our color algorithm for two di�erent architec-

tures. The higher the IPC the better. For these results we

assume each instruction takes one cycle to execute, and

that the only pipeline stalls are due to misses in the in-

struction cache. Figure 5 shows an estimate of perfor-

mance using a single issue architecture with a small (5

cycle) �rst-level instruction cache miss penalty. Figure 6

shows an aggressive 4-way issue architecture with a larger

(10 cycle) �rst-level instruction cache miss penalty. The

results in Figure 5 show that for a conservative architecture

our color mapping algorithm increases the IPC on average

by 5% when compared to the original mapping, and by 1%

when compared to P&H. The results in Figure 6 show that

for a more aggressive architecture that our color mapping

algorithm increases the IPC on average by 26% when com-

pared to the original mapping, and by 6% when compared

to P&H.

One issue to consider with our algorithm is that in or-

der to avoid �rst-generation cache conicts our color map-

ping will insert space into compound nodes as described

in x2.1. This space is later �lled with unpopular proce-

dures. This could possibly have two adverse e�ects. The

�rst is, if no unpopular procedure can be found when try-

ing to �ll a space, then this could result in an increase in

the executable size. For the programs we examined this

was never an issue. As seen in Table 1, on average only

8% of the procedures were labeled as popular, leaving more

than enough unpopular procedures to �ll in any gaps that

were created by the color mapping algorithm. The second

e�ect is that the size of the working set of pages for the

program may increase due to the algorithm �lling spaces

in the compound nodes with unpopular procedures. From

our results we do not believe this will be an issue, but fur-

ther investigation is needed. When performing the color

mapping for the programs we examined, on average only

3K worth of unpopular procedures were used as �ller and

inserted into the popular color mapping, as seen in Table 1.

Since the average size for all of the popular procedures in

a program was 33K, this increases the size of the popular

mapping section of the address space by only 8%.

5 Discussion and Future Work

In this section we discuss how to apply our color map-

ping algorithm to associative caches, describe how our al-

gorithm can bene�t from basic block reordering and proce-

dure splitting, and describe future work on how to improve

the performance of our algorithm by using more informa-

tion on temporal locality to guide the mapping.

5.1 Color Mapping for Associative

Caches

In this paper we only described our algorithm as ap-

plied to direct mapped caches and examined its perfor-

mance for an 8K direct mapped instruction cache. Our

algorithm can easily be applied to set-associative instruc-

tion caches. To accomplish this, we treat the associativ-

ity of the cache as another dimension in the mapping of

the address space. For associative caches our algorithm

breaks up the address space into chunks, equal in size to

(the number of cache sets � the cache line size). There-
fore, the number of sets represents the number of available

colors in the mapping. The color mapping algorithm can

then be applied as described in x2.1, with only a few minor

changes. The algorithm changes slightly to keep track of

the number of times each color (set) appears in the pro-

cedure's unavailable-set of colors. Therefore, mapping a

procedure to a color (set) does not cause any conicts as

long as the number of times that color (set) appears in the

unavailable-set of colors is less than the degree of associa-

tivity of the cache. This e�ectively turns the unavailable-

set into a multiset, which allows each color to appear in

the set up to the associativity of the cache.

5.2 Color Mapping with Basic Block Re-

ordering and Procedure Splitting

The results in x4 do not show the full potential of our col-

oring algorithm, since our algorithm can bene�t from other

code reordering techniques such as basic block reordering

and procedure splitting [9, 12]. Our color mapping algo-

rithm can bene�t from basic block reordering because once

the basic blocks have been aligned and condensed into the

�rst part of the procedure, the cache line colors used by

the frequently executed basic blocks are the only colors we

have to worry about when performing the procedure map-

ping. Using basic block pro�ling, each procedure would

contain two sets of cache colors: those for the important

portions of the procedure, and those for the unimportant.

Then the only basic blocks we need to worry about in the

unavailable-set of colors are the important basic blocks.

Performing procedure splitting can also be used to im-

prove the performance of our color mapping algorithm.

This can be achieved by performing procedure splitting

to help reduce the coloring constraints between di�erent

procedures. For example, if half of a procedure X, X1,

calls a procedure Y , and the other half of the procedure

X, X2, calls procedure Z, then �nding a location for X
in the color mapping as described in x2.1 will have to try

to avoid the colors used by both Y and Z. If procedure

splitting is performed so that X is split into two separate
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procedures X1 and X2, then this can help reduce the col-

oring constraints on X. After procedure X is split into

X1 and X2, the color mapping for X1 only needs to avoid

colors used by X2 and Y , and the color mapping for X2

needs to only avoid colors used by X1 and Z. This can

help free up coloring constraints for very large procedures

and procedures that have a signi�cant number of di�erent

call destinations.

One could even extend the algorithm to perform the

mapping and cache line coloring at the basic block level

instead of the procedure level, and this is a topic of future

research.

5.3 Using Improved Temporal Locality

Data

Our color mapping algorithm, as described in x2.1, concen-

trates on eliminating conicts between edges in the con-

trol ow graph. For our results, these edges happen to

be �rst-generation cache conicts because the graph edges

represent the call edges between a procedure and its di-

rect parents and children. Our algorithm can easily be

applied to more detailed forms of pro�le and trace infor-

mation by adding extra edges between procedures, treating

these edges as a second set of constraint edges in the color

mapping algorithm. These additional edges, with the ap-

propriate weights, can then be used in the unavailable-set

of colors in order to further eliminate cache conicts.

The call graph and pro�les we used to guide the map-

pings do not provide enough information to determine

the temporal locality for a depth greater than one proce-

dure call (�rst-generation) in the graph. Even for �rst-

generation misses, a call graph does not provide exact

information about temporal locality. Therefore, our al-

gorithm tries to remove the worse case number of �rst-

generation misses. For example, in Figure 1, we know

that since the edge C ! D was executed 70 times, that

if C and D had overlapping cache lines, then the call

to D and the return to C could in the worst case cause

((70 + 70) � number of overlapping cache lines) misses.
For future work, we will use control ow analysis of the

program's structure to indicate if all the calls from C ! D
were done during one invocation of C or whether they were

spread out over several invocations, similar to the control

ow analysis used by McFarling [11]. We will also use

control ow analysis to determine how much of procedure

C can actually overlap with procedure D for each proce-

dure call, so we only have to include those cache lines in

D's unavailable-set of colors. This will help provide more

accurate temporal locality information for �rst-generation

conicts, but it does not provide the additional temporal

locality information we would like for deeper paths in the

call graph.

When pro�ling just the call edges, there is no way to

get a good indication of temporal locality for a path longer

than one procedure call edge. For example, in Figure 1 we

have no way of knowing for the call edge C ! D how many

of the procedure calls to D came down the path through

procedure B and how many went through procedure E,
nor do we know how much temporal locality there is be-

tween B and D or E and D. Some of this information

can be obtained by using full path pro�ling, which would

allow one to know the frequency of each path [1, 22], al-

though full path pro�ling still does not provide optimal

temporal locality information. One way to obtain addi-

tional information on temporal locality is to store the full

trace of a program. Capturing, storing, and processing a

full trace can be very time and space consuming, but e�-

cient techniques have been proposed to capture and pro-

cess this information in a compact form, such as the gap

model proposed by Quong [15]. We plan on investigating

the use of full path pro�ling and the gap model with our

color mapping algorithm in order to eliminate additional

cache conicts for deeper paths in the call graph.

6 Conclusions

The performance of the cache-based memory system is crit-

ical in today's processors. Research has shown that com-

piler optimizations can signi�cantly reduce this latency,

and every opportunity should be taken by the compiler to

do so.

The contribution of this paper is a new algorithm for

procedure mapping which takes into consideration the call

graph, procedure size, cache size, and cache line size. An

improved algorithm is achieved by keeping track of the

cache lines (colors) used by each procedure as it is mapped,

in order to avoid cache conicts. This color mapping al-

lows our algorithm to intelligently place unmapped proce-

dures, and to e�ciently move a procedure that has already

been mapped, by preserving prior color dependencies with

that procedure's parents and children in the call graph.

This provides our main advantage over prior work, in that

we can accurately map procedures in a popular call graph

even if the size of the graph is larger than the size of the in-

struction cache. This ability is very important, especially

for applications which have large and complicated control

ow graphs, which result in large instruction cache miss

rates due to conict misses. Another advantage of our al-

gorithm is that we leave gaps in the layout which are �lled

by unpopular procedures, in order to reduce the number

of cache conicts. Our results show that we were able to

reduce the cache miss rate on average by 40% over the

original procedure mapping. In comparison to prior work,

our algorithm reduced the cache miss rate on average 17%

below that of the Pettis and Hansen algorithm [12].

In this study we concentrated on applying our color

mapping algorithm to procedure reordering. Our algo-

rithm can be combined and bene�t from other code re-

ordering techniques such as basic block reordering, taking

into consideration looping structures, and procedure split-

ting. These are topics of future research, along with ap-

plying our algorithm to object oriented languages [6, 17].

In this paper we also concentrated on the performance

achieved using call edge pro�les to guide the optimizations

in order to eliminate �rst-generation cache conicts. We

are currently investigating how to apply our algorithm to

use full path pro�ling and other trace collection techniques

in order to collect improved temporal locality information.

We are also currently examining how to apply our color

mapping algorithm to statically formed call graphs using

static program estimation.
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