
In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques (PACT), Sept. 2005.

Variational Path Profiling

Erez Perelman† Trishul Chilimbi‡ Brad Calder†

†Department of Computer Science and Engineering, University of California, San Diego
‡Microsoft Corporation

Abstract

Current profiling techniques are good at identifying where
time is being spent during program execution. These tech-
niques are not as good at pinpointing exactly where in the
execution there are definite opportunities a programmer can
exploit with optimization.

In this paper we present a new type of profiling analy-
sis called Variational Path Profiling (VPP). VPP pinpoints ex-
actly where in the program there are potentially significant
optimization opportunities for speedup. VPP finds the acyclic
control flow paths that vary the most in execution time (the
time it takes to execute each occurrence of the path). This is
calculated by sampling the time it takes to execute frequent
paths using hardware performance counters. The motivation
for concentrating on a path with a high net variation in its ex-
ecution time is that it can potentially be optimized so that most
or all executions of that path have the minimal execution time
seen during profiling.

We present a profiling and analysis approach to find these
variational paths, so that they can be communicated back to
a programmer to guide optimization. Our results show that
this variation accounts for a significant fraction of overall pro-
gram execution time and a small number of paths account for
a large fraction of this variation. By applying straight for-
ward prefetching optimizations to these variational paths we
see 8.5% speedups on average.

1 Introduction
Current profiling techniques are good at informing program-
mers where time is being spent during program execution.
Many programmers use hierarchical and path profiling [13, 10,
15, 7, 16, 19] tools to identify the basic blocks and procedures
that account for most of the program’s execution time. In addi-
tion, hardware performance counter based profiling tools like
VTune [5] are used to determine program regions that incur
a large number of cache misses and branch mispredictions.
These tools allow programmers to attempt to speedup program
execution by focusing on the frequently executed loops as well
as those that account for the most misses. Unfortunately, these
profiling techniques lack the ability to direct a programmer to
the program section that has the largest speedup opportunity
for optimization. For example, a profiling tool may report that

the largest fraction of execution time is spent in an inner loop
of a matrix multiply routine. This information is unlikely to
be very useful for speeding up the program as it is likely that
this routine has already been heavily optimized.

To address this shortcoming, we focus on identifying
acyclic program paths that have the highest net variation in
their execution through what we call Variational Path Profil-
ing (VPP). To find the paths with variation, VPP records the
execution time it takes to execute frequent acyclic control flow
paths using hardware counters. The hardware cycle counter
is recorded at the start of the path’s execution and again at
the end of its execution. This is accomplished with minimal
overhead using the Bursty Tracing framework [14], which is
configured to sample paths as is done in [9].

Variational Path Profiling takes these timing measure-
ments and finds the control flow paths that have significant net
variation in execution time across the different time samples.
The net variation is determined by finding the smallest execu-
tion time for a path, and then summing up the additional time
it took to execute each invocation of that path over its smallest
execution time. A path with high net time variation implies
that there are certain executions of that path that took signifi-
cantly more time to execute than others. The key insight of our
approach is that this variance in execution time potentially rep-
resents significant opportunity for speedup. This comes from
the idea that every dynamic invocation of that path should be
able to only take the minimal sampled execution time assum-
ing the stalls on the time consuming invocations can be re-
moved with optimization. We observed that this variation in
execution time of the same path can arise from differences in
the micro-architectural state of the machine during different
dynamic path invocations. For example, during one execution
of a path, all of the load accesses can hit in the cache, and an-
other execution of the same path can have loads that miss in
the cache.

Part of the motivation for this research came from looking
at highly optimized commercial applications. For these appli-
cations, some of the most frequently executed (hot) paths had
very little variation in execution time. They had little varia-
tion because these paths had already been highly optimized
and there was little to be gained by trying to further optimize
them. To gain additional speedups we instead had to look at
finding the paths with a high net variation. Our variational

1

path profiling approach pinpoints exactly these paths with net
high variation so a programmer can focus on optimizing paths
with a large speedup potential. VPP is intended to comple-
ment conventional program profilers, not replace them. For
example, VPP will not report program paths that are uniformly
slow across all executions, which a programmer may also be
interested in.

The main contributions of this paper are:

• We present a low overhead variational path profiling ap-
proach to pinpoint paths in a program’s execution that have
large net variation in their execution time.

• We show that this variation accounts for a large fraction of
overall program execution time. In addition, we show that
a small number of paths (top 10) account for most of the
variation and these same paths are identified under different
program inputs and system load conditions.

• We provide examples that use this variational path informa-
tion to perform very simple optimizations for a handful of
the SPEC benchmarks resulting in execution time improve-
ments of 8.5% on average.

• We provide a comparison to other common hot path profil-
ing techniques, and demonstrate the advantage of VPP in
finding high net variation paths for three commercial pro-
grams that have already been heavily optimized.

The rest of the paper is as follows. First, a summary of
the related work is presented in Section 2. Section 3 describes
the methodology used in this research and Section 4 presents
the profiling approach used to collect the variational path pro-
files. The analysis of these profiles, optimization results and a
comparison to other path profiling techniques are presented in
Section 5, and the paper is summarized in Section 6.

2 Related Work
The work most closely related to ours, is the correlation pro-
filing approach of Mowry and Luk [17]. Correlation profiling
was motivated by the desire to apply latency tolerating tech-
niques to the specific set of dynamic load instructions that suf-
fer cache misses. They look at individual static load instruc-
tions and attempt to identify a dynamic context in terms of
control flow, or past history of cache misses that correlates
well with a load instruction incurring a cache miss. They
found that for some applications the dynamic calling-context
leading up to the load helped distinguish dynamic instances of
the same load instruction that miss, from those that hit in the
cache.

Variational profiling can be viewed as somewhat orthog-
onal to correlation profiling. Our focus is on the variation in
execution time of a program path whereas their focus is on
variation in contexts leading up to a load instruction and pre-
dictably correlating a specific context with an outcome (i.e.,
cache miss). Their work suggests contexts that may be useful
in distinguishing slow instances of our variational paths from

fast ones. Another difference arises from their focus on cache
misses. While cache misses are certainly a very important
source of variation, many others exist, such as branch mis-
predictions, pipeline stalls, operating system calls, lock con-
tention, and network events. Finally, our focus on program
paths rather than individual load instructions offers benefits
in the context of a profiling tool. For example, we show that
focusing on the top 10 variational paths concentrates on the
bulk of the potential benefit, whereas the number of load in-
structions that incur cache misses is likely to be significantly
higher in a reasonably sized program.

Path profiling (PP) associates hardware performance
counter metrics with acyclic program paths and provides con-
text information for these paths in the form of a data struc-
ture called a calling-context tree [6]. It uses the Ball-Larus
technique to efficiently profile paths [10]. Metrics are sum-
marized per acyclic path by sampling the hardware counters
at path begin and end and accumulating them in a 64 bit path
counter. The calling context tree provides contextual informa-
tion for the path that is intermediate in precision between a
dynamic calling tree and a dynamic call graph. Like PP, we
sample hardware counters (cycle counter) at path begin and
end. However, we maintain and compare these metrics for
individual path invocations rather than summarize them for
all invocations of a path as PP does. This fine-grain profiling
allows us to identify paths with high net variation. We use
Bursty Tracing [14] to lower the overhead of our technique.
Associating calling-context trees with variational paths may
help better identify opportunity, and this is left for future re-
search.

DCPI [8] and ProfileMe [11] are extremely low-overhead
profiling tools developed at Digital’s research labs that as-
sociate micro-architectural events such as data cache misses,
branch mispredicts, etc., with individual instructions. DCPI
uses periodic hardware cycle counter interrupts and static bi-
nary analysis to provide instruction-level information on in-
order processors. ProfileMe uses similar techniques along
with modest hardware modifications to provide identical in-
formation for out-of-order processors. These tools provide
detailed information but still summarize the information at
the instruction level. Consequently, they accurately point to
instructions responsible for performance bottlenecks, but are
unable to distinguish those that are possible to optimize from
those that are impossible or that would require significant ef-
fort. Since variational profiling focuses on paths that include
at least one fast instance, there is a strong likelihood that some
of the slower instances can be optimized.

VTune [5] is a performance analyzer developed at Intel
that collects time and event-based samples. Sampling in-
terrupts the processor after a certain number of events and
records the execution information in a buffer area. When the
buffer is full, the information is copied to a file. After saving
the information, the program resumes operation. In this way,
VTune maintains very low overhead (about one percent) while

2

sampling. For this work we require a specialized sampling
regiment that can handle fine grained observations with tim-
ing information at the start and end of the path to be sampled.
This sampling approach is currently not available in VTune
and other standard hardware sampling based profilers.

3 Methodology
We performed our analysis for the SPEC2000 programs
ammp, art, bzip, equake, gcc, mcf, parser, twolf,
vortex and vpr. We chose these programs because they
are challenging and provide a good representation of the suite.
Each of the programs also exhibit interesting behavior that is
unique.

In addition to the SPEC2000 programs, we analyzed three
Microsoft programs: foxpro [1] a database tool, a PC game
and a multimedia application. Unlike the SPEC2000 pro-
grams, these programs are highly optimized and provide an
interesting case study with VPP. We do not provide optimiza-
tion results for the Microsoft programs, only variational anal-
ysis, since we did not have access to the source.

Our platform for experimentation is a single CPU-Pentium
4, 2.60 GHz with 1 GB of RAM. It is running Windows XP
Professional with Service Pack 2. The programs are com-
piled with the Visual Studios .Net compiler [2] with full op-
timizations enabled. Vulcan [18], a binary modification tool,
was used to instrument the binaries after they were compiled.
All performance results are measured from the hardware cycle
counter.

4 Variational Path Profiling
In this section we describe the sampling approach used to
gather the variational path profiles.

4.1 Bursty Tracing
Variability in program execution can be observed across many
metrics- memory miss rates, branch misprediction, power and
performance. In this work we observe variations in execution
time for code paths. To measure these variations we employ
the sampling technique described by Arnold and Ryder [9]
using the Bursty Tracing framework [14]. Bursty Tracing en-
ables periodic sampling of execution intervals with low over-
head. The rate of sampling and size of samples can be tuned,
and provides a detailed view of execution at a minimal cost.

Bursty Tracing minimizes profiling overhead by executing
a program with very light instrumentation the majority of the
time, and occasionally transitioning into a fully instrumented
version to do profiling. Figure 1 shows an example of the
Bursty Tracing framework. The original procedure is cloned,
and the clone is embedded with instrumentation to do the de-
sired profiling. A dispatch check is inserted at the back edges
to manage execution transition between the two versions rep-
resented as the diamond in the figure. The dispatch check
is managed with two counters: nCheck and nInstr. Initially

Figure 1: An example of how Bursty Tracing is used to collect
the variational path profiles.

nCheck is set to a nCheckThresh (e.g. 10,000 in our case)
and nInstr is set to zero. Execution begins in the checking
code, and every time it passes through the dispatch check the
nCheck is decremented. Once nCheck reaches zero, nInstr is
set to nInstrThresh and execution transfers to the instrumented
code. Each iteration through the back edge nInstr is decre-
mented. Once nInstr reaches zero, nCheck is initialized to its
threshold again (10,000), and execution transfers back to the
clean code. This process is repeated until the program finishes
execution. Bursty Tracing applies this process to the entire
program by duplicating all the procedures and inserting dis-
patch checks along all back edges and procedure calls.

4.2 Collecting Path Timings
We use Bursty Tracing to measure execution time of acyclic
paths. Our profiling is very time sensitive, and we want to ac-
curately measure how much time an acyclic path executes for.
To gather the path timings we use the hardware cycle counter
to record a time stamp before and after the execution of the
path. These points are denoted in Figure 1 along the edges
leading in and out of the path as timeIn and timeO respectively.

We achieve this by setting the Bursty Tracing parameter
nInstrThres to 1. This causes a sample to be collected for a
single iteration of an acyclic path in the instrumented code.
Since timing profiles are collected only for acyclic execution
paths, we do not measure aggregate timings for consecutive
iterations of acyclic paths. This is because instrumentation
overhead can bias the timing profiles, and we want this bias
on each sample to be consistent. Timing consecutive iterations
through the instrumentation code will make it harder to keep
a consistent bias and to apply our analysis.

Dispatch checks are the transition points between the two
copies of the binary. All acyclic path boundaries are demar-
cated by dispatch checks. Since we insert dispatch checks only
at procedure entries and loop backward branches, all of our
acyclic paths either start at a procedure entry or a loop back-
ward branch and also end at one of these points.

Each profiling sample records in a data structure the exe-
cution time from entry to exit of a single acyclic path of execu-

3

0

50

100

150

200

250

1 21 41 61 81 101 121 141 161 181 201 221 241 261

Time Variations Relative to Fastest Path Execution

N
um

be
r

of
 O

cc
ur

an
ce

s

Figure 2: Bzip2 variational path histogram shows the top 5 ranked paths with variation from the basetime. The x-axis measures
time variations relative to the basetime, where the origin denotes the basetime. The further along the x-axis the larger the time
delta is for a path sample from the basetime. The y-axis measures the number of paths that had that much variation (x-axis)
from the minimum timed basetime path.

tion, the branch history for the path that was executed, and the
PC at the entry point to the path. At the end of program execu-
tion all of these samples, which is the contents of the profile,
are stored to disk to be post processed as described in the next
section to find the paths with high net variation. The branch
history is stored as a series of bits indicating if the branch was
taken or not.

There are two Heisenberg effects which we consider sig-
nificant: (1) uncertainty in the timing of a path in its natural
state vs. its instrumented state, and (2) if there is a bias, is it
consistent across all profile instances?

To address the first uncertainty, we reduced the bias intro-
duced from instrumentation by carefully measuring time only
for executing code that is in the original binary and not for the
instrumentation code. We read the cycle counter right before
path execution begins and again right after it exits. This will
provide the most accurate time for how long execution took
for the path. Still, we believe there is a small bias introduced
by the call to the TimeStamp counter and the additional branch
instructions. We have collected results for bias analysis, and
discovered that this bias is extremely consistent across all pro-
file instantiations.

This addresses the second point, in that the bias is system-
atic and can be removed from the measurements. Since we are
looking at timing variations between iterations of a path, the
actual size of the bias is not as important as the consistency of
the bias. We found that the bias is small and systematic. In
addition, we found it is sufficient to sample once every 10,000
path iterations, which carries a small overhead of less than 5%
slowdown.

Profiling an execution to completion produces a file with
all the sampled paths’ timings, branch histories, and PCs. A
timing for a path consists of two time stamps: one before the
path executes and one after exiting the path. To compute the
path execution time we subtract the entry time from the exit
time. This will provide a precise duration in cycles of how
long the path executed. We describe in the following section

how we use this data to analyze the path variation.

5 Path Variational Analysis and Opti-
mization

In this section we describe how we use the data profiled with
Bursty Tracing to analyze path variation and select paths with
the highest net variation for optimization.

5.1 Path Variability and Picking the Top N Variable
Paths

Bursty Tracing collects profiles for all paths that execute more
than the sampling rate- (1 sample for every 10,000 path itera-
tions). Each path profile contains three data types that we use
in analyzing path variability:

1. Path entry point: PC

2. Path branch history as a string of bits

3. A cycle count of how long it took to execute the path

We combine the path PC and branch history bits to form a
path signature as a PC-branch history. This signature precisely
indicates where in the code the path begins, and a mapping
through all the branches until the path exits. It also captures
path length in terms of number of basic blocks. For exam-
ple, the path signature, 0x0040211F-110, means the path
starts at PC=0x0040211F, executes through the first two taken
branches and a third non-taken branch, and is 3 basic blocks
long.

We use the path signature to filter for each unique path’s
time samples. We keep only the paths for which we have two
or more time samples; the minimum required for measuring
variability. We now describe the analysis to compute the path
variation from a unique path’s execution times.

The variation analysis on a path computes a measure-
ment of variability: how much time variation the path ex-
hibits which has potential for optimization. We first compute
a path’s basetime, which is the minimum execution time we

4

observe for a path. Next, we compute a time delta for each of
the other path times by subtracting the basetime from it. These
time deltas signify how much extra time the path executed for.
The net path variability is then computed by summing up all
the time deltas.

We define the path net variation time for a single path i as
follows:

path net variation time(i) = total path execution time(i) –
(path frequency(i) x (path basetime(i)))

This path net variation time represents the potential execution
time savings if all executions of that path took the basetime
to execute. This is an ideal potential, but the ramifications of
optimizing a portion of the path variation can be substantial.
We use this path net variation time metric to rank paths.

5.2 Path Variability Analysis

Figure 2 is a histogram of time deltas for bzip2 for the top
five paths with highest net variability (one line for each path).
The x-axis measures time variations relative to the basetime,
where the origin denotes the basetime. The further along the
x-axis the larger the time delta is for a path sample from the
basetime. The y-axis measures the frequency of paths that oc-
cur for each time delta. We can see that for each of the paths
illustrated, a substantial portion of execution time is spent with
a high time delta (distance from origin). The path net varia-
tion time can be measured in this graph by computing the area
under a curve. In addition, the spikes likely correspond to
accesses missing at different levels of the memory hierarchy.
Since paths include multiple load instructions, some of which
may hit while others miss, these spikes are not always sharply
defined.

Figure 3 shows the net variation time (total execution time
above path basetime) for the benchmarks examined executing
the reference inputs. For each of the benchmarks the net varia-
tion time for the top ten paths are plotted, where the path with
the largest amount of variation is on the bottom. The y-axis
measures percent of path net variation time relative to the total
program execution time that is spent in the top 10 path vari-
ations. The percent execution time shown here represents the
optimization opportunity and speedup that exists if we could
make each invocation of the path execute in the shortest time
that we observed during sampling (basetime). Consider the
top variation path in vortex. It’s net variation consumes more
than 30% of execution time. If we can optimize this path to re-
move half the variation, we would achieve a 15% speedup. On
average, the net variation in the top ten paths consume more
than 43% of execution time and only the dominant path’s net
variation accounts for more than 17% of execution time. This
is encouraging for developers, since the majority of variation
optimization potential can be exploited by focusing on a few
of the top paths.

0

10

20

30

40

50

60

70

am
m

p ar
t

bz
ip

eq
ua

ke gc
c

m
cf

pa
rs

er
tw

olf

vo
rte

x
vp

r
av

g

%
 E

xc
ut

io
n

T
im

e

Figure 3: Path variation for the top ten paths. Results show
the path net variation time for the benchmarks examined exe-
cuting the ref inputs. For each of the benchmarks the path net
variation time for the top ten paths are plotted, where the path
with the largest amount of net variation is on the bottom. The
y-axis measures percent of execution time relative to the total
program execution time that is spent in path variations. The
percent execution time shown here represents the optimization
opportunity and speedup that exists if we could make each in-
vocation of the path execute in the smallest amount of time
that we found during sampling (basetime).

5.3 Path Variation Stability
The previous section showed the potential savings from the net
variations of the top ten paths. If we apply an optimization to a
path with high net variation it may achieve significant speedup
under conditions in which the path variations were collected,
but we also want the optimization to be effective across inputs
and system conditions. This entails measuring the stability of
paths with high net variation across these different conditions.
In this section we show that the paths with highest net varia-
tion are stable across different input and system loads.

5.3.1 System Load Stability
System load measures how strained the resources are during
program execution. Heavy system load would mean CPU
contention and the strain on memory structures will cause
more misses and stalls during execution. These misses may
cause significant variations to appear that are non-existent un-
der light system load. On the other hand, variations experi-
enced with a light-system load may drown out from higher
variations caused by heavy system load.

We conducted an experiment to find if path variations are
stable across system load. We computed path variations with
a light system load and also with a heavy system load. For the
light system load no applications were executing during exper-
imentation except for a few essential OS background services.
For the heavy system load we strained the system with a 3-D
graphics game, Unreal Tournament [4], during program path

5

0

10

20

30

40

50

60

70

80

90

100

ammp art bzip equake gcc mcf parser twolf vortex vpr avg

%
 E

xe
cu

tio
n

T
im

e

low load top 10
low load w/ top in both
high load top 10
high load w/ top in both

Figure 4: Stability of variational paths found under different system loads. The y-axis measures percent of execution time. The
first and third bars show the net path variations of the top ten paths under light and heavy system load respectively. The second
bar shows the net path variations under light system load, for the 10 paths found under heavy system load. The fourth bar is
like the second bar, but the net variation in execution time shown is for the top ten paths found under light load.

0

10

20

30

40

50

60

70

80

ammp art bzip equake gcc mcf parser twolf vortex vpr avg

%
 E

xe
cu

tio
n

T
im

e

normal load - all path variations
normal load - top 10 self trained
normal load - top 10 cross trained

Figure 5: Stability of variational paths across inputs. The first bar shows the net variation in execution time for all paths in
each program. The second bar shows the self-trained top ten path net variation for the ref input. The third bar shows the
cross-trained net path variation for the ref input using the training input to pick the top 10 paths.

0

0.25

0.5

0.75

1

1 101 201 301 401 501 601

Time Variations Relative to Fastest Path Execution

N
u

m
b

er
 o

f
O

cc
u

ra
n

ce
s

Figure 6: Foxpro variational path histogram. This shows the top 5 ranked paths with variation from the basetime. The x-axis
measures time variations relative to the basetime, where the origin denotes the basetime. The further along the x-axis the larger
the time delta is for a path sample from the basetime. The y-axis measures the normalized number of paths that had that much
variation (x-axis) from the minimum timed basetime path.

6

profiling. The game running during profiling cause the pro-
gram to execute between 2 and 5 times slower.

Figure 4 shows results of the experiment for the 10 bench-
marks. The y-axis measures percent of execution time. The
first and third bars show the path net variations of the top ten
paths under light and heavy system load, respectively. The
second bar shows the path net variations under light system
load for the top ten variational paths found from profiles col-
lected under heavy system load. This measures how stable the
paths found under heavy system load are when the program is
run under light system load. The fourth bar is like the second
bar, but the top ten variational paths were chosen using the
light load before calculating the net variation using the heavy
load samples. These results show that the same paths exhibit
high net variation under light and heavy system load condi-
tions. Another interesting observation is the significant differ-
ence in net variation time consumed under the different loads.
On average we see that the net variation in the top ten paths
consume about 25% of execution under light system load, but
over 70% under heavy system load. The second and fourth
bar results are encouraging, since it implies that the top vary-
ing paths are consistent across the different loads.

5.3.2 Cross Input Stability
Just as system load can cause deviations in a program execu-
tion, different inputs can cause execution behavior to change
dramatically as shown in [12]. A heavily executed proce-
dure under one input may become dormant with another input.
Therefore we need to examine the stability of the top varying
paths across inputs.

To measure how stable the top paths are across inputs
we collect path variations for the benchmarks with the train
and ref inputs under normal system load. Normal system
load is similar to light system load, except that special care
wasn’t taken to minimize the system load and there may be
lightweight applications running in the background (e.g. text
editor). We compute the net variation for the top ten paths
for the ref input, called self-trained. Then we compute the net
variation for the ref input using the top 10 paths found using
the training input, called cross-trained. These results are seen
in Figure 5. The first bar shows the execution time from only
the net variation for all paths in each program for the ref input.
The second bar shows the self-trained top ten path variations
also for the ref input. The third bar shows the cross-trained
path net variations for the ref input but using the training input
to pick the top 10 paths. The similar heights between the first
bar and the second and third bars signifies that using the top
ten path variations account for the majority of all path varia-
tions for most of the programs. The high correlation between
the net variations seen between the second and third bars im-
plies that the top varying paths are stable across the train and
ref inputs.

The results show that there are programs where the top ten
paths do not capture the majority of all path variation. This
is the case with bzip2 , gcc and parser. In those pro-

0

5

10

15

20

25

am
m

p ar
t

bz
ip

eq
ua

ke gc
c

m
cf

pa
rs

er
tw

olf

vo
rte

x
vp

r
av

g

%
 S

p
ee

d
u

p

Figure 7: Speedup results from applying simple prefetching
optimizations to the paths with high net variation.

grams the top paths exhibit lower variation relative to other
programs’ top paths. We have found this due to two factors.
First, some programs do not have a small group of paths that
dominate the execution, so looking at more than the top 10
variational paths is needed to capture most of the potential
path variation in the program. Second, some programs have
many paths, where no individual path has a high net variation.
This occurs more for highly optimized programs, and also for
programs where the compiler and hardware do a great job at
hiding memory latency, which is the case for parser.

5.4 Optimizing Variational Paths
We now examine the top paths that are found for the bench-
marks running on the training input and report the perfor-
mance speedup from applying very simple optimizations to
those paths with the reference input. Cross-trained path rank-
ings are stable as was shown in Section 5.3.2. We examine the
top one to four paths in each program, and we found that they
typically point to loops. For these, the main explanation for
the variation was due to memory stalls. Some of the time the
same exact path through the loop would incur no cache misses,
whereas other times that path would have cache misses. We
applied the following algorithm by hand to perform a prefetch-
ing optimization to the top few net variational paths in each of
the SPEC programs:

1. Find all data references in the variational path to be opti-
mized. There were usually only a few loads.

2. For each data reference, insert a prefetch to the data to be
accessed in the next iteration of the loop, or two iterations
in advance. The address to be prefetched was either an
array index, which was an easy calculation, or a pointer
chain, where the next iteration pointer chain was followed.

3. Insert an if clause before the prefetch and address compu-
tation to avoid prefetching beyond the bounds of the data
access or following a null pointer.

The above algorithm was applied manually in all of the
experiments and we were able to optimize each of these paths

7

in a matter of minutes applying very simple prefetching op-
timizations to achieve speedups ranging from 2% to 19%.
The optimizations use the Streaming SIMD Extension [3]
_mm_prefetch() to prefetch a data address into the L2
cache. Figure 7 shows the percent savings in execution time
from these optimizations. The variational path profiles from
the training input were used to guide the optimization, and
performance results are shown for the ref inputs. The results
show the power of knowing paths in which there are variations
to easily exploit, and how easy it was to use our profiler to find
the top paths and optimize them to exploit this variation. Even
with this simple optimization strategy we were able to reduce
the net variation in the paths that were optimized by 41% on
average.

To gain more insight into what we did, Figures 8, 9, and 10
show the optimizations we performed on vpr, art and mcf
for the paths with the highest net variation. Figure 8 is source
code from vpr that forms the path with highest variation. This
path variation is responsible for almost 30% of execution time.
The optimization code is marked with **. In this example we
have a heap being traversed in geometric strides, and an el-
ement is compared and pointer swapped with ones that have
been visited in the previous iteration. A simple prefetching
optimization has been inserted for this path, based on the as-
sumption that some accesses to the heap miss and cause the
variation in execution times. We prefetch the heap element
that will be accessed two iterations in the future. A condition
is set for the prefetch to guarantee that we never attempt to
access an element that is beyond the bound of the heap. This
2 line optimization we applied to vpr achieves nearly 10% in
speedup on the ref input.

Another optimization example is shown for art in
Figure 9. In this example a nested for-loop in another
for-loop accesses two elements, f1_layer[ti].P and
bus[ti][tj], computes their product and stores it in
Y[tj].y. The main culprit of variation in this path is
bus[ti][tj], since after the first iteration of the outer for-
loop, all the elements accessed in f1_layer[ti].Pwill be
warm in the cache. The optimization code inserted in this code
segment is marked with **. It bootstraps the outer for-loop to
prefetch elements of bus[ti][tj] that will be accessed in
the next iteration of the outer for-loop. The if-statement in
line 4 is inserted to verify that we do not prefetch beyond the
bounds determined by the outer for-loop. This condition will
hold true for every iteration of the outer loop, except the last
one. We do not achieve speedup for the first iteration, since
prefetching is done for elements used in the second outer for-
loop iteration and up. Line 6 is the prefetching instruction and
lines 5 and 7 do the original operation as seen in lines 9 and
10. Similar optimizations are applied to 3 other top paths in
art. They result in 13% speedup on the ref input.

Yet another optimization example is shown for mcf in Fig-
ure 10. Here we have a loop that traverses a linked list, and
performs operations on the nodes depending on what condi-

tions hold (e.g. line 10, 16, 17, and 22). A few data ele-
ments in this loop are being reused across the entire life of the
loop, and the elements which cause variations are those depen-
dent on the linked list nodes being traversed. The optimization
strategy here is similar to the previous two, where we prefetch
data at the start of the loop (lines 4-9) to be used in the next
iteration. A condition is imposed on the prefetch operations to
check if the next node exists. The data prefetched is used in
the if-condition in line 10. A more implicit prefetch happens
in line 4, where we check if the next node in the list exists.
This access preempts the access that eventually happens in line
26. The potential advantage in doing this access earlier is that
it can interleave a miss-penalty with other miss-penalties that
can occur during the main body of the loop. Including this op-
timization, we applied 2 more optimizations to the top 3 paths
in mcf to achieve a speedup of 19%.

Simple prefetch optimizations like the ones described have
been applied to the top few paths in each of the programs. On
average we achieve a speedup of 8.5%. This is encouraging
since the analysis and optimization can be done on a program
in a matter of minutes. For the programs that have high net
variation in the top 3 paths (art, mcf, vortex, vpr),
we see a correspondence with higher speedup achieved (Fig-
ure 7). For the programs that exhibit lower top path variability
(e.g. gcc and parser), we find that less speedup is achieved
relative to the other programs. This correlation reinforces our
claim that Variational Path Profiling determines paths in the
program that deserve optimization, as well as indicate poten-
tial speedup gains from applying the optimization.

5.5 Comparison to Hot Path Techniques
In this section we compare VPP with other hot path profiling
techniques. Generally, the critical hot paths in a program are
often captured by most hot path profiling techniques. The ad-
vantage in VPP is that it identifies the paths that have a high
potential for optimization due to execution time variation. In
addition, it finds paths that are not always found in the top
rankings using other methods, especially once some of the hot
paths have already been highly optimized.

A common technique to determine hot paths is based on
their frequency of execution [10]. The hot paths are those that
execute most often. This approach is good in finding the hot
paths in a program, especially the first time the program is to
be optimized. If those paths are heavily optimized but still exe-
cute the same number of times, this method will still rank these
paths as the hottest. A programmer without prior knowledge
of these optimizations may concentrate on these paths even
though they may no longer have substantial optimization gain.
Another method to rank hot paths is based on their net execu-
tion time. This method simply aggregates the total time spent
in a path throughout the entire execution. It does not involve
any variation analysis that is used in VPP. In VPP the ranking
of hot paths is not based on frequencies or just total time spent
in a path but rather on the net execution time variations. Once
a hot path is optimized, it is likely to have a lower net perfor-

8

1 while (ito < heap_tail) {
2 if (heap[ito+1]->cost < heap[ito]->cost)
3 ito++;
4 if (heap[ito]->cost > heap[ifrom]->cost)
5 break;
6** if (ito*8 < heap_tail)
7** _mm_prefetch((char*)&heap[ito*8]->cost, 1);
8 temp_ptr = heap[ito];
9 heap[ito] = heap[ifrom];
10 heap[ifrom] = temp_ptr;
11 ifrom = ito;
12 ito = 2*ifrom;
13 }

Figure 8: Optimization example: vpr

1 for (tj=0;tj<numf2s;tj++) {
2 Y[tj].y = 0;
3 if (!Y[tj].reset) {
4** if(tj < (numf2s -1)) {
5** for (ti=0;ti<numf1s;ti++) {
6** _mm_prefetch((char*)&(bus[ti][tj+1]), 1);
7** Y[tj].y += f1_layer[ti].P * bus[ti][tj];
8** }
9 } else
10 for (ti=0;ti<numf1s;ti++)
11 Y[tj].y += f1_layer[ti].P * bus[ti][tj];
12 } }

Figure 9: Optimization example: art

1 while(arcin)
2 {
3 tail = arcin->tail;
4** if ((arc_t*)tail->mark) {
5** _mm_prefetch((char*)
6** &(((arc_t*)tail->mark)->tail->time),1);
7** _mm_prefetch((char*)
8** &(((arc_t*)tail->mark)->org_cost),1);
9** }
10 if(tail->time + arcin->org_cost > latest) {
11 arcin = (arc_t *)tail->mark;
12 continue;
13 }
14 red_cost = compute_red_cost(arc_cost, tail,
15 head_potential);
16 if(red_cost < 0) {
17 if(new_arcs < MAX_NEW_ARCS) {
18 insert_new_arc(arcnew, new_arcs, tail,
19 head, arc_cost, red_cost);
20 new_arcs++;
21 }
22 else if((cost_t)arcnew[0].flow > red_cost)
23 replace_weaker_arc(arcnew, tail, head,
24 arc_cost, red_cost);
25 }
26 arcin = (arc_t *)tail->mark;
27 } }

Figure 10: Optimization example: mcf

0

1

2

3

4

5

6

7

8

9

10

ar
t

eq
ua

ke

am
m

p

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

fo
xp

ro

pc
 g

am
e

m
ul

tim
ed

ia

av
g

D
iff

 in
 T

op
 1

0
V

ar
ia

tio
na

l P
at

hs Hot Path Ranking

Time Ranking

Figure 11: Difference in paths found with two common hot
path methods to those found with VPP. The hot path ranking
bar for each program shows how many of the top ten paths
are different between the frequency based approach and VPP.
The time ranking bar shows how many of the top ten paths are
different between the total time based approach and VPP.

mance variation and thus may no longer be ranked hot. The
dynamic nature of the VPP hotness ranking will usually target
paths that have high potential for performance improvement.

To demonstrate the advantage of VPP over the frequency
and total time based hot path approaches we compute the hot
paths using both techniques on the SPEC benchmarks and
some highly optimized industry programs – foxpro [1], a
pc game, and a multimedia application. These last three pro-
grams have been highly optimized at Microsoft. Figure 11
shows the number of top 10 net variation paths that were not
found in the top 10 hot paths based on path occurrence or to-
tal execution time. The hot path ranking bar for each pro-
gram shows how many of the top 10 VPPs are not found in
the top 10 most frequent paths. The time ranking bar shows
how many of the top 10 VPPs are not found in the top 10 paths
based on time. The results show that for the SPEC programs
the hot path ranking and the VPP ranking are similar. For the
SPEC2000 benchmarks the biggest difference from the top ten
hot paths between the two techniques was bzip2, which de-
viated by 4 paths (4 of the top 10 VPPs were not found in the
top 10 hot path ranking).

Unlike the SPEC2000 programs, the top ten hot paths for
the highly optimized Microsoft applications found using VPP
have only a few paths in common with those found with the
frequency and total time based approaches. The only excep-
tion is foxpro with the total time based approach. This is a
significant difference as compared to the number of common
hot paths found for the SPEC2000 (on average more than 9
paths in common). The most frequent paths in these programs
have been optimized, and as a consequence they have lower
net performance variations. VPP finds hot paths that have the
greatest net performance variations, regardless of frequency
or prior optimizations. For these commercial applications, we
could not get access to the source in a timely manner to apply

9

our optimization. Instead, we looked at the top paths in more
detail as shown in Figure 6, which shows a histogram of time
deltas for foxpro for the top five paths with highest variabil-
ity (similar to Figure 2). The results show similar ranges of
variability as in the SPEC programs top net variational paths.

Another common technique for finding hot paths utilizes
the VTune [5] performance profiler. We have extensive expe-
rience with using Vtune hot paths to identify hot regions and
use this as a basis for optimization, including on the SPEC
benchmarks. However, with several days effort we have not
been able to obtain the amount of benefit that was obtained
using the VPP information in significantly less time. The rea-
son is that the majority of the hot paths have low variation in
commercial applications we are examining. The advantage of
VPP is that it pinpoints a small subset of hot paths (10 appears
sufficient) that have this additional variational property and
consequently focuses optimization effort on these high oppor-
tunity areas as was demonstrated.

6 Summary
In this paper we present a new type of profiling analysis
called Variational Path Profiling (VPP). VPP pinpoints ex-
actly where in the program there are significant optimization
opportunities for speedup. VPP records the execution time
it takes to execute frequent acyclic control flow paths using
hardware performance counters. From this timing analysis
we find that a program path can have significant variation in
its execution time across different dynamic traversals in the
same program run. This variation (the difference between the
fastest execution of that path and slower executions) repre-
sents the potential speedup one could achieve if we could op-
timize away these variations.

We present a profiling and analysis approach to find these
variational paths, so that they can be communicated back to a
programmer to guide optimization. The goal for concentrat-
ing on a path with high net variation in its execution time is
that it can potentially be optimized so that all executions of
that path have the minimal execution time seen during profil-
ing. In examining the top 10 variational paths, we found that
they pointed to loops with memory stalls during some paths
of execution and not others. In a matter of minutes, we were
able to manually apply a very simple optimization algorithm
to these loops to achieve speedups ranging from 2% to 19%.
This shows the power of knowing paths in which there are
variations to exploit, and how easy it was to use our profiler to
find the top paths and optimize them to exploit this variation.

We compare VPP with traditional hot path profiling tech-
niques (e.g. path hotness based on path frequency and total
time spent in a path). The advantage of VPP is seen when a
program has been heavily optimized and those paths no longer
show as much variation. In comparison, the frequency based
approach of hot path profiling will keep pointing to the same
hot paths even though they may no longer have as much opti-

mization gains, whereas VPP will expose new paths that have
the greatest potential for optimization. The key benefit of VPP
is that it identifies the paths that have high potential for opti-
mization due to the variation found during profiling.

7 Acknowledgments
We would like to thank the anonymous reviewers for their
comments. This research was supported by Microsoft, and
NSF grants CNS-0311683 and CCF-0311710.

References
[1] Microsoft visual foxpro 7.0. http://msdn.microsoft.com/vfoxpro/.

[2] Microsoft visual studio .net. http://msdn.microsoft.com/vstudio/.

[3] Streaming simd extension. http://msdn.microsoft.com/library/.

[4] Unreal tournament. http://www.unrealtournament.com/.

[5] Vtune performance analyzer.
http://www.intel.com/software/products/vtune/.

[6] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware
performance counters with flow and context sensitive profiling. In SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, pages 85–96, 1997.

[7] Glenn Ammons and James R. Larus. Improving data-flow analysis with
path profiles. In SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 72–84, 1998.

[8] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,
Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T.
Vandevoorde, Carl A. Waldspurger, and William E. Weihl. Continuous
profiling: where have all the cycles gone? In Proceedings of the six-
teenth ACM symposium on Operating systems principles, pages 1–14.
ACM Press, 1997.

[9] Matthew Arnold and Barbara G. Ryder. A framework for reducing the
cost of instrumented code. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 168–179, 2001.

[10] Thomas Ball and James R. Larus. Efficient path profiling. In Interna-
tional Symposium on Microarchitecture, pages 46–57, 1996.

[11] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger, William E. Weihl,
and George Z. Chrysos. Profileme : Hardware support for instruction-
level profiling on out-of-order processors. In International Symposium
on Microarchitecture, pages 292–302, 1997.

[12] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Workload de-
sign: Selecting representative program-input pairs. In Proceedings of the
2001 International Conference on Parallel Architectures and Compila-
tion Techniques (PACT’02), 2002.

[13] J. Gosling, B. Joy, and G. Steele. Hiprof advanced code performance
analysis through hierarchical profiling.

[14] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for low-
overhead temporal profiling. 2001.

[15] James R. Larus. Whole program paths. In Proceedings of the ACM
SIGPLAN 1999 conference on Programming language design and im-
plementation, pages 259–269. ACM Press, 1999.

[16] David Melski and Thomas W. Reps. Interprocedural path profiling. In
Computational Complexity, pages 47–62, 1999.

[17] T. C. Mowry and C.-K. Luk. Predicting data cache misses in non-numeric
applications through correlation profiling. In International Symposium
on Microarchitecture, December 1997.

[18] A. Srivastava, A. Edwards, and H. Voi. Vulcan: Binary transformation
in a distributed environment. Microsoft Research, 2001. Techical Report
MSR-TR-2001-50.

[19] EJ technologies’ JProfiler.
http://www.ej-technologies.com/products/jprofiler/overview.html.

10

