
IEEE International Symposium on Performance Analysis of Systems and Software, March 2004

Structures for Phase Classification

Jeremy Lau Stefan Schoenmackers Brad Calder

Department of Computer Science and Engineering
University of California, San Diego
{jl,sschoenm,calder}@cs.ucsd.edu

Abstract

Most programs are repetitive, where similar behavior can
be seen at different execution times. Proposed algorithms
automatically group these similar intervals of execution into
phases, where all the intervals in a phase have homogeneous
behavior and similar resource requirements.

In this paper we examine different program structures for
capturing phase behavior. The goal is to compare the size
and accuracy of these structures for performing phase clas-
sification. We focus on profiling the frequency of program
level structures that are independent from underlying archi-
tecture performance metrics. This allows the phase classifi-
cation to be used across different hardware designs that sup-
port the same instruction set (ISA). We compare using basic
blocks, loop branches, procedures, opcodes, register usage,
and memory address information for guiding phase classifi-
cation. We compare these different structures in terms of their
ability to create homogeneous phases, and evaluate the ac-
curacy of using these structures to pick simulation points for
SimPoint.

1 Introduction
The behavior of a program is not random - as programs ex-
ecute, they exhibit cyclic behavior. Recent research [1, 4, 5,
11, 12, 13, 10, 7], has shown that it is possible to accurately
identify and predict these phases in program execution.

To identify phases, we break a program’s execution into
contiguous non-overlapping intervals. An interval is a contin-
uous portion of execution (a slice in time) of a program. All
the results in this paper use a fixed interval size of 10 million
instructions. A phase is a set of intervals within a program’s
execution that have similar behavior, regardless of temporal
adjacency. This means that a phase may appear many times
as a program executes. Phase classification partitions a set of
intervals into phases with similar behavior. The phases that
we discover in this paper are specific to the input used to run
the program.

Our prior work [11, 12, 10] showed that it is possible to
accurately perform phase classification by only examining the
code executed. In this paper, we compare the use of many
program level structures to guide phase classification. The
goal is to compare the size and accuracy of these structures
for performing phase classification. We explore the trade-offs
of detecting phase behavior by profiling basic blocks, loop

branches, procedures, the instruction mix, register usage, and
memory address information. We compare and contrast the
effectiveness of each program structure for phase classifica-
tion and to guide the picking of simulation points for Sim-
Point.

2 Methodology and Metrics
We performed our analysis for the SPEC 2000 programs
ammp, bzip, galgel, gcc, gzip, mcf, and perl. All
programs were run with reference inputs, and bzip, gcc,
gzip, and perl were run with multiple inputs. When calcu-
lating averages for the results, programs with multiple inputs
are first averaged, so each program has only one representa-
tive result in the overall average. All programs were executed
from start to completion using SimpleScalar [2] to gather the
performance at 10 million intervals for the complete execu-
tion of the program. We log and reset the statistics every 10
million instructions. The baseline microarchitecture model is
detailed in Table 1. We chose the above programs since they
were the most interesting and challenging for phase classifi-
cation from our prior studies. We collect all of the frequency
vector profiles using ATOM [14].

2.1 Metrics for Evaluating Phase Classification
Since phases are intervals with similar program behavior, one
way to measure the effectiveness of phase classification is to
examine the similarity of program metrics within each phase.
We focus on overall performance in terms of Cycles Per In-
struction (CPI) within each phase. After classifying a pro-
gram’s intervals into phases, we examine each phase and cal-
culate the average CPI of all intervals in the phase. We then
calculate the standard deviation in CPI for each phase, and we
divide the standard deviation by the average to get the Coef-
ficient of Variation (CoV). CoV measures standard deviation
as a percentage of the average.

We use the CoV to compare different phase classifica-
tion algorithms. Better phase classifications will exhibit lower
CoV. If all of the intervals in the same phase have exactly the
same CPI, then the CoV will be zero. We calculate an overall
CoV metric for a phase classification by taking the CoV of
each phase, weighting it by the percentage of execution that
the phase accounts for, and then summing up the weighted
CoVs. This results in an overall metric we can use to compare
different phase classification algorithms for a given program.

1



I Cache
16k 4-way set-associative, 32 byte blocks, 1 cycle
latency

D Cache
16k 4-way set-associative, 32 byte blocks, 1 cycle
latency

L2 Cache
128K 8-way set-associative, 64 byte blocks, 12 cy-
cle latency

Main Memory 120 cycle latency

Branch Pred
hybrid - 8-bit gshare w/ 2k 2-bit predictors + a 8k
bimodal predictor

O-O-O Issue
out-of-order issue of up to 4 operations per cycle, 64
entry re-order buffer

Mem Disambig load/store queue, loads may execute when all prior
store addresses are known

Registers 32 integer, 32 floating point

Func Units
2-integer ALU, 2-load/store units, 1-FP adder, 1-
integer MULT/DIV, 1-FP MULT/DIV

Virtual Mem
8K byte pages, 30 cycle fixed TLB miss latency after
earlier-issued instructions complete

Table 1: Baseline Simulation Model.

It represents the average percentage of deviation that a phase
classification exhibits.

3 Phase Classification and SimPoint
The focus of this research is to investigate the use of different
program information to guide automated phase classification.
In this section we summarize the SimPoint phase classifica-
tion approach used.

3.1 Profiling Granularity
To identify phases, we first need to decide how frequently we
will monitor the program’s behavior. We divide the execution
of each program into contiguous non-overlapping intervals,
each of length 10 million instructions. Our prior work [13, 10]
showed that there is repetitive and interesting phase behav-
ior seen at a granularity of 10 million instructions, which is
at the same time scale as operating system time slices. We
gather profile information every 10 million instructions exe-
cuted, and afterwords we run the SimPoint phase classifica-
tion algorithm on this data.

3.2 Data Structures Used to Capture Phase Behavior
The following data structures have been proposed for collect-
ing profiling information for each interval to guide phase clas-
sification.

• Working Set Size - For each interval of execution, one
would keep track of the total working set size of the in-
formation being profiled. For data, this may mean keeping
track of the total number of unique words or pages refer-
enced at least once within each interval. Similarly, for code
one could keep track of the number of unique basic blocks
executed at least once for a given interval.

• Working Set Bit Vectors - For each interval of execution, a
bit vector keeps track of whether a given item has been en-
countered or not during that interval. Bit vectors are more
expressive than working set size, since bit vectors can dis-
tinguish intervals with the same working set size but where
different items (e.g., code or data addresses) are accessed.

• Frequency Vectors - For each interval of execution, a vec-
tor records the frequency in which profile items are en-
countered. This is similar to working set bit vectors, but
instead of just keeping track of whether the item was ref-
erenced or not, we keep track of the number of times each
item was referenced. Frequency profiles are more expres-
sive than bit vectors, because they indicate which parts of
the working set are being used more than others. For ex-
ample, frequency vectors can be used to differentiate two
intervals which execute the same parts of code, but hap-
pen to exercise the code differently (e.g., they emphasize
different paths through a loop).

Dhodapkar and Smith [5, 4] proposed the use of bit vec-
tors to track the code’s working set for phase classification.
Sherwood et.al. [11, 12] proposed the use of frequency vector
profiles to perform phase classification. Frequency vectors
track the proportions in which code was executed during each
interval, while bit vectors track which parts of code are exe-
cuted (the working set), without the use of relative frequencies
of execution.

Dhodapkar and Smith [6] recently conducted a study
where they compare basic block frequency vectors, to bit vec-
tors of procedures, branches, and instructions with the goal of
detecting phase changes in programs. Their study focused on
phase change detection, while we focus on phase classifica-
tion, which are two very different problems. Phase classifica-
tion is the problem of grouping together all of the program’s
execution intervals that have similar behavior, regardless of
temporal adjacency. Phase change detection is the problem
of identifying phase changes in temporally adjacent execution
intervals. In [6], they found working set bit vectors to perform
as well as frequency vectors for phase change detection.

In this work we examined all three of these techniques
for automated phase classification, but only report results for
frequency vectors due to space considerations. Working set
bit vectors and working set size are sufficient for identifying
phase changes, but they did not provide sufficient resolution
for our off-line phase classification, when compared to fre-
quency vectors.

3.2.1 Basic Block Frequency Vectors
Our prior approach used the Basic Block Vector (or
BBV) [11] as a metric designed to capture information about
changes in a program’s behavior over time. A basic block
is a single-entry, single-exit section of code with no internal
control flow. More formally, a Basic Block Vector (BBV) is a
one dimensional array, where each element in the array corre-
sponds to one static basic block in the program. We start with
a BBV containing all zeroes at the beginning of each interval.
During each interval, we count the number of times each ba-
sic block in the program has been entered, and we record the
count in the BBV. For example, if the 50th basic block is ex-
ecuted 15 times, then bbv[50] = 15. For the weighted results
in Section 4, we multiply each count by the number of in-
structions in the basic block, so basic blocks containing more

2



instructions will have more weight in the BBV. Finally, at the
end of each interval, we normalize the basic block vector by
dividing each element by the sum of all the elements in the
vector.

We use BBVs to compare the intervals of the application’s
execution. The intuition behind this is that the behavior of the
program at a given time is directly related to the code exe-
cuted during that interval. We use the basic block vectors as
fingerprints for each interval of execution: each vector tells us
what portions of code are executed, and how frequently those
portions of code are executed. By comparing BBVs of two
intervals, we can evaluate the similarity of the two intervals.
If the BBVs are similar, then the two intervals spend about the
same amount of time in roughly the same code, and therefore
the performance of those two intervals should be similar.

In this study, frequency vectors are a generalization of ba-
sic block vectors, where we track the relative frequencies of
events. For example, our loop vectors track the relative fre-
quencies of execution of loop branches. We collect frequency
vectors for many program structures, such as procedures, op-
codes, register usage, instruction mix, and memory access
patterns.

3.3 Using Clustering for Phase Classification
Frequency vectors provide a compact and representative sum-
mary of the program’s behavior for each interval of execu-
tion. By examining the similarity between them, it is clear
that there are high level patterns in each program’s execution.

To exploit phase behavior, it is useful to have an auto-
mated way of extracting phase information from programs.
To break the complete execution of the program into smaller
groups (phases) that have similar frequency vectors, algo-
rithms from Machine Learning (clustering) have been shown
to be very effective [12]. Because the frequency vectors re-
late to the overall performance of the program, grouping in-
tervals based on their frequency vectors produces phases that
are similar not only in the distribution of program structures
used, but also in every other architecture metric measured, in-
cluding overall performance.

The goal of clustering is to divide a set of points into
groups such that points within each group are similar to one
another (by some metric, often distance), and points in dif-
ferent groups are different from one another. A well known
clustering algorithm is k-means [8], and this can be used to
accurately break up program behavior into phases. Random
Linear Projection [3], which reduces the dimensionality of the
input data without disturbing the underlying similarity infor-
mation, can be used to speed up the execution of k-means.
One serious drawback of the k-means algorithm is that it re-
quires a value for k as input, the number of clusters to look
for. To address this, we run the algorithm for several values
of k, and then use a goodness score to guide our final choice
for k. The following steps summarize the phase clustering al-
gorithm at a high level. We refer the interested reader to [12]
for a more detailed description of each step.

1. Profile the program by dividing the program’s execution
into contiguous intervals of size N (e.g., 1 million, 10 mil-
lion, or 100 million instructions). For each interval, col-
lect a frequency vector tracking the program’s use of some
program structure (basic blocks, loops, register usage, etc).
This generates a frequency vector for every interval. Each
frequency vector is normalized so that the sum of all the
elements equals 1.

2. Reduce the dimensionality of the frequency vector data to
15 dimensions using random linear projection. The advan-
tage of performing clustering on projected data is that it
speeds up the k-means algorithm significantly, and reduces
the memory requirements by several orders of magnitude
over using the original vectors.

3. Run the k-means clustering algorithm on the reduced di-
mensional data with values of k from 1 to M , where M is
the maximum number of phases that can be detected. Each
run of k-means produces a clustering, which is a partition
of the data into k different phases/clusters. In this step, the
k-means algorithm compares the similarity of all intervals,
grouping them into phases. Each run of k-means begins
with a random initialization step, which requires a random
seed.

4. To compare and evaluate the different clusters formed for
different k, we use the Bayesian Information Criterion
(BIC) [9] as a measure of the “goodness of fit” of a clus-
tering to a dataset. More formally, the BIC is an approx-
imation to the probability of the clustering given the data
that has been clustered. Thus, the larger the BIC score, the
higher the probability that the clustering is a “good fit” to
the data. For each clustering (k = 1 . . .M ), the fitness of
the clustering using the BIC is scored using the BIC for-
mulation given in [9].

5. The final step is to choose the clustering with the smallest
k, such that its BIC score is at least X% as good as the
best score. The clustering k chosen is the final grouping of
intervals into phases.

The above algorithm groups intervals into phases. We use
the Euclidean distance between vectors as our similarity met-
ric. In this paper, we use the above algorithm with various
types of frequency vectors to evaluate the use of different
program structures to guide phase classification. We set N
(the number of instructions per interval) to 10 million, M (the
maximum value of k) to 100, we try 7 different random seeds
for each value of k, and we set X (the BIC score threshold,
relative to the maximum score) to 90%.

3.4 Using Phase Classification to Guide Simulation
In modern computer architecture research, it is crucial to un-
derstand the cycle level behavior of a processor running an
application. To gain this insight, detailed cycle level simula-
tors are typically employed. Unfortunately, this level of de-
tail comes at the cost of simulation time, and simulating the
full execution of an industry standard benchmark on even the

3



fastest simulator can take weeks or months. Long simulation
times mean that it is only feasible to simulate a small portion
of the program, so it is very important that the section sim-
ulated is an accurate representation of the program’s overall
behavior. The off-line phase classification described above
provides an accurate and efficient solution to this problem.

After the intervals of execution are classified into phases
for each program/input, a single representative from each
phase can be selected, and we can estimate the behavior of the
remaining intervals by performing detailed simulation only on
the representative, and extrapolating. To choose a representa-
tive, we pick the interval that is closest to the center, or cen-
troid, of each cluster. This selected interval for each phase is
called a Simulation Point for that phase [10, 12].

We perform detailed simulation on the selected simulation
points for each phase. The performance results for each simu-
lation point are then weighted by the size of (number of inter-
vals in) the cluster it represents. Combining these weighted
results from each of the simulation points gives an accurate
representation of the complete execution of the program/input
pair, and significantly reduces simulation time. The above ap-
proach is distributed as part of the SimPoint [10, 12] tool.

The goal of our paper is to identify alternative structures
that can accurately and succinctly capture phase information.
This can improve the efficiency of both SimPoint and phase
classification techniques by reducing the amount of informa-
tion that has to be collected and processed. Therefore, when
comparing the different structures for phase classification, we
will also evaluate their accuracy for finding simulation points
to guide SimPoint simulation.

4 Code Phase Classification
In this section we consider tracking code and ISA-based (in-
struction mix and register usage) structures for phase classifi-
cation.

4.1 Control Flow Structures
Our prior work on phase classification is based on basic block
frequency vectors. We therefore start by examining the accu-
racy of phase classifications based on loops and procedures,
and compare this to basic blocks.

For tracking procedures, we create a frequency vector
with one entry for each static procedure in the program. When
tracking loop branch frequency vectors, we create a vector
with a dimension (entry) for every intra-procedural backward
branch. Since we are performing our analysis at the binary
level, we found this to be an adequate approximation for iden-
tifying loop branches.

Table 2 shows the number of static basic blocks, loops and
procedures found for each of our benchmarks. The first num-
ber shows the static frequency vector size for each structure,
and the number in parenthesis shows the percentage of those
static entries that were encountered on average in each inter-
val of execution. The results show that there were 10 times
more basic blocks than loop branches, and twice as many loop

basic block loop procedure
max (avg) max (avg) max (avg)

ammp 15129 (0.5%) 1206 (0.9%) 558 (0.7%)
bzip2 7920 (0.8%) 745 (1.7%) 372 (1.0%)
galgel 44898 (0.2%) 3937 (0.2%) 1234 (0.2%)
gcc 102261 (1.9%) 5383 (2.4%) 2437 (3.4%)
gzip 8769 (2.6%) 806 (2.5%) 384 (3.8%)
mcf 8234 (0.9%) 580 (2.0%) 325 (1.6%)
perl 46310 (2.9%) 2501 (2.3%) 1479 (6.5%)

average 33360 (1.6%) 2165 (1.6%) 970 (3.1%)

Table 2: Maximum vector length, and the average number of
non-zero vector elements. Averages are expressed as a per-
centage of the maximum.

branches as procedures. In terms of what was seen in the exe-
cution of each interval, on average only 543 basic blocks were
executed, 36 loop branches, and 30 procedures.

We examine two types of code vectors – weighted by the
number of instructions executed and unweighted. In the orig-
inal basic block vectors [11], each entry represented the ex-
ecution count of the basic block multiplied by the number
of instructions in each basic block. These are weighted vec-
tors. For unweighted vectors, each vector entry only counts
the number of times the structure was encountered, without
considering the number of instructions executed in the struc-
ture. All results called Basic Block, Loops and Procedures
use the vectors weighted by the instruction frequencies. Un-
weighted results will have UW in front of Basic Block, Loops
and Procedures. We perform this comparison, since it is eas-
ier for a phase tracker to count the number of occurrences of a
basic block, loop, or procedure than it is to count the number
of instructions executed within each. If we can retain phase
consistency and accuracy using only the unweighted informa-
tion, then this can simplify on-line (dynamic) phase identifiers
and trackers.

The weighted structures represent:

• Basic Blocks - Each frequency vector entry indicates the
number of instructions executed in each basic block for the
execution interval.

• Loops - Loop vectors record the number of instructions
executed inside each loop for each execution interval. For
nested loops, an instruction’s execution is only associated
with the current loop nesting level. A loop vector entry
only records the number of instructions executed at its loop
nesting level.

• Procedures - Procedure vectors record the number of in-
structions executed inside (not hierarchical) each proce-
dure for the execution interval.

The unweighted structures represent:

• Unweighted Basic Blocks - Each frequency vector entry
indicates the number of times that basic block was exe-
cuted for the execution interval.

• Unweighted Loops - The frequency vectors record the
number of times each loop branch was executed in an exe-
cution interval.

4



0

5

10

15

20

25

30

35

40

am
mp

bz
ip2

-g
ra

ph
ic

bz
ip2

-p
ro

gr
am

bz
ip2

-s
ou

rce

ga
lge

l

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

int
eg

ra
te

gc
c-

sc
ila

b

gz
ip-

gr
ap

hic

gz
ip-

log

gz
ip-

pr
og

ra
m

gz
ip-

ra
nd

om

gz
ip-

so
ur

ce m
cf

pe
rl-

dif
fm

ail

pe
rl-

sp
litm

ail

av
er

ag
e

C
oV

 o
f C

P
I (

%
)

bb loops procs loops+procs

Figure 1: Average CPI Coefficient of Variation (CoV) per phase for code-based vectors (lower is better). CoV measures
standard deviation as a percentage of the average. We average CPI CoV’s across all phases in each program, producing a
metric that measures the the homogeneity of phases discovered in each program.

0
1
2
3
4
5
6
7
8
9

10

am
mp

bz
ip2

-g
ra

ph
ic

bz
ip2

-p
ro

gr
am

bz
ip2

-s
ou

rce

ga
lge

l

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

int
eg

ra
te

gc
c-

sc
ila

b

gz
ip-

gr
ap

hic

gz
ip-

log

gz
ip-

pr
og

ra
m

gz
ip-

ra
nd

om

gz
ip-

so
ur

ce m
cf

pe
rl-

dif
fm

ail

pe
rl-

sp
litm

ail

av
er

ag
e

C
P

I e
rr

or
 (

%
)

bb loops procs loops+procs

11.5

Figure 2: Percent error in CPI estimation, when code-based vectors are used to guide the selection of simulation points.

0

5

10

15

20

25

30

35

40

am
mp

bz
ip2

-g
ra

ph
ic

bz
ip2

-p
ro

gr
am

bz
ip2

-s
ou

rce

ga
lge

l

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

int
eg

ra
te

gc
c-

sc
ila

b

gz
ip-

gr
ap

hic

gz
ip-

log

gz
ip-

pr
og

ra
m

gz
ip-

ra
nd

om

gz
ip-

so
ur

ce m
cf

pe
rl-

dif
fm

ail

pe
rl-

sp
litm

ail

av
er

ag
e

C
oV

 o
f C

P
I (

%
)

uw bb uw loops uw procs uw loops+procs

Figure 3: Average CPI Coefficient of Variation for unweighted code-based vectors

0
1
2
3
4
5
6
7
8
9

10

am
mp

bz
ip2

-g
ra

ph
ic

bz
ip2

-p
ro

gr
am

bz
ip2

-s
ou

rce

ga
lge

l

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

int
eg

ra
te

gc
c-

sc
ila

b

gz
ip-

gr
ap

hic

gz
ip-

log

gz
ip-

pr
og

ra
m

gz
ip-

ra
nd

om

gz
ip-

so
ur

ce m
cf

pe
rl-

dif
fm

ail

pe
rl-

sp
litm

ail

av
er

ag
e

C
P

I e
rr

or
 (

%
) uw bb uw loops uw procs uw loops+procs

138.9 122.3 34.8 17.0 13.7 16.5 27.9 83.563.7 33.516.4

Figure 4: Percent SimPoint CPI error for unweighted code-based vectors.

5



• Unweighted Procedures - These frequency vectors record
the number of times each procedure was invoked (called)
in an execution interval.

Figure 1 shows the CoV of CPI for weighted basic blocks,
loops, procedures, and the combination of loops with proce-
dures. For Loops+Procs, each execution interval has the loop
vector and procedure vector concatenated, and this higher di-
mension vector is sent to SimPoint to perform phase classi-
fication. The CoV CPI results show that in some instances,
tracking procedures alone works well for phase classifica-
tion, whereas in others (e.g., galgel) tracking procedures
performs worse (identifies less homogeneous). We find that
loop-intensive benchmarks such as galgel, perform signifi-
cantly worse when only tracking procedures, since they can’t
determine the intra-procedural control flow. It can only de-
termine that the program is spending a significant amount of
time somewhere in this procedure. For galgel in particular,
a significant number of intervals fall entirely within a single
procedure. Overall, we find that the use of loop vectors results
in a similar CoV of CPI as basic block vectors. Tracking pro-
cedures alone works well for some applications, and tracking
procedures in addition to loops provides slightly better per-
formance.

Figure 2 shows the error in CPI estimation when we use
these code structures to choose simulation points. One repre-
sentative interval containing 10 million instructions is chosen
from each phase (see Section 3.4). The results show that, for
most benchmarks, tracking only Procedures or only Loops re-
sults in approximately the same CPI errors, whereas combin-
ing the two provides slightly better results (i.e. you get the
best of each method).

Figure 3 shows the CoV in CPI for unweighted code vec-
tors. Comparing these results and the weighted results, we see
that removing the weights does not significantly affect CoV of
CPI for basic block vectors and loop vectors. This result has
promising implications for profilers and on-line phase analy-
sis applications, because it is easier to track unweighted vec-
tors. Procedure vectors, on the other hand, perform quite a bit
worse when the weighting is removed.

Figure 4 shows the error in estimated CPI for unweighted
code vectors. These results show that weights can be useful
for guiding the selection of simulation points. The average
error in estimated CPI doubles for basic block vectors, and
triples for loop vectors. Even so, unweighted Loops+Procs
has an average error rate of 3%.

4.2 Profiling Instruction Mix
An alternative to tracking code constructs is to track the in-
struction mix. To this end, we consider tracking the following
two types of information:

• Memory Instructions - We maintain a vector entry for ev-
ery static load and store instruction in the program. Each
frequency vector entry keeps track of the number of times
each load or store were executed.

0

5

10

15

20

25

30

35

40

am
m

p

bz
ip

2-
gr

ap
hi

c

bz
ip

2-
pr

og
ra

m

bz
ip

2-
so

ur
ce

ga
lg

el

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

in
te

gr
at

e

gc
c-

sc
ila

b

gz
ip

-g
ra

ph
ic

gz
ip

-lo
g

gz
ip

-p
ro

gr
am

gz
ip

-r
an

do
m

gz
ip

-s
ou

rc
e

m
cf

pe
rl-

di
ffm

ai
l

pe
rl-

sp
lit

m
ai

l

av
er

ag
e

C
oV

 o
f C

P
I (

%
)

load+store op

Figure 5: Average CPI Coefficient of Variation for
instruction-based vectors.

0

1

2

3

4

5

6

7

8

9

10

am
m

p

bz
ip

2-
gr

ap
hi

c

bz
ip

2-
pr

og
ra

m

bz
ip

2-
so

ur
ce

ga
lg

el

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

in
te

gr
at

e

gc
c-

sc
ila

b

gz
ip

-g
ra

ph
ic

gz
ip

-lo
g

gz
ip

-p
ro

gr
am

gz
ip

-r
an

do
m

gz
ip

-s
ou

rc
e

m
cf

pe
rl-

di
ffm

ai
l

pe
rl-

sp
lit

m
ai

l

av
er

ag
e

C
P

I e
rr

or
 (

%
)

load+store op

Figure 6: Percent SimPoint CPI error for instruction-based
vectors.

• Opcodes (Instruction Mix) - The frequency vector contains
64 entries, where each entry represents a unique opcode in
the Alpha ISA. Thus, the vector length is fixed for all pro-
grams. The frequency vector for each interval represents
the number of times each opcode was executed.

Figures 5 and 6 show the CoV of CPI and the error in
SimPoint estimated CPI when performing phase classification
based on load/store instructions and the instruction mix.

The results show that tracking either loads and stores or
opcodes performs comparably to tracking basic block vec-
tors in terms of CoV of CPI. When we consider the use of
these vectors for SimPoint CPI estimation, we find that track-
ing loads and stores or opcodes perform slightly worse com-
pared to tracking basic blocks (on average). In particular, the
maximum errors are slightly higher.

6



0

5

10

15

20

25

30

35

40

am
mp

bz
ip2

-g
ra

ph
ic

bz
ip2

-p
ro

gr
am

bz
ip2

-s
ou

rce

ga
lge

l

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

int
eg

ra
te

gc
c-

sc
ila

b

gz
ip-

gr
ap

hic

gz
ip-

log

gz
ip-

pr
og

ra
m

gz
ip-

ra
nd

om

gz
ip-

so
ur

ce m
cf

pe
rl-

dif
fm

ail

pe
rl-

sp
litm

ail

av
er

ag
e

C
oV

 o
f C

P
I (

%
)

def use def+use op+def+use

Figure 7: Average CPI Coefficient of Variation for register-based vectors.

0
1
2
3
4
5
6
7
8
9

10

am
mp

bz
ip2

-g
ra

ph
ic

bz
ip2

-p
ro

gr
am

bz
ip2

-s
ou

rce

ga
lge

l

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

int
eg

ra
te

gc
c-

sc
ila

b

gz
ip-

gr
ap

hic

gz
ip-

log

gz
ip-

pr
og

ra
m

gz
ip-

ra
nd

om

gz
ip-

so
ur

ce m
cf

pe
rl-

dif
fm

ail

pe
rl-

sp
litm

ail

av
er

ag
e

C
P

I e
rr

or
 (

%
)

def use def+use op+def+use

Figure 8: Percent SimPoint CPI error for register-based vectors.

0

5

10

15

20

25

30

35

40

am
mp

bz
ip2

-g
ra

ph
ic

bz
ip2

-p
ro

gr
am

bz
ip2

-s
ou

rce

ga
lge

l

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

int
eg

ra
te

gc
c-

sc
ila

b

gz
ip-

gr
ap

hic

gz
ip-

log

gz
ip-

pr
og

ra
m

gz
ip-

ra
nd

om

gz
ip-

so
ur

ce m
cf

pe
rl-

dif
fm

ail

pe
rl-

sp
litm

ail

av
er

ag
e

C
oV

 o
f C

P
I (

%
)

local stride global stride local stride hash global stride hash loops+local

Figure 9: Average CPI Coefficient of Variation for memory-based vectors.

0
1
2
3
4
5
6
7
8
9

10

am
mp

bz
ip2

-g
ra

ph
ic

bz
ip2

-p
ro

gr
am

bz
ip2

-s
ou

rce

ga
lge

l

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

int
eg

ra
te

gc
c-

sc
ila

b

gz
ip-

gr
ap

hic

gz
ip-

log

gz
ip-

pr
og

ra
m

gz
ip-

ra
nd

om

gz
ip-

so
ur

ce m
cf

pe
rl-

dif
fm

ail

pe
rl-

sp
litm

ail

av
er

ag
e

C
P

I e
rr

or
 (

%
)

local stride global stride local stride hash global stride hash loops+local

12.028.6 26.7

Figure 10: Percent SimPoint CPI error for memory-based vectors.

7



4.3 Phase Profiling Registers
We also consider the use of register usage information to
guide phase classification.

• Register Definitions - We track the number of times each
register number was a destination register in each execu-
tion interval. The Alpha ISA has 32 integer registers, and
32 floating point registers. We do not distinguish between
the floating point and the integer registers (floating point
register 7 and integer register 7 map to the same element
in our vector), so our vectors contain 32 entries for all pro-
grams.

• Registers Used - The number of times each register number
was an operand in each execution interval. This vector also
contains only 32 entries, one for each register number.

We also consider other combinations, such as definitions
+ uses, and opcodes + definitions + uses. When combining
vectors, we concatenate the vectors together, so opcodes +
definitions + uses vectors have 128 entries (64 + 32 + 32),
before feeding them into the SimPoint phase classifier.

Figure 7 shows the CoV of CPI for these vector types.
This graph indicates, as expected, that vectors with more in-
formation and dimensions can be more effective for phase
classification. Figure 8 shows the error in SimPoint estimated
CPI for these vector types. For the benchmarks we consider,
we find that tracking register definitions is most effective for
guiding the selection of simulation points, performing com-
parably to basic block vectors. Since the number of entries
is static for all programs and relatively small, and they result
in an accurate phase classification, register vectors is one of
the most attractive structures from this study. This may be
particularly interesting for a dynamic hardware-based phase
classification architecture.

4.4 CoV of Different Architecture Metrics
We now examine the benefit of using phase information to
guide sampling. We find that samples taken from a single
phase exhibit much less variation in all metrics when com-
pared to samples taken across all intervals. We break the ex-
ecution of a program into intervals of 10M instructions, and
we then calculate the Coefficient of Variation (CoV) over all
of these intervals of execution. This represents the variation
seen when randomly sampling over the complete execution of
the workload.

An issue that arises is the impact of infrequently occurring
events. For example, if a program exhibits very few instruc-
tion cache misses, a small change in the number of instruction
cache misses will appear to be a huge change when we calcu-
late the percentage of change (which is essentially what CoV
measures). To reduce the impact of rare events, we do not
include into the average results for benchmarks where events
do not occur at least once per 1000 instructions executed. We
use this “1/1000 filter” on instruction cache misses, data cache
misses, second level cache misses, and branch mispredictions.

0
20
40
60
80

100
120
140
160

bb
def+use

loops+procs

uw loops+procs

whole programA
ve

ra
ge

 C
oV

 (
%

, 1
/1

00
0 

fil
te

r)

cpi il1 dl1 ul2 br

Figure 11: Average Coefficient of variation per phase for CPI,
instruction cache misses, data cache misses, 2nd level cache
misses, and branch mispredictions. A program contributes
to the average only if it averages at least one miss every 1000
instructions executed. The set of bars marked Whole Program
show the average CoV for each metric over all the intervals
in each program.

Figure 11 shows the average CoV of CPI, instruction
cache misses, data cache misses, second level cache misses,
and branch mispredictions per phase for a selection of the vec-
tor types that we consider. The bars on the far right show the
CoV over a run of the whole program. This graph shows that
the CoV of many architectural metrics are significantly more
stable within the phases we discover than when considering
them across the whole program.

5 Data Phase Classification
In this section, we discuss an evaluation of performing phase
classification based on memory profiling techniques.

• Local Stride - we build a frequency vector that captures
the distribution of strides exhibited by each load or store
in the program. So if we see that a load is accessing mem-
ory location 5, and that load previously accessed memory
location 2, we increment the third (5 − 2) element in our
frequency vector by one.

• Global Stride - similar to local stride, but instead of track-
ing the stride of each load or store in the program, we keep
track of the stride between temporally adjacent memory
accesses (loads and stores are tracked separately). So if we
see a load that accesses memory location 7, and the last
load we saw accessed memory location 3, then we incre-
ment the fourth (7− 3) element in our frequency vector by
one. Global stride vectors are more attractive from a pro-
filing perspective, because the profiler only needs to keep
track of two addresses: the last memory addresses loaded
and stored. In comparison, local stride vectors require the
profiler to keep track of the last memory address accessed
by each load and store.

• Local Stride with PC Hash - same as local stride, except
that we hash the index into the frequency vector with the
lower bits from the PC of the current load or store. By

8



combining an aspect of the code executed with the memory
access pattern, we hope to characterize the code executed
and the data accessed in each interval.

• Global Stride with PC Hash - same as global stride, except
that we hash the index into the frequency vector with bits
from the PC of the current load or store.

• Loops with Local Stride - we concatenate the vectors pro-
duced by the loop tracker with the vectors produced by the
local stride tracker.

It should be noted that these vectors can become very
large. To reduce the amount of data we have to store, we do
not allow memory vectors to grow beyond 200000 elements.
All indices are calculated modulo the max vector size. Lim-
iting the maximum vector size results in collisions, but this
can be thought of as part of the process of random projection,
which occurs before the vectors are clustered.

Figure 9 shows the coefficient of variation in CPI for our
memory-based vectors. our most expressive vectors, the lo-
cal stride with PC hash and local stride with loops, resulted
in the lowest CPI CoV. Global stride vectors produce cluster-
ings with about 7% higher CPI CoV then local, so they may
be an acceptable alternative to local stride vectors for some
applications.

Figure 10 shows the error in calculated CPI when each
type of memory vector is used to guide the choice of simula-
tion points. The combination of loops and local stride produce
one of our lowest errors in estimated CPI. Overall, the CPI er-
ror results for memory vectors are not as consistent as the CPI
CoV results. This is because the estimated CPI error from one
phase to another can be additive or may cancel out. If the rep-
resentative of one phase has lower CPI than the actual average
CPI of the phase, and another representative of another phase
has a higher CPI than the average of that phase, these errors
will be hidden. The converse can also be true in terms of the
errors being additive. This is the reason for there not being a
high correlation between CPI CoV and SimPoint CPI error.

In addition to the memory-based profiling techniques dis-
cussed above, we also experimented with other memory pro-
filing techniques with less success. We briefly describe these
less successful techniques here.

• Memory working set size - we kept track of the number
of unique words of memory accessed during each interval,
with the working set size being a 64-bit unsigned integer.
This is the most space-efficient profiling data structure, but
also the least informative. This technique simply did not
provide enough information for phase classification. In
contrast, for the problem of phase change detection, work-
ing set size can be a good indicator of when phases change.

• Working set bit vectors - we use a bit vector similar to those
used in [6]. For each memory access, the lower m bits of
the address are dropped, and the result is hashed into a 32K
bit vector. This bit vector indicates memory working set
size, as well as the memory chunks accessed. After every

interval we classify using the same relative distance metric
as the code bit vectors in [6], and group phases using the
same smallest relative distance below the threshold from
[5].
Using bit-vectors on memory accesses did not perform
nearly as well as using bit-vectors on instruction accesses.
A large part of this is due to the higher dimensionality
of the memory accesses. Since so many more memory
locations are accessed, the bit-vector is subject to alias-
ing. Increasing the bit-vector’s size to 32K bits reduced
the aliasing somewhat, but the memory bit-vector was still
highly sensitive to noise. Due to the larger vector size nec-
essary and its noise-sensitivity, using memory bit-vectors
(for code or data addresses) classified significantly more
phases than any of the other methods we examined. While
these memory bit-vectors may be adequate for detecting
phase changes, they did not perform as well for the goal of
phase classification.

• Memory access frequency vectors - each element in the
frequency vector is a counter for 256 contiguous bytes of
memory. Whenever any word of memory is accessed, we
increment the counter corresponding to the 256-byte re-
gion that the word lies in. These vectors did not work well
for phase classification because two intervals with very dif-
ferent memory access vectors often have similar behavior.
This occurred when two intervals with similar behavior
walked over different parts of memory. This realization
was the motivation for the memory stride vectors described
above.

6 Overall Comparison
In this section, we summarize and compare the effectiveness
of the various types of vectors discussed in this paper.

Figure 12 shows the average CPI CoV for all vector types,
and Figure 13 shows the average error in estimated CPI when
we use these vectors to guide the selection of simulation
points. It is clear that many of the vector types that we ex-
periment with can be used to produce accurate phase classi-
fications, with low overhead. Figure 14 shows the average
number of phases detected by each vector type. We see that
all vector types detect 40-60 phases on average. It is interest-
ing to note that register use vectors result in the detection of
fewer phases compared to basic block vectors, yet CPI CoV
is not significantly affected.

6.1 Comparison Over Multiple Cache Configurations
All the metrics we track are independent of the underlying
performance metrics and are not tied to any particular archi-
tecture using the same ISA. Therefore, the phase behavior that
we discover should appear on different architecture config-
urations. To evaluate this claim, we compute CoV of CPI
and SimPoint error in estimated CPI on 18 processors with
very different memory hierarchy configurations. To produce
these configurations, we start with the baseline architecture,

9



0

5

10

15

20

25

30

35

40
bb de

f

us
e

de
f+

us
e op

op
+

de
f+

us
e

lo
ad

+
st

or
e

lo
ca

l s
tr

id
e

lo
ca

l s
tr

id
e 

ha
sh

gl
ob

al
 s

tr
id

e

gl
ob

al
 s

tr
id

e 
ha

sh

lo
op

s+
lo

ca
l

lo
op

s

pr
oc

s

lo
op

s+
pr

oc
s

uw
 b

b

uw
 lo

op
s

uw
 p

ro
cs

uw
 lo

op
s+

pr
oc

s

A
ve

ra
ge

 C
oV

 o
f C

P
I (

%
)

Figure 12: Average CPI Coefficient of variation for all vector
types.

0

1

2

3

4

5

6

7

8

9

10

bb de
f

us
e

de
f+

us
e op

op
+

de
f+

us
e

lo
ad

+
st

or
e

lo
ca

l s
tr

id
e

lo
ca

l s
tr

id
e 

ha
sh

gl
ob

al
 s

tr
id

e

gl
ob

al
 s

tr
id

e 
ha

sh

lo
op

s+
lo

ca
l

lo
op

s

pr
oc

s

lo
op

s+
pr

oc
s

uw
 b

b

uw
 lo

op
s

uw
 p

ro
cs

uw
 lo

op
s+

pr
oc

s

A
ve

ra
ge

 C
P

I e
rr

or
 (

%
)

33.5

Figure 13: Average Percent SimPoint CPI error for all vector
types.

0

10

20

30

40

50

60

70

bb de
f

us
e

de
f+

us
e op

op
+

de
f+

us
e

lo
ad

+
st

or
e

lo
ca

l s
tr

id
e

lo
ca

l s
tr

id
e 

ha
sh

gl
ob

al
 s

tr
id

e

gl
ob

al
 s

tr
id

e 
ha

sh

lo
op

s+
lo

ca
l

lo
op

s

pr
oc

s

lo
op

s+
pr

oc
s

uw
 b

b

uw
 lo

op
s

uw
 p

ro
cs

uw
 lo

op
s+

pr
oc

s

A
ve

ra
ge

 n
um

be
r 

of
 c

lu
st

er
s

Figure 14: Average number of phases detected for all vector
types.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Memory Hierarchy Configurations

gc
c-

16
6 

C
P

I

actual bb loops+procs def+use

Figure 15: Actual CPI and calculated CPI on 18 different
memory hierarchy configurations for gcc-166. Each point on
the x-axis represents a different configuration.

and vary the latency, size, and associativity of the L1 and L2
caches, and memory as described in [10].

Figure 15 shows the actual CPI and estimated CPI with
various vector types for gcc-166. It is clear that the estimated
CPI and the actual CPI are highly correlated for the vector
types that we consider, even across different architectures,
and even for gcc, a benchmark with complex phase behav-
ior. This indicates that the phases discovered can be used to
estimate performance across different architecture configura-
tions. The performance within each phase is homogeneous,
even on architectures with different memory hierarchies.

Figure 16 shows the CoV of CPI averaged across gcc-166
and gzip-graphic on all architecture configurations, and the er-
ror in estimated CPI. Note, these results are only for two pro-
grams, so it is difficult to compare these with the results in the
previous section over many programs. Ideally we would like
to show 18 configurations and 18 benchmark+input pairs, but
a huge amount of simulation time would be required. Overall,
these results show that tracking alternative program structures
(such as register usage, or loops), we can accurately capture
program behavior with low overhead, even across different
memory hierarchy configurations.

7 Summary
This paper focused on performing phase classification by
tracking the use of program structures. All the structures we
track are independent from underlying architecture metrics.
Therefore, the phases we discover are not tied to any partic-
ular architecture configuration. Our prior approach to phase
classification used basic block frequency vectors, and the fo-
cus of this work was to examine different program and ISA
level structures to accurately and concisely perform phase
classification.

The following are the main observations we found:

• Weighted loop frequency vectors result in almost as low
CoV in CPI as basic blocks vectors. Tracking unweighted

10



0

2

4

6

8

10

12

14

16

de
f+

us
e

uw
-b

b

lo
op

s

lo
ca

l s
tr

id
e 

ha
sh

op
+d

ef
+u

se bb

lo
ad

+s
to

re

gl
ob

al
 s

tr
id

e 
ha

sh

uw
-lo

op
s+

pr
oc

s

us
e

uw
-lo

op
s

lo
op

s+
pr

oc
s

op

lo
ca

l s
tr

id
e

gl
ob

al
 s

tr
id

e

pr
oc

s

de
f

uw
-p

ro
cs

C
oV

 o
f C

P
I (

%
)

gcc-166 gzip-graphic average

0

1

2

3

4

5

6

7

8

9

10

lo
op

s+
pr

oc
s

de
f

uw
-lo

op
s

lo
ca

l s
tr

id
e 

ha
sh

gl
ob

al
 s

tr
id

e 
ha

sh

de
f+

us
e

uw
-lo

op
s+

pr
oc

s

lo
ca

l s
tr

id
e

pr
oc

s

gl
ob

al
 s

tr
id

e

lo
op

s

uw
-b

b

op
+d

ef
+u

se

lo
ad

+s
to

re op us
e bb

uw
-p

ro
cs

C
P

I e
rr

or
 (

%
)

gcc-166 gzip-graphic average

13.0

Figure 16: CPI Coefficient of variation and calculated CPI
error (%) for all vector types averaged across different 18
configurations.

loop vectors provides slightly less accurate results, but
with shorter vectors, as shown in Table 2.

• Tracking register usage results in phase classifications with
slightly more accurate results (in terms of CoV of all met-
rics) than basic block vectors, with even shorter vectors.
Register usage vectors are particularly attractive because
of their small size: the length of each register use vector
is equal to the number of registers in the instruction set.
Compared to basic block vectors, the register use vectors
are quite efficient.

• Profiling memory strides produces phase classifications
with slightly less accuracy than basic block vectors, with
the memory vectors are significantly longer than basic
block vectors. However, hashing local stride with the PC
of the current memory access instruction and combining
local stride with the loop vectors produced slightly lower
overall CoV.

Overall, we found that the register use vectors and loop
vectors are efficient yet very effective alternatives to basic
block vectors for phase classification.

Acknowledgments
We would like to thank the anonymous reviewers for provid-
ing helpful comments on this paper. This work was funded in

part by NSF grant No. CCR-0311710, NSF grant No. ACR-
0342522, UC MICRO grant No. 03-010, and a grant from
Intel and Microsoft.

References
[1] R. Balasubramonian, D. Albonesi,

A. Buyuktosunoglu, and S. Dwarkada. Memory hierarchy reconfigur-
tion for energy and performance in general-purpose processor architec-
tures. In 33th Annual International Symposium on Microarchitecture,
December 2000.

[2] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison,
June 1997.

[3] S. Dasgupta. Experiments with random projection. In Uncertainty in
Artificial Intelligence: Proceedings of the Sixteenth Conference (UAI-
2000), pages 143–151, San Francisco, CA, 2000. Morgan Kaufmann
Publishers.

[4] A. Dhodapkar and J. E. Smith. Dynamic microarchitecture adaptation
via co-designed virtual machines. In International Solid State Circuits
Conference, February 2002.

[5] A. Dhodapkar and J. E. Smith. Managing multi-configuration hardware
via dynamic working set analysis. In 29th Annual International Sympo-
sium on Computer Architecture, May 2002.

[6] A. Dhodapkar and J.E. Smith. Comparing program phase detection tech-
niques. In 36th Annual International Symposium on Microarchitecture,
December 2003.

[7] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and
predicting program behavior and its variability. In 12th International
Conference on Parallel Architectures and Compilation Techniques, Oc-
tober 2003.

[8] J. MacQueen. Some methods for classification and analysis of multivari-
ate observations. In L. M. LeCam and J. Neyman, editors, Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Prob-
ability, volume 1, pages 281–297, Berkeley, CA, 1967. University of
California Press.

[9] D. Pelleg and A. Moore. X-means: Extending K-means with efficient
estimation of the number of clusters. In Proceedings of the 17th Interna-
tional Conf. on Machine Learning, pages 727–734. Morgan Kaufmann,
San Francisco, CA, 2000.

[10] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and
early simulation points. In International Conference on Parallel Archi-
tectures and Compilation Techniques, September 2003.

[11] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analy-
sis to find periodic behavior and simulation points in applications. In In-
ternational Conference on Parallel Architectures and Compilation Tech-
niques, September 2001.

[12] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In 10th International Con-
ference on Architectural Support for Programming, October 2002.

[13] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In
30th Annual International Symposium on Computer Architecture, June
2003.

[14] A. Srivastava and A. Eustace. ATOM: A system for building cus-
tomized program analysis tools. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 196–205.
ACM, 1994.

11


