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Abstract

Value Prediction is a relatively new technique to increase
instruction-level parallelism by breaking true data depen-
dence chains. A value prediction architecture produces val-
ues, which may be later consumed by instructions that exe-
cute speculatively using the predicted value.

This paper examines selective techniques for using value
prediction in the presence of predictor capacity constraints
and reasonable misprediction penalties. We examine predic-
tion and confidence mechanisms in light of these constraints,
and we minimize capacity conflicts through instruction filter-
ing. The latter technique filters which instructions put values
into the value prediction table. We examine filtering tech-
niques based on instruction type, as well as giving priority to
instructions belonging to the longest data dependence path
in the processor’s active instruction window. We apply fil-
tering both to the producers of predicted values and the con-
sumers. In addition, we examine the benefit of using different
confidence levels for instructions using predicted values on
the longest dependence path.

1 Introduction

True data dependencies can greatly impede instruction level
parallelism (ILP). Data dependencies decrease ILP when
long latency instructions flow through the pipeline, and there
are not enough independent instructions available to keep the
processor busy. We classify long latency instructions as ei-
ther load instructions, which have a variable length latency,
or fixed length long latency instructions (e.g., DIV, MUL,
SQRT). Data dependent instructions will stall behind these
long latency instructions, potentially creating one or several
critical paths through a portion of the program.

These long latency instructions and critical paths can
eventually cause the fetch unit to stall because the buffers
will fill up and prevent additional instructions from flowing
into the pipeline. Therefore, breaking these true dependency
chains can increase ILP by (1) reducing the lengths of crit-

ical paths through a program, and (2) preventing the fetch
unit from stalling.

Value prediction is an approach that breaks true data de-
pendency chains by predicting the resulting value for an in-
struction, and by allowing dependent instructions to use this
predicted value as a source value. This allows the dependent
instructions to execute in parallel with the long latency in-
structions, reducing the lengths of the critical paths through
a program. In this paper, we call an instruction that produces
a value prediction for its result register a producer of value
prediction, and a dependent instruction that uses a predicted
value as an input operand will be called a consumer of value
prediction.

Prior studies on value prediction have applied value pre-
diction to all instruction types or just to load instructions.
A few studies have even broken the prediction up based on
instruction type. What is missing from this prior research
is a mechanism to indicate the importance of predicting an
instruction. For best performance, the processor should con-
centrate on using value prediction for important instructions
on the critical path. The goal is to speculate on operations
with large gains and small losses even when confidence in
that prediction is low, and only speculate on operations with
lower gains and larger losses when the confidence is high.
Moreover, accurate confidence prediction is needed to guide
when and where to use value prediction. Value prediction
should not degrade a processors performance, even in the
presence of expensive misprediction penalties, if the appro-
priate confidence level is used.

The paper is organized as follows. Section 2 provides a
description of the baseline value prediction architecture we
used in this study. Section 3 describes the methodology used
to gather the results for this paper and the baseline archi-
tecture configuration. Section 4 presents our selective value
prediction techniques and evaluates their performance. Fi-
nally, Section 5 summarizes the contributions of this work.
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2 A Value Prediction Architecture

This section describes the value prediction architecture used
in this paper, and how value prediction interacts with the pro-
cessor pipeline.

2.1 Value Prediction Table

Several architectures have been proposed for value predic-
tion including last value prediction [19, 20], stride pre-
diction [11, 14], context predictors [26], and hybrid ap-
proaches [30, 22].

This study uses a hybrid value predictor to evaluate the
effects of selective value prediction. The hybrid value pre-
dictor is modeled after those proposed in [30, 2, 22, 25]. It is
a hybrid between Stride and Context predictors. When sim-
ulating the value predictors, we update the values and strides
speculatively, and repair an incorrect update in the commit
stage. In addition, confidence counters are used to guide
when to use the prediction information. These are updated
in the write-back stage once the outcome of the prediction is
known.

2.1.1 Stride

A stride predictor [6, 10, 26] keeps track of not only the last
value brought in by an instruction, but also the difference
between that value and the previous value. This difference
is called the stride. The predictor speculates that the new
value seen by the instruction will be the sum of the last value
seen and the stride. We chose to use the two-delta stride
predictor [10, 26], which only replaces the predicted stride
with a new stride if that new stride has been seen twice in
a row. Each entry contains a tag, the predicted value, the
predicted stride, the last stride seen, and a form of confidence
counter.

2.1.2 Context

A context predictor [26, 27, 30] bases its prediction on the
last several values seen. We chose to look at the last 4 values
seen by an instruction. A table called the VHT contains the
last 4 values seen for each entry. Another cache, called the
VPT, contains the actual values to be predicted. An instruc-
tion’s PC is used to index into the VHT, which holds the past
history of the instruction. The 4 history values in this entry
are combined (or folded) using an xor hash into a single in-
dex into the VPT. This entry in the VPT contains the value
to be predicted. The context predictor is able to keep track
of a finite number of reference patterns that are not necessar-
ily constrained by a fixed stride. This is the predictor used
in [27], but is much smaller in size. Confidence counters are
also used to guide prediction.
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Figure 1: Percent IPC speedup over base architecture with
perfect confidence prediction.

2.1.3 Hybrid

The hybrid predictor is identical to the ones used in [22, 25].
It is composed of one context predictor and one stride pre-
dictor, which are of the sizes described above. Prediction
is guided by confidence counters. If both predictors hit (the
confidence is above their predict threshold), then the value
to be speculated is chosen from the predictor with the higher
confidence. If both have the same confidence, a global medi-
ator counter of correct predictions is consulted. Whichever
predictor has the greater history of correct predictions is de-
clared the winner. Preference is given to stride prediction
in the case of a tie. The mediator counter is cleared every
100,000 cycles. The hybrid predictor combines the ability
of the context predictor to recognize repeated values without
a fixed stride, and the ability of the stride predictor to pre-
dict values that have not been seen, but that are a fixed stride
apart.

2.1.4 Perfect Confidence

We also simulated the hybrid predictor with perfect confi-
dence prediction. The Perfect predictor is the same as the
hybrid predictor, except it only chooses to use the value pre-
diction when the prediction is correct, and it chooses not to
predict when the prediction is going to be incorrect.

Figure 1 shows the percent speedup achievable when us-
ing an infinitely sized hybrid value predictor with perfect
confidence for the architecture we modeled. The context pre-
dictor achieves most of the performance, but also takes more
physical area to implement. Figure 2 shows the percent pre-
diction breakdown between the context and stride predictors
that compose the hybrid predictor.
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Figure 2: The percent of predictions that were accurately
predicted by both the context and stride predictor, by only the
the context predictor, followed by only the stride predictor,
and the percent of predictions both predictors missed.

2.2 Value Prediction Processor Pipeline

When an instruction produces a value prediction, the value
is inserted into the instruction’s allocated physical register.
This value will then be seen and consumed (used) by sub-
sequent instructions. The predicted instruction still takes its
normal path of execution for a non-speculative instruction.
When the predicted instruction’s real value becomes avail-
able, it is checked against the predicted value for misspecu-
lation.

In the fetch stage of the processor, the value prediction
table is accessed for the range of PCs being fetched. The
value table lookup could potentially take multiple cycles, and
needs to complete by the time the instruction enters the reg-
ister rename stage. Efficient techniques, like those proposed
in [13], are needed to handle multiple value predictions, but
modeling this was beyond the scope of this paper.

After an instruction is decoded, it then enters the register
renaming stage, where the instruction is allocated a physical
register. The allocated physical register is normally used to
hold the result value for an instruction, but we also use it to
temporarily hold the predicted value for an instruction. If a
value prediction was found in the table, the predicted value is
stored into the physical register, to be potentially consumed
by other instructions. Once the instruction finishes execut-
ing and the real result value is available, it will overwrite any
predicted value in its physical register. In this design, we
modified the physical register to contain 4 additional bits.
The first bit indicates whether the physical register contains
a real value or a predicted value. The remaining three bits
(low, medium, and high) indicate the value prediction con-

fidence the processor has assigned to the value stored in the
physical register. The use of these three confidence bits will
be described in Section 4.

During the issue stage of the processor, instructions are
issued to reservation stations when a free reservation sta-
tion for a functional unit becomes available. Instructions
are then executed from the reservation stations when their
operands become available. When an instruction is inserted
into a reservation station, the instruction reads its available
inputs from the register file, storing the four additional bits
– whether the value is real or predicted and the 3 confidence
bits – along with each value in the reservation station.

Instructions are scheduled to execute from the reserva-
tion station, when there is an idle functional unit. The input
operands of an instruction in the reservation station can be in
one of the following states (1) ready, (2) pending, (3) pend-
ing with value prediction. When choosing which instruc-
tion to execute, priority is given to those instructions whose
operands are ready. If no instruction in the reservation sta-
tion is ready to execute and there is an idle functional unit,
we try to find an instruction to schedule using a predicted
value. An instruction is a candidate for executing with value
predicted operands if all input operands have either resolved
or have predicted values. In addition, all of the predicted
values have to have the correct confidence (see Section 4).
Otherwise, the instruction is not a candidate for execution.

When an instruction consumes a predicted value, this
means that the instruction producing this value has not com-
pleted. We keep a use bit in the reorder buffer entry of the
producer instruction. In the reservation station, the consumer
instruction already keeps track of the reorder buffer entry of
the instruction producing the result value. When an instruc-
tion uses a predicted value it sets the use bit in the reorder
buffer entry for the producer of the value to indicate that an
instruction has used it. Once the producer finishes execu-
tion, it checks the use bit to see if its prediction has been
consumed. If so, it will need to compare the predicted value
to the real value to see if misprediction recovery is neces-
sary. This means that when an instruction is mispredicted,
recovery will only be necessary if that prediction is actually
consumed by another instruction.

When an instruction that has consumed a value predic-
tion finishes executing, it stores its computed value in its
physical register. The value is also broadcast to all reser-
vation stations. This allows results from speculative values
to propagate through the pipeline, potentially allowing the
execution of instructions well down the dependency chain to
execute in parallel with the stalled instruction(s) at the head
of the chain.

A value misprediction is discovered when an instruction
finishes execution, and its reorder buffer entry indicates that
it is a producer of a consumed value prediction, and the pre-
dicted value differs from the real value.
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2.2.1 Misprediction Recovery

When a data misspeculation occurs, our recovery mecha-
nism flushes all the instructions out of the reorder buffer after
the misspeculated instruction, and refetches the instructions
from the cache starting at the next instruction after the mis-
speculated instruction. This is identical to the miss recovery
approach used for branches. This form of recovery should be
efficient to implement since it uses the same mechanism and
data paths as branch misprediction recovery. This is a rel-
atively conservative model for misprediction recovery, but
ensures that our techniques work even in the presence of a
high recovery cost.

2.3 Choosing Instructions to Value Predict

In this paper, we will examine results using a reservation
station with 256 entries. We actually model having three
separate reservation stations, one for branches, the other for
loads, and the final one for all the other instruction types. The
buffers are searched in this order looking for instructions to
execute. When performing instruction scheduling, the sta-
tions are searched from oldest instruction to newest looking
for instructions to allocate to a free functional unit.

While performing this search, pointers are kept to in-
structions that are prime candidates for value prediction. Af-
ter all ready instructions are issued, if there are still free func-
tional units available, these prediction candidates will start
executing if their input operands have the correct confidence
threshold bit set (low, med, or high).

For an architecture which uses selective reexecution for
its misprediction recovery, it may be advantageous to propa-
gate the confidences during speculative execution. Selective
reexecution, would only reexecute the instructions directly
and indirectly dependent upon the mispredicted instruction.
To propagate the confidences, when an instruction uses a pre-
dicted value its own register entry is also marked as specu-
lative, and its confidence is assigned the lowest of the confi-
dences used for the speculative values used to execute the in-
struction. During instruction scheduling this information can
be used to give priority to instructions with non-speculative
input values. Propagating these confidences does not provide
benefits for the misprediction model we use in this paper, be-
cause if the value is mispredicted then the whole pipeline has
to be squashed.

3 Evaluation Methodology

The simulator used in this study was derived from the Sim-
pleScalar/Alpha 3.0 tool set [3], a suite of functional and
timing simulation tools for the Alpha AXP ISA. The timing
simulator executes only user-level instructions, performing
a detailed timing simulation of an aggressive dynamically
scheduled microprocessor with two levels of instruction and

# instr # instr 256 Entry RS
Program Input exec (M) fastfwd (M) Base IPC

gcc 1cp-decl 1041 500 1.7
go 5stone21 32699 500 1.9
groff man page 52 0 2.8
li ref 18089 500 2.6
m88ksim ref 76271 500 3.5
perl scrabbl 28243 500 2.5

Table 1: Program statistics for the baseline architecture.
Base IPCs are shown when using 256 reservation stations.

data cache memory. Simulation is execution-driven, includ-
ing execution down any speculative path until the detection
of a fault, TLB miss, branch misprediction, or load misspec-
ulation.

To perform our evaluation, we collected results for the
SPEC95 benchmarks and one C++ program: groff (a troff
text formatter). The programs were compiled on a DEC
Alpha AXP-21164 processor using the DEC C and C++
compilers. We compiled the SPEC benchmark suite under
OSF/1 V4.0 operating system using full compiler optimiza-
tion (-O4 -ifo).

Table 1 shows the data set we used in gathering results
for each program, the number of instructions executed to
complete the program (in millions), the number of instruc-
tions fast forwarded through before starting our simulations
(in millions), and the baseline architecture IPC using 256 en-
try reservation stations. We used the -fastfwd option in
SimpleScalar/Alpha 3.0 to skip over the initial part of execu-
tion. Results are then reported for simulating each program
for 100 million committed instructions.

3.1 Baseline Architecture

Our baseline simulation configuration models a future gen-
eration microarchitecture. We’ve selected the parameters to
capture three underlying trends in microarchitecture design.

First, the model has an aggressive fetch stage, employing
a variant of the collapsing buffer[7]. The fetch unit can de-
liver two basic blocks from the I-cache per fetch cycle, but
no more than 8 instructions total. If future generation mi-
croarchitectures wish to exploit more ILP, they will have to
employ aggressive fetch designs like this or one that is com-
parable, such as the trace cache [24].

Second, we’ve given the processor a large window of
execution, by modeling large reservation stations, reorder
buffers, and load/store queues. Large windows of execution
expose the ILP necessary to reach future generation perfor-
mance targets. Our out-of-order processor can fetch up to 8
instructions per cycle, issue 16 operations per cycle from a
unified reservation station, and has a 256 entry reservation
station. Loads in the baseline architecture can only execute
when all prior store addresses are known. To compensate
for the added complexity of disambiguating loads and stores
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in a large execution window, we increased the store forward
latency to 3 cycles.

Third, processor designs are including larger on-chip and
off-chip caches. Larger caches create longer load latencies
for hits in the L1 data cache. The Alpha 21264 processor has
a 3 to 4 cycle first level data cache latency [17]. The pro-
cessor we simulated has a 32K 2-way associative instruction
cache and a 32K 2-way associative data cache. Both caches
have block sizes of 32 bytes. The data cache is write-back,
write-allocate, and non-blocking with four ports. The latency
of the data cache is 3 cycles, and the cache is pipelined to al-
low up to 3 new requests each cycle. There is a unified 2nd
level 512K 4-way associative cache with 64 byte blocks and
a 12 cycle cache hit latency. A 2nd level cache miss has
a 108 cycle miss penalty, making the round trip access to
main memory 120 cycles. We model the bus latency to main
memory with a 10 cycle bus occupancy per request. There
is a 32 entry 8-way associative instruction TLB and a 32 en-
try 8-way associative data TLB, each with a 30 cycle miss
penalty.

The branch predictor is a hybrid predictor with an 8-
bit gshare that indexes into 16k predictors + 16k bimodal
predictors [21]. There is an 8 cycle minimum branch and
value misprediction penalty. The processor has 10 integer
ALU units, 4-FP adders, 2-integer MULT/DIV, and 2-FP
MULT/DIV. The latencies are: ALU 1 cycle, MULT 3 cy-
cles, Integer DIV 12 cycles, FP Adder 2 cycles, FP Mult 4
cycles, and FP DIV 12 cycles. All functional units, except
the divide units, are pipelined to allow a new instruction to
initiate execution each cycle.

4 Selective Value Prediction

This paper examines the performance of value prediction in
light of realistically sized value prediction tables. For many
applications, these tables will experience significant capac-
ity conflicts, lowering overall prediction coverage and pre-
diction accuracy. We first examine changes to the prediction
and confidence mechanisms that work well under these con-
straints, and then examine techniques to filter the number of
instructions that either produce values into or consume val-
ues from the value tables, thus significantly reducing pres-
sure on those tables. Throughout this section we will use
the hybrid predictor described in section 2.1.3 for our value
table.

4.1 Size and Sharing of 2nd Level Context Table

We begin by investigating how the size of the 2nd-level table
(VPT) of the context predictor affects performance. Each
entry of the context table stores the four most recent val-
ues seen. We examined several different hashing functions
to index into the VPT, and present results for the best one
we found. To compute the hashing function, each value is
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Figure 3: Performance for using a 256, 1024, and 65536
entry context value table. Results are shown when the PC is
used as part of the hashing function (PC hash), and when it
is not used at all (no PC).

folded onto itself using an XOR to include all of its bits.
The result is a value Id that is equal in size (in terms of bits)
to the VPT table index. These four value Id’s are then com-
bined by shifting each value by twice its position in the value
stream and XORing these values together. Figure 3 shows
the results for this hashing function for VPT tables with 256,
1024, and 65536 entries with an infinite sized first level ta-
ble (VHT). Results are shown with and without using the
PC as part of the hash function into the context value table.
We found that hashing too many of the PC bits resulted in a
significant degradation in performance. The reason for this
is that the value stream encountered by one instruction can
be very similar to the values encountered by another instruc-
tion. An example of this occurs between two different load
instructions that are traversing the same pointer list. One
load instruction will initialize the VPT with its values, and
the other load instruction can achieve 100% value prediction
accuracy when traversing that same list.

The results in Figure 3 show that even a very small 256
entry context table can provide reasonable results for a hy-
brid predictor. In the rest of these results we used a 1024
entry context table for our hybrid predictor.

4.2 Value Confidence Prediction

A predicted value should only be used if the confidence as-
sociated with that value is above a given threshold. We ex-
amined several forms of confidence prediction and based
our predictors on the confidence estimation techniques de-
veloped for branch prediction and multiple path execu-
tion [16, 15]. The relatively high misprediction cost of our
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recovery scheme will necessitate a confidence scheme that
reacts quickly to mispredictions or disruptions in the table.

4.2.1 Confidence Saturating Counter

A confidence counter can be described using a set of six
numbers (saturation threshold, low threshold, mid threshold,
high threshold, miss penalty, increment bonus). The satu-
ration threshold is the maximum value the counter can con-
tain. When a value prediction is made, if the confidence of
the prediction is equal to or above each of the three predic-
tion thresholds (low, med, high), the corresponding thresh-
old bit will be set in the physical register file as described in
Section 2.2. When a misprediction occurs, the confidence
counter is decremented by the miss penalty. Conversely,
when a correct prediction occurs, the counter is incremented
by the increment bonus.

We examined many different values for these four param-
eters, and found that for our conservative mispredict recov-
ery mechanism, the counter needs to quickly turn off once
it starts mispredicting before it can cause too much damage.
The best counter configuration for this recovery scheme is
(15,3,7,15,7,1), which has a saturation value of 15. When a
predicted value is read from the prediction table and inserted
into the physical register, the low confidence bit will be set
when the counter is 3 or above, the medium confidence bit
will be set when 7 or above, and the high confidence bit will
be set with the counter equals 15. If an incorrect prediction
occurs, the saturating counter is decremented by 7. If the
prediction is correct, the predictor is incremented by 1.

Figures 4 and 5 show the performance when using an in-
finite sized first level stride and context tables for the hybrid
predictor when different confidence thresholds are used for
prediction. The results show that on average, a threshold of
15 correct predictions in a row yields the best performance
for all instructions. If the prediction was incorrect one out of
every 15 tries, this would result in 94% prediction accuracy,
which is needed to tolerate the misprediction penalty. The re-
sults also show that each program on average does best with
a different degree of confidence. The optimal threshold also
varies by instruction type, as evidenced by the differences
between the two graphs. The results show that for gcc, load
instructions only need a threshold of 7, but when predicting
all instruction types, better performance comes from a confi-
dence threshold of 15.

4.2.2 Confidence History Counter

The use of history information, similar to local branch his-
tories [18, 31], can be used to provide history confidence for
value prediction, and thus increase the reliability of the pre-
dictors.

To model this architecture, each value prediction entry
in the value table contains an N-bit history register, keeping
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Figure 4: The effect of using different confidence thresholds
(3, 7, 15, 23, and 31) to guide when to use values predicted
by all register defining instructions.
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Figure 5: The effect of using different confidence thresholds
(3, 7, 15, 23, and 31) to guide when to use values predicted
by load instructions.

track of the accuracy of the last N value predictions. A 0 is
shifted into the history register if the last prediction was in-
correct, and a 1 if it was correct. The history register is then
used to access a table of saturating counters to produce the
confidence. This allows instructions with the same predic-
tion history to share confidence counters. The history pre-
dictor performed best when using the N-bit history register
to index the table of counters directly. As with the context
VPT index, XORing this N-bit counter with too many PC
bits resulted in worse performance, because it did not allow
instructions to share their history effectively.
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Figure 6: Performance for different history table sizes (1024
to 256K entry), compared to giving each instruction its own
saturating counter with a threshold of 15.

Figure 6 shows the performance for predicting only load
instructions when storing an N-bit (where N is 10, 12, 14,
16, and 18) prediction history. The first bar shows the per-
formance obtained using a saturating counter with a thresh-
old of 15, as a comparison. The results show that history
confidence can provide a large increase in speedups, espe-
cially for Li, but at a much higher cost than the saturating
counter. Since the goal of this study was to examine the ef-
fects of value prediction for realizable sizes, the remaining
results are shown using the saturating counter described in
Section 4.2.1 with a high-bit prediction threshold of 15.

4.2.3 Coping with Value Table Capacity Misses

To provide high performance with smaller value prediction
tables, we want to minimize unnecessary replacements in the
table, and deal appropriately with those replacements when
they occur. In the value prediction table we modeled, we
used 2 additional small counters to help fight against the loss
of prediction due to capacity thrashing.

The first counter is called the replacement counter and
is used to to provide hysteresis. The replacement counter is
incremented on a correct prediction, and decremented on an
incorrect prediction. The counter is also decremented when
another instruction attempts to use that entry in the predic-
tion table. This counter will allow highly predictable instruc-
tions to stay in the table.

We model a 4-way associative table, with LRU + replace-
ment counter replacement. An instruction that misses in the
value prediction table will be inserted into the value table
during its write-back stage. When inserting an instruction,
the LRU element from the indexed set is examined for re-
placement. If the replacement counter for that entry is below
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Figure 7: Initializing confidence on value table replacement
for a value table with 256 entries.

the replace threshold, then the new instruction is inserted into
the table. Otherwise, it is not - but the replacement counter
the the LRU entry is decremented as mentioned above to pro-
mote fairness.

The other counter we added delays updates to the con-
fidence counter and updates into the 2nd level context table
(VPT) until after the instruction has warmed up its predic-
tion information. If this is not used, then the first few predic-
tions an instruction makes will most likely be incorrect, and
the confidence counter will end up set to a strong not predict
state. To counteract this we added a warm-up counter to each
entry. This counter does not allow a prediction to be made
and does not allow modification of the confidence counter
and VPT until after the instruction has hit in the value table
a certain number of times. Our stride predictor will have its
stride initialized after two hits in a row in the table, and the
context predictor will have its history initialized after four
hits in a row. The warm-up counter is set to 0 on replace-
ment, and is incremented every time an instruction hits in
the value table. After the warm-up counter has reached the
threshold value of 3 for stride and 5 for context prediction the
instructions can now start providing predictions, and the con-
text predictor can now start updating its VPT. When an in-
struction is inserted into the value table its confidence value
is initialized to 14, where 15 is the high predict threshold.

Figure 7 shows the effect of (1) not changing the confi-
dence counter at all on a replacement, (2) setting the con-
fidence to 0 on replacement, and (3) using the warm-up
counter with an initialization of 14 for the confidence on re-
placement. Results show that programs like go, which have
a lot of capacity constraints, can benefit from using a warm-
up counter. Larger improvements were seen when we mod-
eled smaller tables where there were more capacity prob-
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Figure 8: Performance achieved from filtering which instructions to put into the value prediction table.
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Figure 9: The percent of register defining instructions that were actually predicted using a given filtering technique.

lems. In addition to the replacement and warm-up counter,
additional filtering techniques used in branch prediction may
also be beneficial for value prediction and warrant further
investigation [8, 9].

4.3 Filtering the Producers of Predicted Values

A significant number of instructions define register values
which potentially can be used by other instructions. One
mechanism used to reduce pressure on the prediction tables
is to predict fewer instructions (more specifically, to allow
fewer instructions to write into the tables). For a reasonably
sized value prediction table to obtain performance, the num-
ber of instructions using the table to store their values for
later use must be filtered. If we filter the right instructions
we can still predict the instructions that impact performance,
while ignoring those that do not.

Figure 8 shows the speedups obtained when we filter the
instructions that are put into an infinitely sized table using
perfect confidence prediction. In addition, Figure 9 shows
the reduction in the number of predicted values made, based

on the filtering techniques from Figure 8. An infinite sized
table will not have any capacity constraints, so these two
graphs show the trade-offs that each filter is making in terms
of performance and pressure on the prediction table.

The first bar in Figure 8 shows the speedups when all
register defining instructions are allowed to compete for en-
tries in the value prediction table. The next bar (Sourced)
shows the speedup achievable when we only allow entries to
be allocated to those instructions that define registers which
are actually used by another instruction in the current instruc-
tion window [25]. The Loads filter only allows the storage of
load instructions into the table. To evaluate the full potential
of selectively inserting the most important instructions, we
also examined the performance of limiting the instructions
that are inserted into the value table to only those instruc-
tions on the critical path.

To estimate the critical path, we keep track of the longest
dependency chain in terms of cycles during execution. The
dependency chain starts from an instruction currently being
executed and includes instructions all the way up through the
decode stage. The longest path, when tracked dynamically
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in this way, can be very different than what one normally
thinks of as the critical path through the program. There are
actually many critical paths, and correctly value predicting
an instruction on one of these paths may leave another path
as the critical path in the next cycle. To make matters more
complicated, value prediction may not help in cases where
the critical path is broken by other factors in the execution of
the program. This can happen when dependent instructions
in the critical path are scheduled too far apart by the com-
piler and therefore are not in the active instruction window
at the same time. Also, the fetch unit may stall due to an
I-cache miss or to insufficient available buffers. If the fetch
unit stalls for long enough, the critical path to an instruction
currently not in the pipeline can be broken, since the long
latency instruction may find enough time to complete its ex-
ecution. In the programs we examined, the longest critical
paths often lasted only a few hundred cycles because of the
above factors.

The last four bars in Figure 8 show the results when value
predictor table storage is allocated only to instructions that
start a longest path in the current instruction window. Each
cycle, the instruction being executed that starts the current
longest path is marked. These longest path instructions are
then inserted into the value table in the write-back stage, if
they were not originally found in the value table. The first
of these bars shows results when allocating all instructions
that start a path, while the other three bars show results when
marking only those instructions that start a path when the
longest path length is greater than 10, 20, and 50 cycles
respectively. Figure 9 shows the reduction in the number
of predicted values made, based on the filtering techniques
from Figure 8. The results show that only predicting load
instructions can provide 75% of the potential value predic-
tion performance while only dealing with 30% of the possi-
bly predicted instructions. Concentrating on the longest path
can achieve about the same performance as predicting all in-
struction types, with a nearly 40% reduction in the number
of predicted values.

The prior results are for an infinite size value table where
conflicts do not occur, and the best we can hope for in fil-
tering is to approach ideal performance; however, on a finite
table, filtering reduces conflicts and thus can increase over-
all performance. Figure 10 shows the performance for fil-
tering table inserts based on load instructions, instructions
on the longest path, and all register defining instructions
that were sourced. Inserting all sourced instructions creates
high capacity constraints, and thus concentrating on the po-
tential critical path is an effective solution. Srinivasan and
Lebeck [28] and Bahar et. al., [1] recently focused on trying
to identify important long latency load instructions, and their
approach could be used to help guide which load instructions
to insert into the value prediction table.
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Figure 10: Performance for filtering table inserts based on
load instructions, instruction on the longest path, and all reg-
ister defining instructions that were sourced.

4.4 Finding the Important Consumers

The prior section focused on filtering which instructions to
insert into the value prediction table. Filtering which instruc-
tions use a predicted value can also be advantageous. To pro-
vide filtering of uses, we use the three confidence bits (low,
med, and high) described in section 2.2. These confidence
bits provided along with the value to be predicted, can be
used to guide whether an instruction should use the value for
speculative execution.

We examined several heuristics for guiding the appropri-
ate confidence level to use for consuming predicted values.
Two heuristics that worked well were based on the longest
path analysis from the prior section. The heuristic chooses
to use values with lower degrees of confidence (low and med
bit set) for instructions that are on the longest path. When
the scheduler chooses an instruction to execute using this
heuristic, it searches the longest path dependency chain for
an instruction with predictable inputs that can issue. Value
predictions are made in this order, and if there is still is-
sue bandwidth left over, the remaining instructions become
candidates for value prediction, proceeding in order, starting
from oldest first. Figure 11 shows the performance of giv-
ing priority to longest path instructions for speculative exe-
cution, and the benefit of using a lower threshold for those
instructions. Results are shown when only load instructions
are inserted into the value table, as described in the prior
section. Fifo gives the performance when instructions are
chosen to execute speculatively with predicted values from
the oldest instruction to newest using a confidence threshold
of 15. For the Path heuristic, an instruction on the longest
path will consume a predicted value if the value’s medium
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Figure 11: Performance for using the low, med, and high
confidence bits to guide when to use a predicted value. Re-
sults are shown for using lower confidence for instructions
on the longest path. Only load instructions are inserted into
the value table.

confidence bit is set (prediction threshold of 7), and all other
instructions use a threshold of 15. For the Path > 50 heuris-
tic, we use a threshold of 3 (low-bit) for all instructions on a
path over 50 cycles long.

The speedups increase by an absolute 11% over using
only high confidence for all instructions when concentrat-
ing on the longest path for both squash and reexecute. The
longest/critical path scheduling algorithm is ideal, but would
be difficult to build. For future work we are concentrating on
using the compiler/profiler to find critical path instructions,
which will benefit from value prediction and other optimiza-
tion [29].

In Figure 11, the performance benefit from using the path
heuristic is smaller for the 1024 entry table than the 256 en-
try table. Prior research has shown that 60 to 80% of the in-
structions always produce very predictable or unpredictable
values [5]. Once there are no more capacity problems, the
confidence for these instructions will converge quickly, and
provide a very accurate confidence for the value. But for
smaller tables, which will have capacity problems, the confi-
dence needs to be reestablished when an entry is inserted into
the table. This is one of the reasons why better performance
benefit is seen for a 256 entry table than the 1024 entry table.

Multiple levels of prediction can also be of benefit dur-
ing instruction cache misses. When this occurs, the cost of a
value misprediction is much less, since the fetch unit is the
bottleneck instead of the program’s critical path. If the fetch
unit is stalled, a value misprediction may not accrue any ad-
ditional penalty, even with a large misprediction penalty. If
the I-cache is allowed to process requests from a mispre-

dicted path while waiting for data to come back from a higher
level of memory, a misprediction may not cost anything since
refetching the instructions would result in using the fetch unit
that would have otherwise been sitting idle. In this case, it is
very beneficial to be overly aggressive about consuming pre-
dicted values. A heuristic can be implemented to keep track
of when the I-cache is stalled due to a miss, and during this
time use the low-bit confidence threshold. Examining this
and other techniques for guiding which confidence threshold
should be used when consuming instructions is part of future
research.

Note that value prediction is limited by the in-order com-
mittal of instructions. Our results show that we can provide
benefits by concentrating on the longest path, but the path
must stay in the processor, which uses reorder buffer entries.
Breaking a chain with correct value prediction will not clear
instructions out of the reorder buffer until the instruction at
the start of the chain commits. Therefore, to obtain large
gains from a value prediction architecture, the reorder buffer
should be as large as possible, even if the number of reserva-
tion stations is small.

5 Summary

This paper presents techniques to intelligently choose when
to use value prediction, and which instructions to value pre-
dict.

The performance gap between perfect confidence and or-
dinary confidence prediction shows that accurate confidence
prediction is key to obtaining speedups for value predic-
tion. We showed that even in the presence of high mispre-
diction penalties, confidence counters can be used to pro-
vide speedups of 10%. In addition, we showed that history
confidence can reduce this performance gap. When gather-
ing the history and 2nd level context results we found that
confidence and values produced by one load instruction can
be used by another load instruction, providing very accurate
predictions.

A fixed sized storage device like a value prediction table
will have capacity problems, especially for large commer-
cial applications. In order to benefit from value prediction
for these workloads, the value prediction table needs to use a
replacement counter to keep highly predictable instructions
in the value table. In addition, it can be beneficial to use a
warm-up counter, to warm up an instruction’s value predic-
tion information before updating its confidence and using it
for prediction.

To reduce some of these capacity constraints it is useful
to heavily filter which instructions are put into the value pre-
diction table. We showed that concentrating on instructions
from the longest path in the instruction window increases
performance. The results also show that only concentrat-
ing on loads, for the workload examined, is a reasonable fil-
tering approach since load latencies will be responsible for
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most of the critical paths in integer programs, as pointed out
in [27]. Prior research has shown that value profiling tech-
niques [4, 12, 23] can be used to accurately find predictable
instructions, and can be used for filtering table entry alloca-
tion. What is harder, and probably more important, is the
need to concentrate on storing instructions that can poten-
tially provide significant gains, even if those instructions are
hard to predict. We are currently looking at using critical
path profiling to find such instructions [29].

Determining which instructions should consume a pre-
dicted value is just as important as determining which in-
structions to store in the value table. An incorrectly predicted
value does not cause any misspeculation unless that value is
used by a dependent instruction. We showed that it is ben-
eficial for instructions on the longest path to use predicted
values with a lower degree of confidence than those instruc-
tions not on the longest path. Prior value profiling work con-
centrated on identifying which instructions should produce
predicted values. Future profiling work should in addition
concentrate on identifying which instructions should con-
sume predicted values and the degree of confidence to use
for those values.
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