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PATCHING PROCESSOR DESIGN
ERRORS WITH

PROGRAMMABLE HARDWARE
.....................................................................................................................................................................................................................................................

EQUIPPING PROCESSORS WITH PROGRAMMABLE HARDWARE TO PATCH DESIGN ERRORS

LETS MANUFACTURERS RELEASE REGULAR HARDWARE PATCHES, AVOIDING COSTLY CHIP

RECALLS AND POTENTIALLY SPEEDING TIME TO MARKET. FOR EACH ERROR DETECTED, THE

MANUFACTURER CREATES A FINGERPRINT, WHICH THE CUSTOMER USES TO PROGRAM THE

HARDWARE. THE HARDWARE WATCHES FOR ERROR CONDITIONS; WHEN THEY ARISE, IT

TAKES ACTION TO AVOID THE ERROR.

......Today’s processors are so complex
that design validation and testing is a major
bottleneck, often accounting for 50 to 70
percent of processor development time.1

Yet, despite all the labor and computing
resources invested in verification, many
defects still slip into production silicon. At
that point, dealing with them can be very
costly. Specifically, if a manufacturer finds
serious errors before the chip is released,
the costs involve the engineering time
required to debug and fix the errors; the
direct fabrication costs associated with
a chip respin, including new masks; and,
especially, the lost revenue attributable to
delayed shipping. If errors surface after the
chip’s release, the company’s costs include
all of the above plus the costs of
performance-impairing or software-inten-
sive workarounds, potential security
breaches, chip recalls, and a tarnished
reputation.

Perhaps the most publicized design error
to date was the floating-point division bug

in the Pentium processor, which led to
a $475-million chip recall.2 In 1999, a de-
sign error in the Pentium III temporarily
halted shipment of Intel servers. Problems
in the Pentium 4’s cache and prefetch
engine temporarily led to disabling pre-
fetching in multiprocessor systems. More
recently, design errors led to a recall of
Itanium 2 processors, incorrect results in the
AMD Athlon 64, and circuit errors that
prevented the IBM PPC 750GX from
running at 1 GHz. In fact, almost every
modern processor has tens or even hundreds
of design errors, which manufacturers
discover after shipment and publish in
errata sheets. (See the ‘‘Errata sheets’’
sidebar for details on these publications.)

To date, most of the resources committed
to preventing processor design errors have
gone to validation and testing. The fact that
many errors are still getting through
suggests that novel approaches are necessary
to better handle errors. The approach that
we propose in this article enables manufac-
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turers to treat design errors like software
bugs. Specifically, upon discovering a new
error in a processor, the chip vendor creates
a hardware patch that customers can apply
to the chips in the field. Once installed, the
patch automatically averts or repairs the
error on the fly.

Providing processor support for patching
design errors has several benefits. First, it
allows a company to avoid expensive chip
recalls and the accompanying damage to its
reputation. Second, for errors that would
not lead to recalls, patches obviate work-
arounds that disable functionality or impair
performance. Finally, using this approach
could enable a processor manufacturer to
potentially save the last 10 weeks of testing,
during which the detection rate of new bugs
drops nearly to zero,1 and thereby market
the chip earlier and gain a valuable edge
over competitors.

Our proposal is to include a field-pro-
grammable hardware mechanism in the
processor, which can be used to patch
errors.3,4 On discovering an error, a pro-
cessor manufacturer composes what we call
an error fingerprint, which consists of a set of
error conditions and a time interval. The
proposed hardware can be programmed
using the error fingerprint to monitor the
necessary signals in the processor, looking
out for the error conditions. If all the
required error conditions occur within the
specified time interval, the mechanism flags
an error and initiates an appropriate re-
covery.

For this patching mechanism to be
feasible, the hardware must be capable of
monitoring all the signals necessary to
determine the error conditions. A key
observation makes this feasible: Our analysis
of the errors in modern processors shows
that programming the proposed hardware
with a well-defined set of signals will detect
a majority of errors, often before the errors
have corrupted the system. We also show
that it is possible to determine the required
set of signals, and the size of the pro-
grammable hardware, a priori during pro-
cessor design, by studying errors in earlier
designs.

To recover from the errors detected by
our programmable error detector, we exam-

ine mechanisms that include using instruc-
tion-stream editing,5 flushing the pipeline,
rolling back execution, and providing
hypervisor support. By empirically analyz-
ing the design errors in 15 different
processors, we have found that these
mechanisms can patch a large portion of
errors. For example, our mechanisms can
patch 78 percent of AMD64 errors and 69
percent of Pentium 4 errors without
degrading functionality or performance.
Finally, the hardware we propose incurs
negligible area and wire overhead.

Current mechanisms for patching errors
Certain processor design errors can be

patched using mechanisms that already exist
in processors. We’ll look first at these
mechanisms and explain their limitations.

Firmware patches
Processor vendors often apply hardware

workarounds by modifying the BIOS or
board settings. Changes at this level are
convenient, because they can use full
knowledge of the system’s configuration
and do not affect higher-level software users.
The BIOS and board settings are used to set
up the initial control state to circumvent the
error. The changes typically involve dis-
abling a certain feature (such as prefetching
support), limiting the frequency or voltage,
or connecting pins to certain logic values.
For example, it’s possible to patch a design
error in the Pentium 4 processor by using
the BIOS to disable cache prefetching.
Setting the control bits appropriately to

.....................................................................................................................................................................

Errata sheets
After releasing a processor, the manufacturer typically publishes an errata sheet that

details the processor’s design errors and suggests possible hardware and software

workarounds. Following are several errata sheet examples. The first two in the list are the

Intel Pentium 4 and the AMD Athlon 64 and Opteron errata sheets from which we drew the

error and workaround information we discuss in this article.

1. Intel Pentium 4 Processor on 90nm Process, Intel Std. Order No. 302 352-024, Intel, 2005.

2. Revision Guide for AMD Athlon 64 and AMD Opteron Processors, AMD Std. Publication 25

759, Rev. 3.57, Advanced Micro Devices, 2005.

3. Intel Itanium 2 Specification Update, Intel Std. Document No. 251 141-030, Intel, 2005.

4. IBM 750FX Technical Documentation, IBM Std. Document No. DD2.X, IBM, 2004.

5. Freescale MPC7457CE Technical Documentation, Freescale Std. Revision 10, Freescale, 2004.
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increase the signals’ pulse width overcomes
erratum 98 in the AMD64 errata sheet (see
the ‘‘Errata sheets’’ sidebar).

A related common hardware technique is
the use of microcode patches or opcode
traps. Modern CISC processors, such as the
x86 series, have a microcode translator that
translates complex CISC instructions into
a sequence of micro-operations. Therefore,
if an error is related to the implementation
of an instruction with a particular opcode,
we can patch it by simply changing the
microcode translation corresponding to that
opcode.

Some processors have a firmware layer
above the processor that performs complex
processor functions. For example, Itanium’s
firmware performs functions related to
translation look-aside buffer (TLB) and
floating-point unit control, and interrupt
and error-correcting code (ECC) handling
(see http://www.intel.com/design/itanium/
firmware.htm). IBM’s zSeries machines use
Millicode, which, in addition to imple-
menting complex instructions, also allows
control of the processor’s state.6 Thus, IBM
can use Millicode to patch errors related to
a particular instruction’s implementation
and also to set the control states to disable
features that lead to error conditions.
Finally, Crusoe has placed, above the pro-
cessor, a layer of code-morphing software,
which translates the x86 instructions into
the native ISA (see http://www.transmeta.com/
pdfs/paper_aklaiber_19jan00.pdf). This sup-
port offers opportunities to patch errors
related to the execution of certain in-
struction opcodes.

However, these current technologies are
not very suitable for the types of complex
error conditions we examine in this article.
They suffer from three main disadvantages:
First, a significant proportion of the BIOS
and other firmware patches that processor
manufacturers suggest involve disabling
a processor feature. Such patches can
degrade the processor’s performance or
functionality. Examples include disabling
the write-combining feature in write buffers
(AMD64 erratum 133) and disabling
a power optimization feature (AMD64
erratum 78). Second, current mechanisms
use a very inefficient approach to handle the

complex errors we consider here. Each of
our errors occurs when there is a subtle
combination of events; such an occurrence
does not correlate well with the execution of
any particular instruction opcode. Perform-
ing additional checks or trapping at each
instance of an opcode’s execution would
substantially hurt performance. For exam-
ple, erratum 103 for AMD64 says that
incorrect execution of the AAM instruction
occurs only under a very specific pipeline
condition. A possible microcode patch
would involve executing additional NOPs
(no operations). Executing this inefficient
microcode for every dynamic instance of the
AAM instruction would degrade perfor-
mance. Finally, for many errors, it is unclear
how to construct a patch using only
microcode.

Software patches
Errata documents also suggest software

workarounds that involve changes to the
compiler or operating system. For example,
to avoid a particular sequence of events that
triggers an error, code generation in a com-
piler can make sure that certain opcodes
never appear adjacent to each other.
Similarly, the operating system can limit
the order of initializing devices or proces-
sing interrupts, or limit the range of settings
allowed for some parameters. However,
software workarounds typically reduce per-
formance or functionality in some way.
Moreover, they are mostly effective only if
a single operating system and compiler or
linker is used for the processor; otherwise,
they require a different version for each
different operating system and compiler
that the processor supports. For example,
DEC successfully masked hardware errors
using link-time optimization for released
processors, making sure certain opcode
sequences would never occur during execu-
tion. This was possible because DEC was in
complete control of the operating system
(OSF) and the compiler chain.

Respin
Among post-fabrication patching op-

tions, respinning the chip is the most

.........................................................................................................................................................................................................................
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effective, but it is also the costliest.
Although respinning can fix errors, it can
also introduce new errors. Respin is expen-
sive because it requires additional engineer-
ing time, the purchase of new masks,
a potentially devastating delay to market,
and even the replacement of customer
products. Although respinning can com-
pletely fix a hardware error, it is far more
costly and time-consuming than sending
a hardware patch to the customer.

Checker for pipeline core
An alternative approach is to include

a well-tested in-order checker processor
such as DIVA.7 The checker processor
redundantly executes the instructions to
verify the correctness of a complex, out-of-
order pipeline. However, this approach is
not very effective for the design errors we
are considering. First, DIVA focuses mostly
on checking the pipeline, while most errors
we consider are in the core’s periphery.
Second, many errors are caused by side
effects, such as cache corruption; simply
reexecuting the instruction does not help.
Finally, instructions with I/O or multipro-
cessor effects cannot simply be reexecuted.

Concurrently with our work, Wagner et
al. proposed using a content-addressable
memory (CAM) that can be programmed to
detect the errors in a processor’s control
logic.8 The detection mechanism works by
detecting illegal control states and transi-
tions. Their proposed recovery technique
consists of flushing the pipeline and
reexecuting in a formally verified safe mode.
Because the detection mechanism mostly
monitors the state transitions in the control
logic of the pipeline’s core, their technique
is mainly limited to patching design errors
there. In contrast, our mechanism can
detect and recover from more complex
design errors involving error conditions
even at the periphery of the processor. We
achieve this by using a distributed patching
mechanism that can correlate error condi-
tions occurring in different parts of a pro-
cessor over a period of time.

Processor design errors
To gain insight into the nature of design

errors and their areas of concentration in

modern processors, we studied the errata
sheets for several processors.

This article combines and summarizes
two earlier works. We focus here on the

design errors in AMD Athlon 64 and AMD
Opteron processors (AMD64) and Pentium
4 processors in one of the articles.3 Analysis

and results for 13 additional processors,
including Intel Pentium III, Itanium 1,

Itanium 2 and Pentium M, AMD K6 and
Athlon, IBM PowerPC G3, Motorola G4,
Sun Ultra Sparc II, and several network and

embedded processors can be found in the
other article.4

Source of design errors
The AMD64 errata sheet reports 63

errors; the Intel Pentium 4 errata sheet
reports 109 (see the ‘‘Errata sheets’’ side-

bar). Table 1 classifies these design errors in
four broad classes: new features, external
events, peripheral features, and miscella-

neous. Each of the four classes contains
additional specific subclasses. A few of the
errors fall into more than one subclass, so

the percentages for a processor do not add
up to 100. For clarity, Table 1 also contains

the absolute number of errors in each
subclass.

New features. New features added to
a processor design are a significant source

of design errors. The first two rows of
Table 1 list the errors related to Intel’s
Hyper-Threading and Vanderpool technol-

ogies, which respectively resulted in 12 and
9 of the Pentium 4’s total 109 errors. (We

did not find any errors in the AMD64 sheet
related to the implementation of Virtualiza-
tion technology.)

Power management is a relatively new

functionality added to these CPU designs.
This subclass contains 11.1 percent of the
errors in AMD64 and 3.7 percent of the

errors in Pentium 4. Recently added 64-bit
extensions account for 9.5 percent of the

errors in AMD64 and 11.0 percent of the
errors in Pentium 4. Interesting examples in
this error type include various incorrect

implementations of the CISC-based string
instructions when they operate on operands

that are over 232 bits long.
........................................................................
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External events. Interrupts are used for
interfacing the processor with the external
devices. We found five errors in AMD64
and two errors in Pentium 4 that were
directly related to the implementation of
interrupt handling. The memory interface
subclass includes the errors in the bus
interfaces, cache, and virtual memory im-
plementations. About 17.4 percent of errata
in AMD64 and 20.2 percent in Pentium 4
fall into this subclass, making it the largest.
All the errors that relate to the interactions
between multiple processors (for example,
coherence-related errors) fall into the mul-
tiprocessor subclass.

Peripheral features. Processors incorporate
diagnosis functionality to detect certain
faults—for example, ECC serves to detect
memory faults. We found seven errors in
both AMD64 and Pentium 4 that stemmed
from incorrect error reporting. Incorrect
error reporting is a recurring problem in
these implementations, but the impact of
these errors is usually less than catastrophic
because they do not lead to incorrect
program execution. Errors in this subclass
include off-by-one counters, mismanaged
counter overflows, and extended delays
when reporting a condition. The next
subclass relates to hardware debugging
support; a substantial number of these

errors had to do with altered execution flow
of the application. Various problems in-
volving the single-step execution facility fall
into this subclass. Mismanagement of the
data watch-point capability is also common.
Incorrect handling of internal (CPU-origi-
nating) exceptions fall into the peripheral
features class as well.

Miscellaneous. The first subclass in this
category consists of errors due purely
to errors in the pipeline core that lead
to incorrect execution of instructions with
certain opcodes. Thus, we’ve found that
only about 11.1 percent of errors in
AMD64 and 16.5 percent of errors in
Pentium 4 can be fixed by verifying
the pipeline’s function, which is feasible
with techniques such as DIVA. Most other
errors are due to new or peripheral features,
or due to functionalities that support
complex interactions with the external
devices.

The frequency/electrical subclass repre-
sents all errors that occur only with specific
operating frequencies or clock ratios, as well
as errors that arise when the processor does
not meet certain electrical specifications
(such as the voltage specification). Several
errors in this subclass occur in conjunction
with peculiar but legal motherboard con-
figuration choices.

Table 1. Classification of design errors in AMD64 and Intel Pentium 4.

Class Subclass

Errors in AMD64 Errors in Pentium 4

Percentage No. Percentage No.

New features Hyper-Threading N/A N/A 11.0 12

VT (Vanderpool) N/A N/A 8.3 9

64-bit extension 9.5 6 11.0 12

Power management 11.1 7 3.7 4

External events Interrupts 7.9 5 1.8 2

Memory interface 17.4 11 20.2 22

Multiprocessor 14.2 9 5.5 6

Peripheral features Incorrect error report 11.1 7 6.4 7

Debugging support 3.1 2 11.0 12

Exception 6.3 4 2.7 3

Miscellaneous Pipeline core 11.1 7 16.5 18

Frequency/electrical 14.2 9 4.5 5

Others 3.1 2 0.9 1
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Importance of design errors
Two factors determine the importance

of an error: frequency of occurrence and
severity. Unfortunately, the errata docu-

ments available to us give only a limited
view of the frequency of the individual
errors. However, they do tell us whether

an error can occur at the customer site or
only when the processor undergoes con-
trived, in-house testing. Table 2 lists the
percentages of customer and in-house

errors for AMD64 and Pentium 4
processors.

Clearly, errors that have the potential to
occur at the customer site are important.

However, for certain errors, such as a very
small time slip in the performance counter
accounting, the errata sheets indicate that
they are not a cause for concern. Therefore,

we classify customer errors as either impor-
tant or unimportant.

For errors found during in-house test-
ing, the manufacturers indicate whether or
not they plan to fix them, so we further

classify in-house errors on that basis. We
consider errors that the manufacturer plans
to fix important. Thus, adding the first

and the third rows in Table 2, we see that
approximately 90 percent of errors are
important. A mechanism to patch these

errors in shipped processors will be of great
value.

Programmable hardware for detecting errors
We propose that processors include

a programmable hardware patching mech-
anism to repair errors in the field. Upon
discovering an error, the manufacturer

composes an error fingerprint and distri-
butes it to customers, who can use it to
program the on-chip programmable patch-

ing hardware.

Error fingerprint
An error fingerprint is used to program

the proposed hardware patching mechanism
to dynamically detect and recover from

a design error. It specifies a set of conditions
and a time interval within which those
conditions must occur for an error to be

flagged. The fingerprint can specify the time
interval in terms of either the number of
committed instructions or the number of
processor cycles. Another alternative is to

specify the time interval using a starting and
an ending condition.

The ‘‘Processor design error examples’’
sidebar describes several errors to which we
will refer in describing our mechanism. For

Error 2 in the sidebar, the error fingerprint
consists of two conditions and a time
interval. The conditions are

N execution of MOVS or STOS instruc-
tions with prefix REP, and

N a page fault exception.

The dispatch and commit of the MOVS or
STOS instruction with prefix REP are the
starting and ending conditions respectively,

which together specify the time interval for
the error fingerprint.

Patching architecture overview
Figure 1 shows a high-level view of the

proposed hardware patching mechanism.
Logically, it consists of three units: the

condition detector, the error detector, and
the recovery unit. The condition detector
contains an entry for each condition to be
detected during the processor’s execution. It

is designed so that it can monitor a set of
signals necessary for detecting most of the
error conditions. We can broadly group the
input signals required to detect the condi-

Table 2. Importance of design errors in AMD64 and Intel Pentium 4 processors.

Error type AMD64 (%) Pentium 4 (%)

Customer, important 79.35 74.31

Customer, unimportant 3.17 0.00

In-house, plan to fix 11.11 8.26

In-house, no plan to fix 4.76 17.43

........................................................................
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tions into those coming from the pipeline
core (such as branch misprediction and
opcodes of instructions dispatched), mem-
ory subsystem (such as cache misses), I/O
and interrupt (such as watchdog timer
interrupts and other exceptions), and system
functions (such as signals that indicate
power and other mode changes). To patch
an error, the customer uses the error
fingerprint to program the condition de-
tector so that it looks out for the necessary
error conditions during processor execution.

When the condition detector detects an
error condition, it communicates the de-
tected condition to the error detector, whose
purpose is to determine whether all the
error conditions for a fingerprint have
occurred within the specified time interval.
The error detector keeps track of the

following information for an error finger-
print:

N fingerprint identifier,

N list of error conditions specified in the
fingerprint, and

N time stamp for each error condition.

The time stamp maintained for an error
condition indicates when it last occurred.
Thus, by examining the time stamps of all

the error conditions for a fingerprint, the
error detector determines whether all the

required error conditions have occurred
within the specified time interval. If so,
the error detector flags an error and informs

the recovery unit. If the time interval in the
error fingerprint is specified using starting

and ending conditions, then all the error
conditions for that particular error finger-
print are cleared both when the starting and

the ending conditions are satisfied. The
recovery unit initiates one of several re-

covery mechanisms that we describe later.

Distributed design for programmable
patching hardware

It is impractical to route all the necessary
signals to a centralized condition detector
and to communicate the detected condi-

tions to a centralized error detector. Hence,
we propose a distributed design for these

two units, as Figure 2 shows.

We logically partition the processor into

a few subsystems—such as the fetch unit,
the data cache, and the memory control-

ler—and assign one condition detector and
one error detector to each subsystem. An
individual condition detector monitors

signals from the subsystem it is a part of.
An individual error detector receives most

of its input signals from the condition
detector in its subsystem, but it also receives
signals from other condition detectors. Such

signals travel over cross-subsystem wires that
go through programmable interconnect

modules. These programmable interconnect
modules are judiciously distributed on-chip
in different neighborhoods of subsystems

and are automatically programmed in the
field using the information from the error
fingerprint.

Figure 1. High-level view of the architecture for patching design errors.

.....................................................................................................................................................................

Processor design error examples

N Error 1. In AMD64, when an AAM (ASCII adjust after multiply) instruction is followed by

another AAM instruction within a span of three instructions, or when a DIV is followed by an

AAM within a span of six instructions, the processor can produce incorrect results.

N Error 2. Intel’s Pentium 4 processor supports fast string-copying operations while executing

MOVS or STOS instructions with prefix REP. The processor uses control register CR2 while

performing this string-copy operation. If a paging event occurs while the processor is

performing a fast string-copy operation, the value in the CR2 register can be incorrectly

modified. These circumstances result in incorrect program execution.

N Error 3. In Pentium 4, while going through a sequence of locked operations, it is possible for

the two threads to receive stale data. This is a violation of expected memory-ordering rules

and causes the application to hang.

N Error 4. In AMD64, unexpected page faults are reported for software prefetches.

.........................................................................................................................................................................................................................
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For certain errors, a single subsystem
generates all the required conditions. Such
errors are detected by the condition detector
in that subsystem. For other errors, condi-
tion detectors in different subsystems detect
the required conditions and route them to
a single error detector. In both cases, as soon
as an error detector detects an error, it
informs the global recovery unit, which
then initiates recovery.

Recovery support
For the recovery unit, we evaluated four

different types of mechanisms: instruction-
stream editing, replay after pipeline flush,
replay with checkpoint support, and hyper-
visor patching support.

Instruction-stream editing
BIOS microcode patching is useful for

overcoming hardware errors due to in-
correctly implemented instructions. How-
ever, these patches are static in that they are
applied once before the processor starts
functioning. Thus, the processor must
execute the potentially high-overhead,
patched-up microcode sequence every time
when it executes the erroneous instruction,
possibly degrading performance. In our
system, the patched code is executed only
under the rare circumstances when the error

detector detects an error condition that can
result in an incorrect execution.

Corliss et al. proposed a dynamic in-
struction-stream (I-stream) editing mecha-
nism called DISE, which is similar to the
microcode expansion mechanism in hard-
ware, except that it is programmable and
can inject instructions into the instruction
stream only under certain conditions.5

These conditions could be based on the
opcode, the operand registers and their
values, or even the instructions currently
being executed in the pipeline. We can use
the instruction-editing mechanism to exe-
cute patched microcode sequences only
under the required conditions.

For Error 1 in the ‘‘Processor design error
examples’’ sidebar, the suggested work-
around in the errata sheet is to have the
software ensure that the AAM and DIV
instructions are sufficiently spaced out in
the code, using additional NOPs to avoid
the error. Instead of exposing this problem
to the software, we can fix it using dynamic
I-stream editing. Our architecture would
keep track of whether any AAM was one of
the last five instructions dispatched. If that
condition occurs during dispatch of an
AAM, DISE would inject NOPs into the
stream to avoid the impending hardware
error. One could use BIOS microcode

Figure 2. Distributed design of our programmable error-patching hardware.

........................................................................
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patching to solve this problem, but that
would involve injecting the NOPs for every
instance of the AAM instruction, and thus

degrade performance.

Replay after pipeline flush
Many of the errors we consider can be

detected before they corrupt the architec-

tural state. Also, in a heavily tested
processor, an error occurs only under
a highly specific circumstance, when two

or more conditions occur close to one
another in time. Thus, when the error

detectors catch such a circumstance, for
many errors it is sufficient just to flush the
pipeline and replay from the last commit-

ted instruction. Modern processors already
have this replay capability to handle branch

mispredictions.

If a simple replay is not sufficient to
avoid the error conditions, we can change
the event interleaving during replay through

several means. One option is to inject
NOPs into the instruction stream during
replay. This forces delay between the

conditions that would together result in an
erroneous execution. We can also disable

one of the problem-causing signals during
replay, such as the low-power mode, and
enable it again after getting past the error

conditions. Another option is to generate an
alternative sequence of micro-operations for

certain instructions during replay. Finally,
we could use hypervisor support to emulate
the instructions until execution gets past the

error conditions.

We can detect Error 2 (listed in the
sidebar) by programming the proposed
hardware with the error fingerprint we

described earlier. Upon detection, the pro-
cessor need only flush the pipeline and

restart execution from the last committed
instruction, because the paging event would
already have been handled and is unlikely to

occur again during replay. It is possible for
the patching hardware to take corrective

action even when it is not absolutely
necessary (that is, false-positive triggers for
recovery are possible), but the mechanism

guarantees that the error will not go
undetected (that is, there can be no false

negatives).

Replay with checkpoint support
The pipeline flush and instruction replay

functionality is inadequate to handle certain
errors that can corrupt the cache state before
error detection. One way to address these
types of errors is for the processor to
support lightweight checkpoint and rollback
of the cache state. Such checkpoint support
is similar to that required for thread-level
speculation or transactions.

As we observed earlier, some errors
pollute the memory or even the I/O state.
Some of these errors are related to incorrect
implementations of multiprocessor func-
tionality such as cache coherence. Recovery
from these errors requires heavier-weight
schemes that support memory or I/O state
rollback and replay—possibly over many
hundreds of instructions for each of the
cores in a multiprocessor system. SafetyNet
and ReVive support low-overhead check-
point and rollback of memory state.9,10

ReViveI/O enables I/O undo and redo.11

However, our analysis indicates that
a lightweight checkpoint mechanism that
would allow rolling back cache states should
be sufficient for recovery from a majority of
complicated hardware design errors. For
Error 3 in the sidebar, to recover from the
deadlock, the execution can be rolled back
to a past checkpointed state. During
reexecution, we can ensure that the system
does not reencounter the problem by
inserting NOPs into the instruction streams
to cause sufficient delay between lock
operations.

If the processor does not support the
checkpointing schemes just described, an
alternative is just to detect the error and
report it to the higher-level software. This
will allow the software to perform graceful
recovery in the presence of an error. This
method of handling errors is essentially how
watchdog timers function today. However,
if a processor uses a watchdog timer along
with our proposed architecture, our hard-
ware could potentially report the cause for
a deadlock when the watchdog timer detects
it.

Hypervisor patching support
Some modern processors support hyper-

visors, also known as virtualization technol-

.........................................................................................................................................................................................................................
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ogy (VT). Recent examples of VT include
Intel’s Vanderpool (http://www.intel.com/
technology/virtualization/index.htm) and AMD
Virtualization (http://www.amd.com/us-en/
Processors/ProductInformation/0,,30_118_
8826_14287,00.html). A hypervisor occu-
pies a layer between the operating system
and the hardware. Because of its proximity
to the hardware, patching using a hypervisor
can cover a wider variety of problems
without exposing the hardware error to the
operating system or the software. In addi-
tion, hypervisors provide fine-grained cap-
abilities to intercept and interrupt the
control flow when there is an exception.
Hence, for certain errors, upon detection,
the recovery unit can trap to the hypervisor
and communicate the erroneous condition
to it. The hypervisor can then take sophis-
ticated corrective action and shepherd the
program execution past the problem. This
corrective action might involve flushing the
pipeline or rolling back execution to the
previous checkpoint and then replaying.

For Error 4 in the sidebar, page faults
triggered by the software prefetches should
be ignored. The suggested workaround for
this problem is to modify the operating
system’s kernel. Instead, we can detect the
error by programming the patching hard-
ware using an error fingerprint that consists
of two conditions: a software prefetch
instruction dispatch condition and a page
fault condition. Upon detection, the re-
covery unit traps to the hypervisor, which
then accurately determines whether the page
fault was generated by the software prefetch
instruction. If so, the processor can ignore
the fault. If not, the hypervisor can invoke
the page fault handler to service the page
fault.

Results
To assess the proposed hardware patch-

ing mechanism, we analyzed its area, wire,
and performance overhead. We also com-
pared the number of errors that can be
patched using our mechanism versus the
current possible workarounds. Finally, we
studied methods of sizing and designing the
proposed hardware mechanism during de-
velopment of a new processor using training
data from previous processors.

Overhead
To determine the number of signals that

would have to be made accessible to the
condition detectors, we account for all the
signals listed in the errata sheets that are part
of at least one error, including both Generic
and Specific signals. Generic signals are
microarchitectural signals largely common
to all processors, such as cache miss, bus
transaction, or interrupt. Specific signals are
specific to a processor, such as special pins
or registers in the processor. Table 3 lists
the number of signals required, classified
into four broad classes of subsystems. In
total, AMD64 requires 185 signals, and
Pentium 4 requires 270 signals. Of these,
about 150 signals are Generic, and the rest
are Specific.

Based on the number of signals watched,
we sized the architectural structures in the
distributed design described earlier; the area
and wiring overheads are negligible.4 Specif-
ically, using data from Khatri et al.,12 we
estimate that the area overhead is on the
order of 0.06 percent for Pentium 4 and 0.03
percent for AMD64. Moreover, using Rent’s
rule, we estimate that the increase in the
number of wires is about 0.29 percent for
AMD64 and 0.86 percent for Pentium 4.

Our hardware patching mechanism also
has negligible execution overhead. Perfor-
mance is adversely affected during the
recovery operation; however, because the
error rate is very low, the performance
impact due to recovery is very small.
Moreover, although tapping signals in-
creases wire load, an actual implementation
is likely to affect performance negligibly.

Coverage results
Tables 4 and 5 show the percentages of

errors covered by the conventional ap-
proaches and the proposed mechanisms,
for the errors from the errata sheets for
AMD64 and Pentium 4.

Coverage for current workarounds. As Ta-
ble 4 shows, using BIOS patches that do
not involve disabling any processor func-
tionality, we can patch 14.2 percent of
errors in AMD64 and 28.4 percent of errors
in Pentium 4. A predominant proportion of
these patches are the BIOS microcode
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patches. However, executing the patched

microcode for every instance of the errone-
ous instruction can incur appreciable per-

formance overhead. Table 4 also shows that
about 12.6 percent of AMD64 errors and
7.3 percent of Pentium 4 errors require

support from the higher-level software.

The categories labeled with the disable
prefix involve turning off some feature in
the processor (for example, a power-saving

feature or a prefetching mechanism). The
conventional BIOS-patching approach can

work for 30 percent of AMD64 errors and
10 percent of Pentium 4 errors, when
certain features are disabled to patch the

hardware errors. In addition, by using
software support and by reconfiguring the

external hardware states, certain features in
the processor can be disabled or certain
instruction sequences can be avoided to

patch an additional 12.4 percent of
AMD64 errors and 17.3 percent of Pen-

tium 4 errors (sum of disable-OS, disable-
software, and disable-external in Table 4).

In total, conventional workarounds can
patch about 42.4 percent of AMD64 errors

and 27.3 percent of Pentium 4 errors. The
downside is that many of the patches
involve disabling features. In addition,

about 25.3 percent of AMD64 errors and
33.9 percent of Pentium 4 errors cannot be
patched using these conventional work-

arounds.

Coverage for proposed patching hardware.
Table 5 shows the coverage for our error-
fingerprint-based patching hardware. The I-

stream editing mechanism triggers the
execution of patch-up microcode only when

the required error conditions are satisfied.
Thus, it avoids the performance inefficiency
of BIOS microcode patching. About 6.2

percent of AMD64 errors and 10 percent of
Pentium 4 errors can benefit from condi-

Table 3. Signals monitored by condition detectors.

Subsystem

No. of signals monitored

AMD64 Pentium 4

Pipeline core 40 50

Memory subsystem 90 110

I/O and interrupt 25 50

System functions 30 60

Total 185 270

Table 4. Error coverage for conventional workarounds.

Technique

Errors covered (%)

AMD64 Pentium 4

BIOS 14.2 28.4

OS 6.3 5.5

Software 6.3 1.8

Disable-BIOS 30.1 10.0

Disable-OS 4.7 6.4

Disable-software 6.2 3.6

Disable-external 1.5 7.3

Unimportant 3.1 2.7

Watchdog 1.5 0

Not covered 25.3 33.9
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tional patching. However, 4.9 percent of
AMD64 errors and 9.1 percent of Pentium
4 errors still require executing the patch-up
microcode for every instance of the errone-
ous instruction (I-stream, static in Table 5).

Among our recovery mechanisms, sup-
port for simple replay after flushing the
pipeline can recover 7.9 percent of AMD64
errors and 3.6 percent of Pentium 4 errors.
Replay with a lightweight checkpoint sup-
port can cover an additional 9.5 percent of
AMD64 errors and 0.9 percent of Pentium
4 errors. Hypervisor support plays an
important role in recovery; it can patch
about 46 percent of AMD64 errors and
39.4 percent of Pentium 4 errors. Hypervisor
plus replay corresponds to the technique that
flushes the pipeline and starts reexecution of
the program under the guidance of the
hypervisor. The hypervisor maintains con-
trol of the program execution until it has
successfully shepherded the program’s exe-
cution past the hardware error. Disable-
BIOS and disable-hypervisor avoid the errors
by disabling some functionalities in the
processor with the help of BIOS or
hypervisor support. The unimportant cate-
gory corresponds to errors such as timer
inaccuracy that do not affect processor
functionality; these errors do not warrant
a patch.

In summary, using our proposed patch-
ing mechanisms, we can cover 78 percent of
errors reported for the AMD64 processors
and 69 percent of errors for the Pentium 4.
If we also consider conventional disabling

techniques and ignore unimportant errors,
we can cover all but 4.7 percent of AMD64
errors and all but 16.5 percent of Pentium 4
errors. Among the errors patched this way,
only about 13 percent of AMD64 errors
and 12 percent of Pentium 4 errors require
disabling a processor feature. This is better
than the conventional methods, which
require disabling features for 42.4 percent
of AMD64 errors and 27.3 percent of
Pentium 4 errors; many of these errors also
require patching support from software.

Designing the hardware patcher for
new processors

As engineers design a new processor, they
do not know what design errors it will have
and, therefore, do not know how to size and
lay out the patching hardware of Figure 2.
To solve this problem, we propose an
algorithm that, given the Specific signals
in the processor (obtained from the proces-
sor’s manual) and a rough layout of its
subsystems on the chip, can size and lay out
the patching hardware—signals tapped,
condition detectors, error detectors, pro-
grammable interconnects, and wires.4 We
obtain the rules in this algorithm by
generating scatter plots of the hardware
needed from a training set of older
processors.

We also used this algorithm to predict
the hardware needed for several new
processors. We find that training the rules
of the algorithm with seven processors is
accurate enough to size the patching

Table 5. Error coverage for error fingerprint-based hardware patching mechanism.

Technique

Errors covered (%)

AMD64 Pentium4

I-stream, static 4.9 9.1

I-stream, conditional 6.2 10.0

Replay with pipeline flush 7.9 3.6

Replay with checkpoint 9.5 0.9

Hypervisor 46.0 39.4

Hypervisor plus replay 4.7 5.5

Disable-BIOS 7.9 0.0

Disable-hypervisor 6.2 11.9

Unimportant 3.1 2.7

Not covered 4.7 16.5
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hardware of new processors to cover more
than 95 percent of the design errors that
would be covered with perfect knowledge.
In addition, the processors in the training
set do not have to resemble the new
processors.

Today’s processors have many nontrivial
errors, even though companies spend

enormous resources validating and testing
the designs. We can only expect this
problem to become more severe as processor
complexity increases: Increased integration
will increase verification effort while hurting
signal observability; larger design teams will
increase the risk of errors due to miscommu-
nication; finally, more sophisticated fea-
tures—and the ambiguities of the many
new standards supporting them—will also
contribute to errors. Our proposed program-
mable hardware mechanism for patching
errors offers processor manufacturers a new
and better way to deal with these inevitable
errors. Manufacturers can regularly release
hardware patches to fix errors, avoiding costly
chip recalls and respins, and potentially
releasing silicon to market earlier. Overall,
our scheme enables an exciting new environ-
ment where hardware design errors can be
handled as easily as system software bugs, by
applying a patch to the hardware. MICRO
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