DSC 102
Systems for Scalable Analytics

Arun Kumar

Topic 3: Parallel and Scalable Data Processing
Part 2: Scalable Data Access

Ch. 9.4, 12.2, 14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book
Ch. 5, 6.1, 6.3, 6.4 of MLSys Book
Outline

❖ Basics of Parallelism
 ❖ Task Parallelism; Dask
 ❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
 ❖ Paged Access; I/O Costs; Layouts/Access Patterns
 ❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
 ❖ Data-Parallel Data Science Operations
 ❖ Optimizations and Hybrid Parallelism
Recap: Memory Hierarchy

Access Speed
- ~100GB/s
- ~10GB/s
- ~GB/s
- ~200MB/s

Cycles
- 10^7 - 10^8
- 10^5 - 10^6
- 100s

Main Memory

Price
- ~MBs ~$2/MB
- ~10GBs ~$5/GB
- ~TBs ~$200/GB
- ~10TBs ~$40/TB

Cache

Flash Storage

Magnetic Hard Disk Drive (HDD)
Rough sequence of events when program is executed

- **CPU**
 - CU
 - ALU
 - Registers
- **Caches**
- **DRAM**
- **Monitor**
- **Bus**
- **I/O for Display**
- **I/O for code**
 - tmp.py
- **I/O for data**
 - tmp.csv

Arithmetic done within CPU

- Store; Retrieve
 - DRAM
 - tmp.csv

Q: What if this does not fit in DRAM?
Scale of Datasets in Practice

N = 562
62% industry
Scalable Data Access

Central Issue: Large data file does not fit entirely in DRAM

Basic Idea: Divide-and-conquer again!

“Split” data file (virtually or physically) and stage reads of its pages from disk to DRAM; vice versa for writes

4 key regimes of scalability / staging reads:

- **Single-node disk:** Paged access from file on local disk
- **Remote read:** Paged access from disk(s) over a network
- **Distributed memory:** Data fits on a cluster’s total DRAM
- **Distributed disk:** Use entire memory hierarchy of cluster
Outline

❖ Basics of Parallelism
 ❖ Task Parallelism; Dask
 ❖ Single-Node Multi-Core; SIMD; Accelerators
❖ Basics of Scalable Data Access
 ❖ Paged Access; I/O Costs; Layouts/Access Patterns
 ❖ Scaling Data Science Operations
❖ Data Parallelism: Parallelism + Scalability
 ❖ Data-Parallel Data Science Operations
 ❖ Optimizations and Hybrid Parallelism
Basic Idea: “Split” data file (virtually or physically) and *stage reads* of its pages from disk to DRAM (vice versa for writes)

Recall that files are already virtually split and stored as *pages* on both disk and DRAM
Page Management in DRAM Cache

❖ **Caching**: Retaining pages read from disk in DRAM
❖ **Eviction**: Removing a page frame’s content in DRAM
❖ **Spilling**: Writing out pages from DRAM to disk
 ❖ If a page in DRAM is “dirty” (i.e., some bytes were written), eviction requires a spill; o/w, ignore that page
❖ The set of DRAM-resident pages typically changes over the lifetime of a process
❖ **Cache Replacement Policy**: The algorithm that chooses which page frame(s) to evict when a new page has to be cached but the OS cache in DRAM is full
 ❖ Popular policies include Least Recently Used, Most Recently Used, etc. (more shortly)
Quantifying I/O: Disk and Network

- Page reads/writes to/from DRAM from/to disk incur latency
- **Disk I/O Cost**: Abstract counting of number of page I/Os; can map to bytes given page size
- Sometimes, programs read/write data over network
- **Communication/Network I/O Cost**: Abstract counting of number of pages/bytes sent/received over network
- I/O cost is *abstract*; mapping to latency is *hardware-specific*

Example: Suppose a data file is 40GB; page size is 4KB
I/O cost to read file = 10 million page I/Os

Disk with I/O throughput: 800 MB/s \[\frac{40\text{GB}}{800\text{MB/s}} = 50\text{s}\]
Network with speed: 200 MB/s \[\frac{40\text{GB}}{200\text{MB/s}} = 200\text{s}\]
Scaling to (Local) Disk

Basic Idea: Split data file (virtually or physically) and *stage reads* of its pages from disk to DRAM (vice versa for writes)

Suppose OS Cache has only 4 frames; initially empty

Process wants to read file’s pages one after another, then discard: aka “filesan” access pattern

- Read P1
- Read P2
- Read P3
- Read P4
- Read P5
- Read P6

Cache is full! Cache Repl. needed

OS Cache in DRAM

Evict Evict P2

Total I/O cost: 6
Scaling to (Local) Disk

- In general, **scalable programs stage access** to pages of file on disk and efficiently use available DRAM
- Recall that typically DRAM size $<<$ Disk size
- Modern DRAM sizes can be 10s of GBs; so we read a “chunk”/“block” of file at a time (say, 1000s of pages)
- On magnetic hard disks, such chunking leads to more sequential I/Os, raising throughput and lowering latency!
- Similarly, write a chunk of dirtied pages at a time
Q: What to do if number of page frames is too few for file?

Cache Replacement Policy: Algorithm to decide which page frame(s) to evict to make space

- Typical frame ranking criteria: recency of use, frequency of use, number of processes reading it
- Typical optimization goal: Reduce total page I/O costs

A few well-known policies:

- Least Recently Used (LRU): Evict page that was used the longest time ago
- Most Recently Used (MRU): Opposite of LRU
- ML-based caching policies are “hot” nowadays! :)

Ad: Take CSE 132C for more on cache replacement policies
Data Layouts and Access Patterns

❖ Recall that *data layouts* and *data access patterns* affect what data subset gets cached in higher level of memory hierarchy

❖ Recall matrix multiplication example and CPU caches

❖ **Key Principle:** Optimizing layout of data file on disk based on data access pattern can help reduce I/O costs

❖ Applies to both magnetic hard disk and flash SSDs

❖ But especially critical for former due to vast differences in latency of random vs sequential access!
Row-store vs Column-store Layouts

- A common dichotomy when serializing 2-D structured data (relations, matrices, DataFrames) to file on disk

Say, a page can fit only 4 cell values

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>2a</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
</tr>
<tr>
<td>3a</td>
<td>3b</td>
<td>3c</td>
<td>3d</td>
</tr>
<tr>
<td>4a</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
</tr>
<tr>
<td>5a</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
</tr>
<tr>
<td>6a</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
</tr>
</tbody>
</table>

- Based on data access pattern of program, I/O costs with row- vs col-store can be orders of magnitude apart!
Row-store vs Column-store Layouts

Say, a page can fit only 4 cell values

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>2a</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
</tr>
<tr>
<td>3a</td>
<td>3b</td>
<td>3c</td>
<td>3d</td>
</tr>
<tr>
<td>4a</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
</tr>
<tr>
<td>5a</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
</tr>
<tr>
<td>6a</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
</tr>
</tbody>
</table>

Row-store: 1a,1b,1c,1d 2a,2b,2c,2d 3a,3b,3c,3d …

Col-store: 1a,2a,3a,4a 5a,6a 1b,2b,3b,4b …

Q: What is the I/O cost with each to compute, say, a sum over B?

- With row-store: need to fetch all pages; I/O cost: 6 pages
- With col-store: need to fetch only B’s pages; I/O cost: 2 pages
- This difference generalizes to higher dim. for tensors
Sometimes, it is beneficial to do a hybrid, especially for analytical RDBMSs and matrix/tensor processing systems.

Say, a page can fit only 4 cell values.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>2a</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
</tr>
<tr>
<td>3a</td>
<td>3b</td>
<td>3c</td>
<td>3d</td>
</tr>
<tr>
<td>4a</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
</tr>
<tr>
<td>5a</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
</tr>
<tr>
<td>6a</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
</tr>
</tbody>
</table>

Hybrid stores with 2x2 tiled layout:

- 1a, 1b, 2a, 2b
- 1c, 1d, 2c, 2d
- 3a, 3b, 4a, 4b
- ...
- 1a, 2a, 1b, 2b
- 1c, 2c, 1d, 2d
- 3a, 4a, 2b, 3b
- ...

Key Principle: What data layout will yield lower I/O costs (row vs col vs tiled) depends on data access pattern of the program!
Example: Dask’s DataFrame

Basic Idea: Split data file (virtually or physically) and *stage reads* of its pages from disk to DRAM (vice versa for writes)

- Dask DF scales to disk-resident data via a row-store
- “Virtual” split: each split is a Pandas DF under the hood
- Dask API is a “wrapper” around Pandas API to scale ops to splits and put all results together
- If file is too large for DRAM, need manual *repartition()* to get physically smaller splits (< ~1GB)

Example: Modin’s DataFrame

Basic Idea: Split data file (virtually or physically) and *stage reads* of its pages from disk to DRAM (vice versa for writes)

- Modin’s DF aims to scale to disk-resident data via a tiled store
- Enables seamless scaling along *both* dimensions
- Easier use of multi-core parallelism
- Many in-memory RDBMSs had this, e.g., SAP HANA, Oracle TimesTen
- ScaLAPACK had this for matrices

[diagram]

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-191.pdf
Scaling with Remote Reads

Basic Idea: Split data file (virtually or physically) and *stage reads* of its pages from disk to DRAM (vice versa for writes)

❖ Similar to scaling to local disk but not “local”:
 ❖ Stage page reads from remote disk/disks over the network (e.g., from S3)
 ❖ *More restrictive* than scaling with local disk, since spilling is not possible or requires costly network I/Os
 ❖ OK for a *one-shot* filescan access pattern
 ❖ Use DRAM to cache; repl. policies
 ❖ Can also use smaller local disk as cache; you did this in PA1
Outline

❖ Basics of Parallelism
 ❖ Task Parallelism; Dask
 ❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
 ❖ Paged Access; I/O Costs; Layouts/Access Patterns
 ❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
 ❖ Data-Parallel Data Science Operations
 ❖ Optimizations and Hybrid Parallelism
Scaling Data Science Operations

- Scalable data access for key representative examples of programs/operations that are ubiquitous in data science:
 - DB systems:
 - Non-deduplicating project
 - Simple SQL aggregates
 - SQL GROUP BY aggregates
 - ML systems:
 - Matrix sum/norms
 - (Stochastic) Gradient Descent
Scaling to Disk: Non-dedup. Project

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>2a</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
</tr>
<tr>
<td>3a</td>
<td>3b</td>
<td>3c</td>
<td>3d</td>
</tr>
<tr>
<td>4a</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
</tr>
<tr>
<td>5a</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
</tr>
<tr>
<td>6a</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
</tr>
</tbody>
</table>

Row-store:

```
SELECT C FROM R
```

- **Straightforward filescan data access pattern**
- Read one page at a time into DRAM; may need cache repl.
- Drop unneeded columns from tuples on the fly
- I/O cost: 6 (read) + output # pages (write)
Since we only need col C, no need to read other pages!

- I/O cost: 2 (read) + output # pages (write)
- Big advantage for col-stores over row-stores for SQL analytics queries (projects, aggregates, etc.), aka “OLAP”
- Rationale for col-store RDBMS (e.g., Vertica) and Parquet
Scaling to Disk: Simple Aggregates

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>3b</td>
<td>3c</td>
<td>3d</td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
<td></td>
</tr>
</tbody>
</table>

Row-store: SELECT MAX(A) FROM R

- Again, straightforward file scan data access pattern
- Similar I/O behavior as non-deduplicating project
- I/O cost: 6 (read) + output # pages (write)
Similar to the non-dedup. project, we only need col A; no need to read other pages!

I/O cost: 2 (read) + output # pages (write)
Scaling to Disk: Group By Aggregate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>1b</td>
<td>1c</td>
<td>4</td>
</tr>
<tr>
<td>a2</td>
<td>2b</td>
<td>2c</td>
<td>3</td>
</tr>
<tr>
<td>a1</td>
<td>3b</td>
<td>3c</td>
<td>5</td>
</tr>
<tr>
<td>a3</td>
<td>4b</td>
<td>4c</td>
<td>1</td>
</tr>
<tr>
<td>a2</td>
<td>5b</td>
<td>5c</td>
<td>10</td>
</tr>
<tr>
<td>a1</td>
<td>6b</td>
<td>6c</td>
<td>8</td>
</tr>
</tbody>
</table>

R

```
SELECT A, SUM(D)
FROM R GROUP BY A
```

- Now it is not straightforward due to the GROUP BY!
- Need to “collect” all tuples in a group and apply agg. func. to each
- Typically done with a **hash table** maintained in DRAM

```
<table>
<thead>
<tr>
<th>A</th>
<th>Running Info.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>17</td>
</tr>
<tr>
<td>a2</td>
<td>13</td>
</tr>
<tr>
<td>a3</td>
<td>1</td>
</tr>
</tbody>
</table>
```

- Has 1 record per group and maintains “running information” for that group’s agg. func.
- Built on the fly during filescan of R; holds the output in the end
Scaling to Disk: Group By Aggregate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>1b</td>
<td>1c</td>
<td>4</td>
</tr>
<tr>
<td>a2</td>
<td>2b</td>
<td>2c</td>
<td>3</td>
</tr>
<tr>
<td>a1</td>
<td>3b</td>
<td>3c</td>
<td>5</td>
</tr>
<tr>
<td>a3</td>
<td>4b</td>
<td>4c</td>
<td>1</td>
</tr>
<tr>
<td>a2</td>
<td>5b</td>
<td>5c</td>
<td>10</td>
</tr>
<tr>
<td>a1</td>
<td>6b</td>
<td>6c</td>
<td>8</td>
</tr>
</tbody>
</table>

R

```
SELECT A, SUM(D)
FROM R GROUP BY A
```

Row-store:

- `a1,1b,1c,4`
- `a2,2b,2c,3`
- `a1,3b,3c,5`
- `a3,4b,4c,1`
- `a2,5b,5c,10`
- `a1,6b,6c,8`

- **Note that the sum for each group is constructed incrementally**
- **I/O cost:** 6 (read) + output # pages (write); just one filescan again!

Q: But what if hash table > DRAM size?!
Scaling to Disk: Group By Aggregate

SELECT A, SUM(D) FROM R GROUP BY A

Q: But what if hash table > DRAM size?

❖ Program will likely just crash! OS may keep swapping pages of hash table to/from disk; aka “thrashing”

Q: How to scale to large number of groups?

❖ Divide and conquer! Split up R based on values of A

❖ HT for each split may fit in DRAM alone

❖ Reduce running info. size if possible

Ad: Take CSE 132C for more on how GROUP BY is scaled
Scaling to Disk: Matrix Sum/Norms

\[\begin{bmatrix} 2 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 3 & 0 & 1 & 0 \\ 3 & 0 & 1 & 0 \end{bmatrix} \]

\[\| M \|_2^2 \]

Row-store:

- Again, straightforward \texttt{filescan} data access pattern
- Very similar to relational simple aggregate
- Running info. in DRAM for sum of squares of cells
 - 0 \rightarrow 5 \rightarrow 10 \rightarrow 15 \rightarrow 20 \rightarrow 30 \rightarrow 40
- I/O cost: 6 (read) + output # pages (write)
- Col-store and tiled-store also have I/O cost 6; why?

\[M_{6\times4} \]
Scalable Matrix/Tensor Algebra

❖ In general, tiled partitioning is more common for matrix/tensor ops
 ❖ More DRAM/cache-efficient implementations

❖ DRAM-to-disk scaling:
 ❖ pBDR, SystemDS, and Dask Arrays for matrices
 ❖ SciDB, Xarray for n-d arrays
 ❖ CUDA for DRAM-GPU caches scaling of matrix/tensor ops
Numerical Optimization in ML

- Many regression and classification models in ML are formulated as a (constrained) minimization problem
- E.g., logistic and linear regression, linear SVM, etc.
- Aka “Empirical Risk Minimization” (ERM) approach
- Computes “loss” of predictions over labeled examples

\[w^* = \arg\min_w \sum_{i=1}^{n} l(y_i, f(w, x_i)) \]

- Hyperplane-based models aka Generalized Linear Models (GLMs) use \(f() \) that is a scalar function of distances:
 \[w^T x_i \]
Batch Gradient Descent for ML

\[L(w) = \sum_{i=1}^{n} l(y_i, f(w, x_i)) \]

❖ In many cases, **loss function** \(l() \) is **convex**; so is \(L() \)
❖ Closed-form minimization typically infeasible
❖ **Batch Gradient Descent:**
 ❖ Iterative numerical procedure to find an optimal \(w \)
 ❖ Initialize \(w \) to some value \(w^{(0)} \)
 ❖ Compute **gradient**:
 \[\nabla L(w^{(k)}) = \sum_{i=1}^{n} \nabla l(y_i, f(w^{(k)}, x_i)) \]
 ❖ Descend along gradient:
 (Aka **Update Rule**)
 \[w^{(k+1)} \leftarrow w^{(k)} - \eta \nabla L(w^{(k)}) \]
❖ Repeat until we get close to \(w^* \), aka **convergence**
Batch Gradient Descent for ML

Learning rate is a **hyper-parameter** selected by user or “AutoML” tuning procedures

Number of iterations/epochs of BGD also hyper-parameter
Data Access Pattern of BGD at Scale

- The data-intensive computation in BGD is the gradient
- In scalable ML, dataset D may not fit in DRAM
- Model w is typically small and DRAM-resident

\[
\nabla L(w^{(k)}) = \sum_{i=1}^{n} \nabla l(y_i, f(w^{(k)}, x_i))
\]

Q: What SQL op is this reminiscent of?

- Gradient is like SQL SUM over vectors (one per example)
- At each epoch, 1 filescan over D to get gradient
- Update of w happens normally in DRAM
- Monitoring across epochs for convergence needed
- Loss function $L()$ is also just a SUM in a similar manner
I/O Cost of Scalable BGD

\[
\nabla L(w^{(k)}) = \sum_{i=1}^{n} \nabla l(y_i, f(w^{(k)}, x_i))
\]

<table>
<thead>
<tr>
<th>Y</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>1</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
</tr>
<tr>
<td>1</td>
<td>3b</td>
<td>3c</td>
<td>3d</td>
</tr>
<tr>
<td>0</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
</tr>
<tr>
<td>1</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
</tr>
<tr>
<td>0</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
</tr>
</tbody>
</table>

Row-store:

- 0,1b, 1c,1d
- 1,2b, 2c,2d
- 1,3b, 3c,3d
- 0,4b, 4c,4d
- 1,5b, 5c,5d
- 0,6b, 6c,6d

❖ Straightforward **filescan** data access pattern for SUM
❖ Similar I/O behavior as non-dedup. project and simple SQL aggregates
❖ I/O cost: 6 (read) + output # pages (write for final w)
Two key cons of BGD:
- Often, too many epochs to reach optimal
- Each update of w needs full scan: costly I/Os

Stochastic GD (SGD) mitigates both cons

Basic Idea: Use a *sample* (mini-batch) of D to approximate gradient instead of “full batch” gradient
- Done *without replacement*
- Randomly reorder/shuffle D before every epoch
- Sequential pass: sequence of mini-batches

Another big pro of SGD: works well for *non-convex* loss too, especially DL; BGD does not

SGD often called the “workhorse” of modern ML/DL
Access Pattern of Scalable SGD

\[W^{(t+1)} \leftarrow W^{(t)} - \eta \nabla \tilde{L}(W^{(t)}) \quad \nabla \tilde{L}(W) = \sum_{i \in B} \nabla l(y_i, f(W, x_i)) \]

Sample mini-batch from dataset without replacement

Original dataset

Random dataset

Randomized dataset

Original dataset

ORDER BY RAND()
I/O Cost of Scalable SGD

- I/O cost of random shuffle is non-trivial; need so-called “external merge sort” (skipped in this course)
- Typically amounts to 1 or 2 passes over file
- Mini-batch gradient computations: 1 filescan per epoch:
 - As filescan proceeds, count # examples seen, accumulate per-example gradient for mini-batch
 - Typical mini-batch sizes: 10s to 1000s
 - Orders of magnitude more model updates than BGD!
- Total I/O cost per epoch: 1 shuffle cost + 1 filescan cost
 - Often, shuffling only once upfront suffices
- Loss function L() computation is same as before (for BGD)
Scaling Data Science Operations

❖ Scalable data access for key representative examples of programs/operations that are ubiquitous in data science:

❖ DB systems:
 ❖ Relational select
 ❖ Non-deduplicating project
 ❖ Simple SQL aggregates
 ❖ SQL GROUP BY aggregates

❖ ML systems:
 ❖ Matrix sum/norms
 ❖ (Stochastic) Gradient Descent
Outline

❖ Basics of Parallelism
 ❖ Task Parallelism; Dask
 ❖ Single-Node Multi-Core; SIMD; Accelerators

❖ Basics of Scalable Data Access
 ❖ Paged Access; I/O Costs; Layouts/Access Patterns
 ❖ Scaling Data Science Operations

❖ Data Parallelism: Parallelism + Scalability
 ❖ Data-Parallel Data Science Operations
 ❖ Optimizations and Hybrid Parallelism
Review Questions

1. What are the 4 main regimes of scalable data access?
2. Briefly explain 1 pro and 1 con of scaling with local disk vs scaling with remote reads.
3. You are given a DataFrame serialized as a 100 GB Parquet columnar file. All 20 columns are of same fixed-length data type. You compute a sum over 4 columns. What is the I/O cost (in GB)?
4. Which is the most flexible layout format for 2-D structured data?
5. You layout a 1 TB matrix in tile format with a shape 2000x500. What is the I/O cost (in GB) of computing its full matrix sum?
6. Briefly explain 1 pro and 1 con of SGD vs BGD.
7. Suppose you use scalable SGD to train a DL model. The dataset has 100 mil examples. You use a mini-batch size of 50. How many iterations (number of model update steps) will SGD finish in 20 epochs?
8. What is the precise runtime tradeoff involved in shuffle-once-upfront vs shuffle-every-epoch for SGD?
Optional: More Examples of Scaling Data Science Operations
Not included in syllabus
Scaling to Disk: Relational Select

\[\sigma_B = \text{"3b"}(R) \]

Row-store:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
</tr>
<tr>
<td>2a</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
</tr>
<tr>
<td>3a</td>
<td>3b</td>
<td>3c</td>
<td>3d</td>
</tr>
<tr>
<td>4a</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
</tr>
<tr>
<td>5a</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
</tr>
<tr>
<td>6a</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
</tr>
</tbody>
</table>

❖ Straightforward **filenacan** data access pattern
❖ Read pages/chunks from disk to DRAM one by one
❖ CPU applies predicate to tuples in pages in DRAM
❖ Copy satisfying tuples to temporary output pages
❖ Use LRU for cache replacement, if needed
❖ I/O cost: 6 (read) + output # pages (write)
Scaling to Disk: Relational Select

\[\sigma_B = \text{"3b"}(R) \]

OS Cache in DRAM

Disk

Reserved for writing output data of program (may be spilled to a temp. file)

CPU finds a matching tuple! Copies that to output page

Need to evict some page LRU says kick out page 1 Then page 2 and so on ...

1a,1b,1c,1d

2a,2b,2c,2d

3a,3b,3c,3d

4a,4b,4c,4d

5a,5b,5c,5d

6a,6b,6c,6d
Scaling to Disk: Gramian Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[M_{6 \times 4} \]

\[M^T M \]

- Row-store:
 - 2,1, 0,0
 - 2,1, 0,0
 - 0,1, 0,2
 - 0,0, 1,2
 - 3,0, 1,0
 - 3,0, 1,0

- A bit tricky, since output may not fit entirely in DRAM
- Similar to GROUP BY difficult case
- Output here is 4x4, i.e., 4 pages; only 3 can be in DRAM!
- Each row will need to update entire output matrix
- Row-store can be a poor fit for such matrix algebra
- What about col-store or tiled-store?
Scaling to Disk: Gramian Matrix

Read A, C, E one by one to get $O_1 = A^TA + C^TC + E^TE$; O_1 is incrementally computed; write O_1 out; I/O: 3 (r) + 1 (w)

Likewise with B, D, F for O_4; I/O: 3 (r) + 1 (w)

Read A, B and put A^TB in O_2; read C, D to add C^TD to O_2; read E, F to add E^TF to O_2; write O_2 out; I/O: 6 + 1

Likewise with B,A; D,C; F,E for O_3; I/O: 6 + 1

Max I/O cost: 18 (r) + 4(w); scalable on both dimensions!