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Abstract

As robots enter human spaces and begin to work proximately
with people, it is important that they understand human so-
cial interaction. They must be able to perceive human social
signals and understand how to adapt to groups. The goal of
our work is to design robot perception algorithms that allow
robots to understand human group dynamics via social cues,
and understand how to behave collaboratively in groups. In
this paper, we discuss the current state-of-the-art of two fields
that have contributed methods to achieve this goal, social sig-
nal processing and computer vision. We describe recent ad-
vances in these fields, as well as some of the challenges faced
when adapting them to mobile robots.

1 Introduction

Robots are transitioning into unstructured environments
where they will work proximately with people (Riek 2013).
As this transition happens, humans will have expectations
of how these robots will behave, appear, and interact. So-
cial, cultural, situational norms, and context play a signifi-
cant role in both how people formulate these expectations,
as well as how they might behave around robots. Thus, it is
important robots are able to sense and understand the con-
textual world around them and human social signals in or-
der to respond appropriately to it (Nigam and Riek 2015;
O’Connor and Riek 2015).

Researchers in human-robot interaction (HRI) have ex-
plored how this contextual awareness might be accom-
plished by enabling robots to recognize and respond to (syn-
thesize) human social signals. For example, some have de-
signed models for robots to appropriately approach a hu-
man to initiate a conversation (Satake et al. 2013), or build
proxemic-sensitive gesture and speech patterns (Mead and
Matari¢ 2015). Others have explored detecting and synthe-
sizing head motion, gaze patterns, and synchronous mecha-
nisms as a means for building rapport, enhancing likability,
or sustaining engagement during interaction (Riek, Paul, and
Robinson 2010; Rich et al. 2010; Khoramshahi et al. 2016).

These challenges have inspired researchers to transition
from dyadic interaction to group interaction between hu-
mans and robots. Group interaction has been studied for
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over a decade in fields such as social psychology, linguis-
tics, sociology, computer vision, and robotics (Kendon 1990;
Ricci et al. 2015). It provides rich information about inter-
dependence between group members, group cohesion, and
how people communicate both verbally and nonverbally.
More specifically to robotics, group dynamics can provide
information about how social signals resonate throughout
groups, how a robot can cooperate with a group, and also
may allow a robot to sense the affective states of groups.
Therefore, robots need sensing abilities that allow them to
perceive group social dynamics to facilitate effective face-
to-face communication.

There are several challenges in detecting and interacting
with groups from a mobile robot. First, there is the problem
of sensing. Where are the sensors located? (On the robot?
On a person? In the room?) Can a robot see all members of
the group, even as they (and it) are in motion? Then, even if
these sensing challenges are surmounted, a robot still needs
to process these social signals correctly, which is non-trivial
(Riek 2013). Finally, robots need to be able to process all
this information in near real-time, often with limited com-
putational resources.

There has been some recent work done in this domain
within the robotics community. For example, Igbal et al.
(2016) designed an algorithm which can anticipate high-
level group behavior, calculate the dynamics of the group,
and adapt a robot’s behavior to humans in real time. They ex-
perimentally validated this method across a range of multi-
party interaction scenarios, and found it to be successful. Re-
cently, they have adapted the model to leverage tempo as a
mechanism for robots to adapt to humans Igbal et al. (2016).

One gap in this prior work is that it was conducted us-
ing external sensors (four Microsoft Kinect sensors), and
within a experimental interaction paradigm. We are inter-
ested in integrating robots into uncontrolled, naturalistic,
unpredictable environments where the robot freely interacts
with groups of people. To accomplish this, we plan to lever-
age multidisciplinary ideas from the social signal processing
and computer vision fields to sense and respond to groups.

In this paper, we discuss the current state-of-the-art in so-
cial signal processing and computer vision fields for detect-
ing groups, and explore how mobile robots might leverage
these mechanisms.
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Figure 1: Human Spatial F-Formation Arrangements: (1) Circular Arrangement: Defines three social spaces. o-space is the
convex hull in the middle of the group members, p-space is the area surrounding the o-space (where the humans are positioned),
and r-space is the area beyond p-space; (2) L-Arrangement is formed between two humans standing perpendicular to one another
in an L-shaped position in p-space; (3) Vis-a-Vis Arrangement is formed when two group members stand directly facing one
another; and (4) Side-by-Side Arrangement is formed when two group members are facing the same direction (not toward one

another) (Kendon 1976).

2 Background and Scope

Social signal processing (SSP) “aims at providing computers
with the ability to sense and understand human social sig-
nals” Vinciarelli et al. (2009). These social signals include
nonverbal behavioral cues such as facial expression, body
posture, gesture, and proxemics. Social signals are impor-
tant for robots to understand, because leveraging the affec-
tive states of a group can inform the robot’s behavior. Com-
puter vision techniques are also important for robots as they
address perception techniques for human motion.

Some computer vision approaches can help address robot
perception problems, such as pedestrian tracking and F-
Formation detection. The problem of pedestrian tracking
is to provide semantic information about pedestrians in a
scene. F-Formation is a formal system that identifies groups
in social environments (Kendon 1976). An F-Formation sys-
tem arises when two or more humans sustain a spatial and
orientation relationship, which divides the spatial relation-
ship between groups into a p-space and o-space. As shown
in Figure 1, o-space is the area in the center of the group,
while p-space is the area where humans stand in a group sur-
rounding o-space, and r-space is the area beyond p-space.

Several researchers in the computer vision community
have been leading a transition from studying individuals to
studying groups, and several have been leveraging the F-
Formation system. This allows them to explore character-
istics of groups such as dimension (small groups or crowds),
durability (ephemeral, ad-hoc, or stable), and organization
(Setti et al. 2015).

Researchers in robotics can also leverage these charac-
teristics to learn about social interaction. The F-Formation
concept can be used to systematically analyze social group
behavior from a mobile robot. Robots can leverage dimen-
sion, durability, and organization to appropriately adapt its
behavior to human group motion. In addition, this concept

can help robots perceive where people are relative to itself,
how they are moving, and how the robot can use this infor-
mation to join groups.

2.1 Egocentric vs. Exocentric Perception

In order for robots to be able to detect groups and interact
fluently during face-to-face interaction with group members,
it is important that algorithms are designed using egocen-
tric (or robot-centric) data; otherwise, these same algorithms
may fail.

Egocentric vision has been used for many vision prob-
lems including: activity recognition, navigation, video sum-
marization, action-object detection, and 3D saliency detec-
tion (Betancourt et al. 2015; Soo Park and Shi 2015). For
the purposes of designing algorithms for robots in social
spaces, egocentric vision is also an important problem as ex-
ocentric perspectives would be approached differently than
egocentric perspectives. For example, egocentric vision in-
corporates features of the robot that are in the field-of-view
of the camera; otherwise, the robot itself is not seen in the
data. Also, egocentric vision is typically at human height;
whereas, exocentric vision can have any spatial orientation
and include the robot in the data as well.

2.2 Sensing Technologies

The sensing technologies used to perceive people in the
robotics, computer vision, and social signal processing fields
vary depending on the problem, but typically are differen-
tiated as intrusive and non-intrusive sensors. Intrusive sen-
sors record physiological signals or positional information,
such as heart rate, galvanic skin response, or location. Some
examples of intrusive sensors used in the literature include:
accelerometers used to measure acceleration or speed (e.g.
gesture), wearable sensors that contain accelerometers used



to identify emotions, cellular phones used to measure lo-
cation or proxemics, and inertial measurement units (IMU)
used to measure body specific force, angular rate, and some-
times magnetic fields (e.g. detect user activity) (Palaghias et
al. 2016).

Non-intrusive sensors are typically sensors placed in the
environment, usually far away from people, which col-
lect data. Examples include: RGB-D cameras (e.g. the Mi-
crosoft Kinect can track skeleton motion), Panoramic cam-
eras, sonar sensors, or thermal imaging sensors.

Because we are interested in methods for mobile robots,
we limit our discussion to methods that use data from mo-
bile sensors as this is most suitable for mobile robotic appli-
cations.

3 Methodologies

The problem of better understanding how to integrate robots
into human groups have been approached by leveraging
work from the social signal processing and computer vi-
sion fields. We discuss state-of-the-art methods used in each
of these respective fields to promote the analysis of groups
from a robot-centric (egocentric) perception perspective.

3.1 Social Signal Processing

Social signals are the expression of one’s attitude toward
a social situation. This emcompasses nonverbal behav-
ioral cues such as body posture, gesture, facial expression,
conversational analysis (e.g., turn taking), and proxemics
(Moosaei, Hayes, and Riek 2015; Vinciarelli, Pantic, and
Bourlard 2009). In this paper, we focus on analysis of ges-
tures, body posture, and proxemics, as these are behavioral
cues most readily detectable from a mobile robot, and can
be very fruitful in understanding social groups.

The problem of gesture recognition has been approached
from an intrusive and non-intrusive sensing perspective. Re-
searchers looked at gestural analysis from a physiological
and positional point-of-view using technologies such as ac-
celerometers, inertial sensors, and textile capacitive sensor
arrays (Palaghias et al. 2016; Singh et al. 2015). However,
intrusive sensors can induce a Hawthorne effect (Wickstrom
and Bendix 2000), and these sensors may alter participants’
behavior. As a result, a nonintrusive sensing paradigm is of-
ten necessary to collect naturalistic gestural data, and many
researchers have employed the Microsoft Kinect in their
work.

However, the Kinect has raised challenges in gesture
recognition. One problem is the noisy skeleton trajectory
data, which increases the difficulty of accurately detecting
gestures. Another problem is modeling the temporal and
spatial dynamics of gestures using RGB, depth, and infrared
for analysis. Gestures are analyzed frame-by-frame; there-
fore, a temporal model is needed to capture the time varying
characteristics of gestures. Gestures vary spatially as well so
this must also be captured in the model for it to be robust to
these spatial-temporal variations (Pitsikalis et al. 2015).

Therefore, multimodal fusion techniques were developed
to combine information from several modalities at once to
increase accuracy of state-of-the-art models (Pitsikalis et al.

2015). This combined with machine learning techniques al-
low researchers to extract features and employ effective clas-
sifiers.

Typically, preprocessing techniques are employed on the
data such as noise removal and signal smoothing (Escalera,
Athitsos, and Guyon 2016). Then, features are extracted us-
ing spatio-temporal and salient characteristics of the data
e.g. Gaussian temporal smoothing, Histogram of Oriented
Gradients, and SIFT (Song, Demirdjian, and Davis 2011;
Dalal and Triggs 2005; Lowe 1999). The most popular clas-
sifiers include Support Vector Machines, Random Forests,
Conditional Random Fields, Dynamic Time Warping, Hid-
den Markov Models, and Deep Learning (Escalera, Athit-
sos, and Guyon 2016; Wu et al. 2016). Evaluation metrics
of these methods typically include confusion matrices, spot-
ting, Jaccard indices, and F1-scores. A comprehensive list
of datasets can be found in recent surveys by Escalera et al.
(2016) and D’Orazio et al. (2016).

Although gesture recognition research has made great
headway, there remains a lack of work done to understand
gestures from multiple humans simultaneously and in natu-
ralistic scenes. So far, many gesture recognition systems are
limited to lab settings where real world challenges are miti-
gated. Therefore, there is still a gap in the literature that ad-
dresses these issues on a mobile robot, which is necessary to
integrate robots into human social environments and adeptly
interact with people.

Another important behavioral cue during social interac-
tion is body posture. Body posture has been used to iden-
tify affective states of humans. Many researchers studied
body posture visually, and provide a stimuli to invoke pre-
defined affective states from participants (Karg et al. 2013;
Mota and Picard 2003).

Researchers leveraged intrusive sensors to identify peo-
ples’ affective states. Some studies used actors, and some
studies used stimuli to induce authentic affective states. Typ-
ically, pressure sensors are installed in study participant’s
chair during data acquisition and the researchers use these
pressure readings to identify when a participant leaned for-
ward, leaned backward, sitting upright, slumping back, etc.
(Mota and Picard 2003; Karg et al. 2013). Then, they per-
form feature extraction by modeling the pressure readings
using a probability distribution and train a classifier to rec-
ognize the affective states of the participant (Karg et al.
2013). Common classifiers include: Naive Bayes, Nearest
Neighbor, Support Vector Machine, Recurrent Neural Net-
works, Hidden Markov Models, and Decision Trees (Es-
calera, Athitsos, and Guyon 2016).

Others have employed non-intrusive sensors to study
body posture, such as the Kinect, and used methods to in-
fer states such as engagement, frustration, and focused at-
tention (Grafsgaard et al. 2012; Liu et al. 2015; Lee et al.
2015). The state-of-the-art in body posture recognition sug-
gests that identifying body postures is non-trivial; however,
the problem is not as straightforward when identifying body
posture from a group of humans situated in an circular ori-
entation. In order to analyze each group members’ posture
while they are situated in a circular orientation, multiple
sensors would be required to capture skeleton data of the
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Figure 2: Proxemic Zones: Hall defines intimate space as
between 6-18 inches around a person, personal space as 1.5-
4 feet, social space as 4-12 feet, and public space as 12-25
feet around a person (Hall 1966)

group (depending on the group size). In this case, partic-
ipants would be aware that they were under observation.
Therefore, an open question is how can group body pos-
ture be analyzed from a mobile robot in a naturalistic setting
without inducing a Hawthorne effect?

Proxemics is another behavioral cue that defines humans’
relative subjective view of intimate, personal, social, and
public space. Hall, the founder of the field, defines intimate
space as 6-18 inches, personal space as 1.5-4 feet, social
space as 4-12 feet and public space as 12-25 feet, as shown
in Figure 2 (Hall 1966). Proxemics has been studied in HRI,
though to date has mainly focused on understanding prox-
emic factors that affect human perception of the robot (Mead
and Matari¢ 2015; Oosterhout, Visser, and others 2008).
These factors include: speed, appearance, and direction of
approach (Rios-Martinez, Spalanzani, and Laugier 2015).

For example, Butler and Agah (2001) found that humans
become uncomfortable when a robot approaches them with
fast speed, namely 1m/s. Their study suggests that an ac-
ceptable speed is 0.254m/s and 0.381m/s. They also stud-
ied how anthropomorphism affects proxemics. They found
that humans that preferred the humanoid robot’s appearance
were more acceptable to closer proximity than other hu-
mans. Mumm and Mutlu’s (2011) key findings suggests that
when a robot gazes at a human, this same human is more
likely to decrease their proximity with the robot and increase
their proximity with the robot in the latter case. In addition,
Oosterhout and Visser (2008) studied how proxemic prefer-
ences change with age and gender.

Kruse et al. (2012) incorporated proxemics into a robot
navigation system to avoid discomfort of humans. Dauten-
hahn et al. (2006) found that people felt more threatened
when a robot approached them directly while carrying an ob-
ject. Also, Mead and Mataric (2015) studied how well robots
could predict social signals such as speech and gesture from
different proxemic locations of study participants.

Proxemics is very important for integrating robots into hu-
man spaces. The aforementioned key findings suggest that
robots must use social signals as an indicator of whether it

should approach humans. In addition, the findings suggest
that appearance, speed, and direction of approach impacts
humans perception of robots so these factors must be taken
under consideration for face-to-face interaction between hu-
mans and robots.

The work discussed in this section provided an overview
of the state-of-the-art of gesture recognition, body posture
recognition, and proxemics. These problems encompass the
key challenges for detecting groups in social spaces for a
mobile robot from an SSP perspective. Next, we will discuss
problems in the computer vision field that can help robots
perceive human motion.

3.2 Computer Vision

The field of computer vision has studied many problems that
are applicable for mobile robots to interact with groups, such
as pedestrian and F-Formation detection. Common chal-
lenges between pedestrian and F-Formation detection in-
clude data occlusion, clutter, illumination changes, low con-
trast, and pose variation.

Pedestrian tracking is a challenging problem. Many meth-
ods have been proposed to address pedestrian detection over
the past decade. However, some methods may perform well
on one dataset, but perform poorly on others (Dollar et al.
2012; Dalal and Triggs 2005). This challenge has resulted
in tracking accuracy being highly dependent on how models
are trained. For example, accuracy is dependent on quality of
training data and feature selection. Also, some datasets have
stationary cameras, and some datasets have mobile cameras,
which also impacts transferability of one method to another
on different datasets.

Methods employed on data from mobile cameras have an
additional challenge such as predicting the camera’s mo-
tion as well as predicting motion of pedestrians. Pedes-
trian tracking algorithms have to account for unstable cam-
era motion and high frequency changes of pedestrians mov-
ing in and out of the scene. Methods which rely on back-
ground subtraction are unsuitable for this task, so different
approaches are needed. For example, Choi et al. (2013) de-
signed an algorithm that simultaneously tracks camera mo-
tion and pedestrians. Other researchers have used a multi-
modal approach by leveraging different sensing technolo-
gies such as combining vision with either thermal/infrared
camera, stereo, or laser sensors to track pedestrians (Walia
and Kapoor 2016).

Because the computer vision community has been work-
ing on this problem for the past few decades, they have pro-
gressed from single-target to multi-target pedestrian track-
ing, and then leveraged social groupings to improve multi-
target tracking accuracy (Choi et al. (2013); Leal et al.
(2011)).

Multi-target tracking typically involves an approach sim-
ilar to SSP via machine learning and can be addressed as an
optimization or estimation problem. The first step is prepro-
cessing, which most methods use background subtraction or
Histogram of Oriented Gradients (Dalal and Triggs 2005) to
isolate the target and pass the data to a tracking model. The
tracking problem is formulated as an optimization problem.
The optimization problem aims to find the global optimum



of all observations so that the model can generalize these ob-
servations well; hence, the model can detect many variations
of human sizes, shapes, and color variations. Then, the op-
timization problem becomes an estimation problem, which
can be approached using probabilistic inference or determin-
istic optimisation. The estimated location is the location of
the pedestrian in an image and helps account for non-linear
camera motion (Walia and Kapoor 2016).

Using probabilistic inference, a sampling method such as
Particle filters or a Reversible Jump Markov Chain Monte
Carlo particle filter can be used to generate a distribution
to build a model for estimation (Breitenstein et al. 2011;
Choi, Pantofaru, and Savarese 2013). Probabilistic inference
is typically used to predict and update pedestrian locations.

In contrast, deterministic optimization techniques find the
global optimal solution for predicted locations. Some deter-
ministic optimization techniques include min-cost max-flow
network flow, bipartite graph matching, max weight inde-
pendent sets, or dynamic programming (Choi and Savarese
2010; Qin and Shelton 2012; Brendel, Amer, and Todor-
ovic 2011; Andriyenko and Schindler 2010). Then, the mod-
els must be initialized, trained, and the parameters must be
tuned to achieve the best accuracy (Walia and Kapoor 2016).

More recently, researchers used social factors such as
group membership to improve pedestrian detection accu-
racy (Leal-Taixé, Pons-Moll, and Rosenhahn 2011). The ap-
proach to this problem is very similar to probabilistic infer-
ence and deterministic optimization; however, researchers
employ additional methods on top of tracking schemes to
track groups as well as individuals. For instance, Yigit and
Temizel (2015) leveraged characteristics of groups such as
joining, merging, and splitting of group members to build
a model that uses a particle filter to track in-group (mem-
bers in a group) and out-group (members not in a group)
pedestrians. Leal et al. (2011) combined the minimum-cost
network flow problem with the social force model to detect
and track groups and individual pedestrians (Yamaguchi et
al. 2011). In addition, Qin and Shelton (2012) used a cluster-
ing approach by applying Lagrangian optimization to design
a two-stage iterative algorithm that employed Hungarian K-
means clustering to track and detect groups.

Although pedestrian tracking methods contribute to de-
tecting groups in social spaces, this problem becomes more
challenging when deployed on a mobile robot (Luber and
Arras 2013). For instance, some of the aforementioned
methods for detecting individuals and groups are computa-
tionally expensive, which are not suitable given most plat-
forms have limited on-board computational resources. An-
other issue is that many of the aforementioned techniques
employed overhead cameras, which are rarely practical for
real robots in the real world.

Detecting and tracking F-Formations using these types
of methodologies could help mitigate some of these issues.
However, this problem is non-trivial. It is challenging to ap-
proximate head pose, body posture, position, and spatial ori-
entation of people in groups. To combat these issues, many
methods have been proposed, which leverage machine learn-
ing and computer vision techniques. Both machine learning
and computer vision provide strategies for approaching the

F-Formation detection problem as a statistics and classifica-
tion problem.

For example, Cristani et al. (2011) detected F-Formations
by modeling the o-space as a random Gaussian distribution
and used a Hough voting approach. Setti et al. (2013) built
on this work to detect F-Formations of different scales using
maximum weighted Boltzmann entropy.

Tran et al. (2013) designed a graph based clustering
algorithm that incorporates how much humans are inter-
acting to detect F-Formations. In addition, Vascon et al.
(vascon2014game) extracted features from body-worn ac-
celerometers and employed a Hidden Markov Model to es-
timate conversational groups. Ricci et al. (2015) performed
multi-target tracking, extracted head and body pose features
from the tracking observations, and then jointly estimated
head pose, body pose, and F-Formations.

Setti et al. (2015) published a comprehensive compari-
son of all these F-Formation systems using publicly avail-
able F-Formation datasets. Also, they compared their most
recent algorithm for detecting F-Formations using a graph-
cut framework for clustering groups.

F-Formation systems have also been explored in the
robotics community by Vazquez et al. (2015). They were the
first to use lower body orientations to predict F-Formations
as many robots are shorter than humans. While this was a
great contribution to integrating robots into social spaces,
they evaluated their method on a 2D, overhead video data
set, so the method may not easily scale to being deployed
on a physical mobile robot, which does not have access to
exocentric cameras (Zen et al. 2010, cf). Therefore, an open
question remains of how to deploy an F-Formation detection
system on a mobile robot in naturalistic settings.

After reviewing the aforementioned computer vision
problems, an open question is how do these techniques adapt
to working on a robot, as opposed to a standalone ma-
chine? Algorithms in robotics must have near real-time per-
formance, the computing devices must be light-weight (low
memory), and the algorithms must consider unpredictability
in human spaces. On the other hand, computer vision re-
searchers do not usually have to concern themselves with
these factors, and usually sacrifice computational efficiency
to achieve high accuracy.

In fact, many computer vision algorithms are GPU based
to speed up the algorithms, but roboticists do not have this
luxury as their platforms typically have hardware resource
constraints. Therefore, robots need computationally inex-
pensive detection and tracking methods with comparable ac-
curacy as pedestrian tracking methods used in computer vi-
sion.

4 Discussion

We have reviewed the current state-of-the-art in human
group perception, and discussed how this work might be
adaptable to mobile robots. Low cost, non-intrusive sensors
such as the Kinect have greatly advanced the fields of so-
cial signal processing and computer vision; however, a few
major challenges remain. For example, it remains extremely
difficult to analyze gesture and postural data from multi-
ple people simultaneously in real-world, dynamic settings.



Other sensing modalities with larger fields-of-view might
help overcome this issue, such as panoramic monocular or
depth cameras (Viswanathan, Pires, and Huber 2016).

Proxemics may provide another path forward to under-
standing group behavior; prior work in HRI suggests it may
be a beneficial mechanism. Perhaps global feature process-
ing can be employed by robots to develop rough approxima-
tions of human group proxemics (Nigam and Riek 2015).
Another approach is to explore satisficing approaches to
group proxemic estimation (Riek 2013).

Pedestrian tracking has been studied for a long time and
researchers have advanced the tracking capabilities of their
algorithms. Some of the methods discussed in this paper are
computationally expensive, which are not suitable given that
most robotic platforms have limited on-board computational
resources. This suggests that algorithms for pedestrian de-
tection must be computationally inexpensive without sacri-
ficing accuracy. We have been doing work recently in this
space by designing new methods to suggest regions of inter-
est and reduce the search space for existing pedestrian de-
tectors, and have been able to significantly reduce the com-
putation time of leading algorithms (Chan and Riek 2016).

The computer vision field has made great strides in per-
ception problems; however, some open questions remain.
For example, might these techniques discussed in this paper
work in the absence of overhead cameras? Much of the prior
work employed fixed, overhead cameras to sense groups,
which will be impractical for robots in real-world settings.
What is the path forward to sensing groups from an egocen-
tric perspective? Can egocentric methods teach robots how
to approach or join groups in social spaces?

Some future directions to progress toward a mobile robot
that can socially interact with humans, is to explore how a
robot can adapt to social behavior of humans in a group.
Although there has been work done to adapt a robot’s be-
havior to a group of humans (Igbal, Rack, and Riek 2016;
Igbal, Moosaei, and Riek 2016), this work was applied in
a laboratory setting; whereas, we are interested in robots
that can interact with groups “in the wild.” This approach to
group analysis will lay the groundwork for robots that can
handle real world challenges.

We encourage roboticists to address the challenges dis-
cussed and this work as they contribute to enabling robots to
perceive, learn, and adapt to humans in naturalistic settings.
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