
CSE 291 (SP 2024) Homework 2
2.1 Calculus of Variations

Exercise 2.1 — 10pt (+ 5 bonus).
Consider a water droplet on the table. For
simplicity, we will consider a droplet in a 2D
world resting on a 1D table. The shape of
the droplet is described by the graph of a
function y(x ) over [0, a] with y(0) = y(a) =
0. We want to determine the shape y and the
contact angle θ = tan−1(y ′(0)) (which will be
the same as − tan−1(y ′(a))) of the droplet.

The shape, the angle, and the length span
a are determined by minimizing the following
interfacial energy functionals that are propor-
tional to the arclength of the interface. Let
E1 be the interfacial energy between air and
water, E2 be that between water and table,
and E3 be that between air and table:

E1 =

∫ a

0

γgl
√

1 + y ′(x )2 dx (1)

E2 =

∫ a

0

γsl dx = γsla (2)

E3 = γsg(L− a) (3)

for some gas–liquid, solid–liquid, solid–gas interfacial energy (surface tension)
coefficients γgl, γsl, γsg. We find y and a that minimizes E1 + E2 + E3 subject to
the constraint that the total area

∫ a

0
y(x ) dx = A.

(a) The variational problem is easier and more familiar when a is fixed. For a
fixed a, show that the optimal shape y is a portion of a circle.

(b) (bounus) Knowing that the curve is a circular arc, the variational problem
reduces to an optimization for a reduced 1D parameter space of a (the
parameter space can also be the contact angle θ or the radius of the circle
etc). Show that the contact angle θ satisfies Young’s wetting equation
γgl cos θ + γsl − γsg = 0.
Hint Here is a possible change of variables. Let R be the radius of the
circle and let θ be the contact angle. In terms of R, θ the variable a can be
expressed as a = 2R sin θ, and the total arclength S of the arc (for E1 = γglS )
is S = 2Rθ. With a fixed area A the radius R and the angle θ are related by
the relation A = θR2 − R2 sin θ cos θ (sector of angle 2θ minus a triangle).
That is,

R =

√
A

θ − 1
2
sin(2θ)

. (4)
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In summary, the energies E1,E2,E3, and thus the total energy E = E1+E2+
E3, are functions of just θ computed by the following computation graph:

S = 2Rθ � // E1 = γglS
�
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E2 = γsla
� // E =

∑3
i=1 Ei

a = 2R sin θ
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2.2 Least Action Principle with Constraints
In a rigid body simulation, the positional variable q can be quite general and non-
Cartesian; for a single body, it consists of its translation and rotation degrees of
freedom; for a mechanical device with linkages the generalize coordinate may consist
more angle variables. One recovers the physical world coordinate of every atom on
the rigid body by composing Euclidean transformations (translations and rotations)
parameterized by q.

Formally, let q be the coordinate for a manifold Q . Every atom a (a ∈ A
for some index set A) has a physical position xa ∈ R3 given by xa = fa(q) for
some transformation fa : Q → R3, a ∈ A. Each movement q̇ ∈ TqQ is equipped
with a kinetic energy K (q, q̇) defined by adding the kinetic energies of all atoms
K (q, q̇) =

∫
A

1
2
|(fa)∗(q̇)|2R3da, which is a positive definite quadratic form of q̇. Each

position q is also annotated with a potential energy U (q) =
∫
A ua(fa(q))da for some

potential function ua for each atom. These functions K : TQ → R and U : Q → R
can usually be derived explicitly or precomputed offline. Now with K ,U , the
dynamical system is modeled as the optimality condition for the action

S (q) =

∫ T

0

(
K (q, q̇)− U (q)

)
dt =⇒ d

dt

(
∂K

∂q̇

)
=
∂K

∂q
− ∂U

∂q
. (5)

Now, when the rigid body interacts with the world, such as during collision, we add
inequality constraints on the physical position of each atom. For example, the body
should not penetrate the ground. In general, we can model the inequality constraint
by describing an inequality condition for the physical position of each atom ha ≤ 0
for some ha : R3 → R. By composition, they translate to constraints (ha ◦ fa) ≤ 0 on
Q with (ha ◦ fa) : Q → R. The KKT optimality condition is

d

dt

(
∂K

∂q̇

)
=
∂K

∂q
− ∂U

∂q
− (ha ◦ fa)∗µa(t) (6)

for some Lagrange multipliers µa(t) indexed by both a and t so that µa(t) ≥ 0 and
µa(t) = 0 whenever (ha ◦ fa)(q) � 0.

Physically, when the body is not in contact ((ha ◦ fa)(q) � 0), we have no
additional force from collision. When collision happens, the change of momentum
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can be added by an impulse. But there is a restriction on what type of impulse one can
add: It must be in the image of the back propagation by ha ◦ fa .

Exercise 2.2 — 10 pts.

A classic treatment for handling collision in a rigid body simulation is the
following. Whenever a vertex of a moving body penetrate another object, “push”
the positional variables q back to the feasible set and “readjust” the velocity so
that the change in the momentum is in the range of the pullback of constraint on
the world position.

In the plane, let q = [ cworld
θ ] where cworld = c = [ cxcy ] denotes the center of

mass of a body, and θ be the rotation angle. Each vertex has a displacement
vector dbody =

[
dx
dy

]
in the body coordinate, representing its displacement from

the center of the body. Note that the world coordinate for this vertex is given by[
x
y

]
(c,θ)

=

[
cos θ − sin θ
sin θ cos θ

]
︸ ︷︷ ︸

Rθ

[
dx
dy

]
+

[
cx
cy

]
︸︷︷︸

c

. (7)

The kinetic energy energy is given by

K ([ cθ ],
[
ċ
θ̇

]
) = m

2

(
ċ2x + ċ2y

)
+ m

3
|dbody|2θ̇2 =

[
ċᵀ θ̇

] m
2

m
2

m|d|2
3


︸ ︷︷ ︸

M/2

[
ċ

θ̇

]
(8)

when the body is a uniformly distributed rectangle and when dbody is a corner.
Note that the momentum associate to q̇ = [ ċθ ] is given by Mq̇.

Let the constraint be that −y(c, θ) ≤ 0 (as the ground is described by y = 0).
And suppose the vertex with displacement dbody is currently in contact with the
ground. What is the set of valid modification of the variable velocity (q̇after−q̇before)
before and after the collision?

The solution should just be expanding {M−1(dy |∗q)µ |µ ≥ 0}.
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(In practice, for perfectly elastic collision, one will also impose energy conser-
vation and search for µ so that the kinetic energy after the collision equals to the
one before the collision.) �

2.3 Miniproject

Exercise 2.3 — 20 pts (+5 bonus). Design a mechanical system and derive its
equation of motion using the least action principle. You can use ODE solver, e.g.
explicit RK4 or implicit Euler (may require root-finding at every iteration), or
derive a variational integrator, to integrate and march the animation. You are
welcome to model simple collision, such as a procedure similar to Exercise 2.2
or just put a soft barrier function in your potential energy. Similar to HW0, you
will write a document to describe your system and the numerical algorithm you
employed, as well as uploading a video of your animation. In this miniproject, we
expect you to show the work of the mathematical derivation for arriving at the
equation of motion in the written document.

Here are some examples
• A body bouncing in a bowl: https://youtu.be/0zmWEzrtvJA.
• Linkage system such as double (or more) pendulum.
• Dzhanibekov effect in 3D rigid rotations (https://en.wikipedia.org/
wiki/Tennis_racket_theorem)

Bonus credits will be given to those with excellent exposition or complexity of
the system. �
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