# CSE 291 (SP24) Physical Simulation Elasticity: Part 2

**Albert Chern** 



### Finite Element Elasticity

- Finite element elasticity
- More on Stress–Strain relation

#### Finite element simulation

- Discretize the deformable body by triangle mesh (2D) or tetrahedral mesh (3D) (n = dim(M))
- Each vertex i stores a fixed rest position  $X_i$  (material coordinate) and a variable world position  $x_i$  (representing value of flow map)





#### Linear interpolation

 The data on the vertices can be linearly interpolated into a piecewise linear flow map.

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ 1 & 1 & \cdots & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \\ 1 \end{bmatrix}$$





#### Deformation gradient

 The data on the vertices can be linearly interpolated into a piecewise linear flow map.

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ 1 & 1 & \cdots & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

The deformation gradient is a piecewise constant matrix

$$\begin{bmatrix} \mathbf{F} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} 1 & 1 & 1 \\ \mathbf{X}_0 & \mathbf{X}_1 & \cdots & \mathbf{X}_n \\ 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \begin{vmatrix} 1 & 1 & 1 \\ \mathbf{X}_0 & \mathbf{X}_1 & \cdots & \mathbf{X}_n \\ 1 & 1 & \cdots & 1 \end{bmatrix}^{-1}$$

#### Deformation gradient

• If  $A_j \mathbf{n}_j$  is the area normal of the opposite face of *j*-th vertex and V is the volume of the cell. Then

$$\mathbf{F_c} = -\frac{1}{nV_c} \sum_{j=0}^{n} \begin{bmatrix} \mathbf{x}_j \\ \mathbf{y} \end{bmatrix} \begin{bmatrix} -A_{c,j} \mathbf{n}_{c,j} \\ \end{bmatrix}$$





#### Strain and stress computation

- Now in each cell we have deformation gradient F
- ullet We can compute the Cauchy–Green tensor per cell  ${f C}={f F}^{\intercal}{f F}$
- Like the smooth theory, build  $\mathbf{E} = \frac{1}{2}(\mathbf{C} \mathbf{I})$
- Look up some stress–strain relation

$$S = 2\mu E + \lambda tr(E)I$$

$$\mathbf{X}$$
 per vtx  $\longrightarrow$   $\mathbf{F}$  per cell  $\longrightarrow$   $\mathbf{C}$  per cell  $\vdots$   $\vdots$   $\mathbf{S}$  per cell

#### Stress computation

- Now in each cell we have deformation gradient F
- We can compute the Cauchy–Green tensor per cell  $\mathbf{C} = \mathbf{F}^\mathsf{T} \mathbf{F}$
- Like the smooth theory, build  $\mathbf{E} = \frac{1}{2}(\mathbf{C} \mathbf{I})$
- Look up some stress–strain relation

$$S = 2\mu E + \lambda tr(E)I$$

1st-Piola stress

$$P = FS$$

 Compute force by taking adjoint of gradient

$$\begin{array}{c} \mathbf{X} \text{ per vtx} \longrightarrow \mathbf{F} \text{ per cell} \longrightarrow \mathbf{C} \text{ per cell} \\ \vdots \\ \mathbf{-f} \text{ per vtx} \longleftarrow \mathbf{P} \text{ per cell} \longleftarrow \mathbf{S} \text{ per cell} \end{array}$$

#### Total force computation

• The differential of F with respect to x

$$\mathring{\mathbf{F}}_{\mathsf{c}} = -\frac{1}{nV_{\mathsf{c}}} \sum_{\mathsf{v} \prec \mathsf{c}} \left[ \mathring{\mathbf{x}}_{\mathsf{v}} \right] \left[ -A_{\mathsf{c},\mathsf{v}} \mathbf{n}_{\mathsf{c},\mathsf{v}}^{\mathsf{T}} - \right]$$

Adjoint: accumulate traction force to vertex

$$\sum_{\mathbf{c}} \operatorname{tr}(\mathbf{P}_{\mathbf{c}} \mathring{\mathbf{F}}_{\mathbf{c}}^{\mathsf{T}}) V_{\mathbf{c}} = \sum_{\mathbf{v}} -\mathbf{f}_{\mathbf{v}}^{\mathsf{T}} \mathring{\mathbf{x}}_{\mathbf{v}}$$

$$\mathbf{f}_{\mathsf{v}} = \frac{1}{n} \sum_{\mathsf{c} \succ \mathsf{v}} \mathbf{P}_{\mathsf{c}} \mathbf{n}_{\mathsf{c},\mathsf{v}} A_{\mathsf{c},\mathsf{v}}$$



#### Equation of motion

$$\mathbf{f}_{\mathsf{v}} = \frac{1}{n} \sum_{\mathsf{c} \succ \mathsf{v}} \mathbf{P}_{\mathsf{c}} \mathbf{n}_{\mathsf{c},\mathsf{v}} A_{\mathsf{c},\mathsf{v}}$$

$$m_{\mathsf{v}}\ddot{\mathbf{x}}_{\mathsf{v}} = \mathbf{f}_{\mathsf{v}}$$



#### Mass computation

 The total mass of each vertex should be proportional to the vertex volume approximated by

$$m_{\mathsf{v}} = \sum_{\mathsf{c} \succ \mathsf{v}} \frac{1}{n+1} V_{\mathsf{c}}$$

This is called lumped mass



#### Time integration

$$m_{\rm v} \ddot{\mathbf{x}}_{\rm v} = \mathbf{f}_{\rm v} + \mathbf{f}_{\rm v}^{\rm ext}$$

- RK4 or Symplectic Euler method
  - ▶ Just need to evaluate force  $(f_{V})_{V}$  given current position  $(x_{V})_{V}$
  - Stepsize  $\Delta t = O(\text{edge lengths})$
- Implicit Euler (with incremental potential): stable

$$\mathbf{x}^{(n+1)} = \underset{\mathbf{x} \in \mathbb{R}^m}{\operatorname{argmin}} \sum_{\mathbf{v}} \frac{m_{\mathbf{v}}}{2\Delta t^2} |\mathbf{x}_{\mathbf{v}} - \mathbf{x}_{\mathbf{v}}^{\operatorname{pred}}|^2 + \mathcal{U}(\mathbf{x})$$

#### Time integration

• Implicit Euler (with incremental potential): stable

$$\mathbf{x}^{(n+1)} = \underset{\mathbf{x} \in \mathbb{R}^m}{\operatorname{argmin}} \sum_{\mathbf{v}} \frac{m_{\mathbf{v}}}{2\Delta t^2} |\mathbf{x}_{\mathbf{v}} - \mathbf{x}_{\mathbf{v}}^{\operatorname{pred}}|^2 + \mathcal{U}(\mathbf{x})$$

- For gradient descent (or Newton) method with line search
- ► Need evaluation of  $U(\mathbf{x}) = \sum_{\mathbf{c}} U(\mathbf{F}^{\mathsf{T}}\mathbf{F}) V_{\mathbf{c}}$
- Need evaluation of differential of potential (same as force evaluation)
- Need an (approximated) Hessian for the potential

#### Time integration

Need an (approximated) Hessian for the potential

Laplacian

$$\mathbf{L} = \begin{bmatrix} -\text{div} \end{bmatrix} \begin{bmatrix} V_c \\ \ddots \end{bmatrix} \begin{bmatrix} \text{grad} \end{bmatrix}$$
 can serve as an approximated Hessian

True Hessian: replace the central term by the cell-wise Hessian of the energy

## More on Stress–Strain relation

- Finite element elasticity
- More on Stress–Strain relation

• Given the Cauchy–Green  $C = F^T F$ 

$$\sharp_M C = \sharp_M F^* \flat_W F \in \Gamma(\operatorname{End}(TM))$$

- (as endomorphism that measures the deviation between induced metric from the world and the pre-defined material metric)
- Design a potential energy function  $U(\mathbf{C})$ 
  - Note that it's a function on symmetric matrices
  - ► The energy is said to be *isotropic* if

$$U(\mathbf{C}) = U(\mathbf{R}^{\mathsf{T}}\mathbf{C}\mathbf{R})$$

for rotation matrices R

$$R^* \flat_M R = \flat_M$$

• If the material is isotropic  $U(\mathbf{C}) = U(\mathbf{R}^{\mathsf{T}}\mathbf{C}\mathbf{R})$ then the energy is only a function of the eigenvalues (modulo permutation)

eigenvalues(C) = 
$$\{\lambda_1, \lambda_2, \lambda_3\}$$

• By the way, these eigenvalues are the square of the eigenvalues of  $\bf Y$  in polar decomposition  $\bf F=\bf RY$ ; equivalently, square of singular values of  $\bf F$ . They are the square of principal stretching.

- Can we model *U* like  $U(\mathbb{C}) = u(\lambda_1, \lambda_2, \lambda_3)$ ?
  - Generally this wouldn't respect symmetry under label permutation
  - View the eigenvalues as the roots of a polynomial, and use the coefficient of the polynomial as our parameters

$$\{\lambda_1, \lambda_2, \lambda_3\} = \text{roots}(t^3 - I_1t^2 + I_2t - I_3; t)$$

► These coefficients are called the "invariants":

$$I_1 = \lambda_1 + \lambda_2 + \lambda_3 = \operatorname{tr}(\mathbf{C})$$

$$I_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3 = \frac{1}{2} (\operatorname{tr}(\mathbf{C})^2 - \operatorname{tr}(\mathbf{C}^2))$$

$$I_3 = \lambda_1 \lambda_2 \lambda_3 = \det(\mathbf{C})$$

► Characteristic polynomial  $t^3 - I_1 t^2 + I_2 t - I_3 = \det(t\mathbf{I} - \mathbf{C})$ 

$$I_1 = \lambda_1 + \lambda_2 + \lambda_3 = \operatorname{tr}(\mathbf{C})$$

$$I_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3 = \frac{1}{2} (\operatorname{tr}(\mathbf{C})^2 - \operatorname{tr}(\mathbf{C}^2))$$

$$I_3 = \lambda_1 \lambda_2 \lambda_3 = \det(\mathbf{C})$$

- We model  $U(C) = w(I_1, I_2, I_3)$ 
  - ► How do you do chain rule? (Blackboard)
- For example neo-Hookean model

how much material respond to 1D stretch and volume change

$$w(I_1, I_2, I_3) = \frac{\mu}{2}(I_1 - 3 - \ln I_3) + \frac{\lambda}{2}(\sqrt{I_3} - 1)^2$$

Approximately

$$U(C) = \left(\frac{\lambda}{2}\operatorname{tr}(E)^2 + \mu\operatorname{tr}(E^2)\right)dV_M$$

ullet One can measure Young's modulus E, and Poisson ratio  ${\mathcal V}$ 

$$\mathsf{E} = \frac{F/A}{\Delta \ell/\ell}$$

 $\mathsf{E} = \frac{F/A}{\Delta\ell/\ell} \quad \begin{array}{l} \text{similar to spring} \\ \text{constant} \end{array}$ 



$$u = -\frac{\Delta L'}{\Delta L}$$

 $\nu = -\frac{\Delta L'}{\Delta L}$  usually between 0 and 0.5; it could be negative.



Lamé constants

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$$

$$\mu = \frac{E}{2(1+\nu)}$$