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Finite Element Elasticity

e Finite element elasticity




FiNnite element simulation

e Discretize the deformable body by triangle mesh (2D) or
tetrahedral mesh (3D) (n=dim(M) )

e Each vertex i stores a fixed rest position X. (material coordinate)
and a variable world position x: (representing value of flow map)




L_Inear interpolation

e The data on the vertices can be linearly interpolated into a
piecewise linear flow map.
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Deformation gradient

e The data on the vertices can be linearly interpolated into a
piecewise linear flow map.
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e The deformation gradient is a piecewise constant matrix

0 | | | | 771
F ool =] %X X Xo X1+ Xy
0 | | | |
0- 01 1 1 - 1 1 1 - 1



Deformation gradient

o If /1,1, isthe area normal of the opposite face of j-th vertex
and V is the volume of the cell. Then

Fe =~ S| ® 1= ]




Strain and stress computation

e Now in each cell we have deformation gradient F
e We can compute the Cauchy—Green tensor per cell C =FTF

e Like the smooth theory, build E = %(C —1I)

e | 0ok up some stress—strain relation
S=2uE+ Atr(E)I

X per vix —> F per cell — C per cell

S per cell



Stress computation

e Now in each cell we have deformation gradient F
We can compute the Cauchy—Green tensor per cell C = FTF

Like the smooth theory, build E = %(C —1I)

Look up some stress—strain relation
S=2uE+ Atr(E)I

1st-Piola stress

P=FS

Compute force by taking
adjoint of gradient

X per vix —> F per cell — C per cell

—f per vix €— P per cell «<— S per cell



Total force computation

e The differential of F with respect to x

|
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e Adjoint: accumulate traction force to vertex

D tr(PCIE'(T:)VC =) —fT%, Xg
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fv ~— n Zc>v Pcnc,vAc,v



Equation of motion

1
fv ~ n ch Pcnc,vAc,v

mVXV — fV




Vlass computation

e The total mass of each vertex should be
proportional to the vertex volume approximated
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o 1
mv o Zc>v n+1 VC

e This is called lumped mass




Time Integration

m, %, =f, + £
e RK4 or Symplectic Euler method
> Just need to evaluate force (f,), given current position (X, ),

> Stepsize At = O(edge lengths)

e |mplicit Euler (with incremental potential): stable

%" = argmin D 2212 | %, — ){\Eredl2 + U(x)
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Time Integration

o |[mplicit Euler (with incremental potential): stable

x(nt1) — argfl?in D 222 %, — ){\Ijredl2 + U(x)
xXelRrMm

» For gradient descent (or Newton) method with line search
> Need evaluation of /(x) =), U(FTF)V_

> Need evaluation of differential of potential
(same as force evaluation)

> Need an (approximated) Hessian for the potential



Time Integration

> Need an (approximated) Hessian for the potential

lgrad]  FT()+()TF

X per vix —> F per cell — C per cell

| div] F(.)
—f pervix «— P per cell «— § per cell
Laplacian

Ve
I — div orad canserveasan
approximated Hessian
> True Hessian: replace the central term by the cell-wise Hessian
of the energy



More on Stress-Strain
relation

e More on Stress—Strain relation




Designing potential energy

e Given the Cauchy—Green C = FTF
1C =18,F,FeT'(End(TM))

> (as endomorphism that measures the deviation between
iInduced metric from the world and the pre-defined material
metric)

e Design a potential energy function U(C)

> Note that it’s a function on symmetric matrices
> The energy Is said to be isotropic if

U(C)=U(RTCR)
for rotation matrices R R*h,R=0D,,



Designing potential energy

e |f the material is isotropic U(C) = U(RTCR)

then the energy is only a function of the eigenvalues
(modulo permutation)

eigenvalues(C) = {A, A5, A3}

e By the way, these eigenvalues are the square of the eigenvalues
of Y in polar decomposition F = RY ; equivalently, square of
singular values of F. They are the square of principal stretching.



Designing potential energy

e Canwe model Ulike U(C) =u(A;, A5, A3)?
> (Generally this wouldn’t respect symmetry under label permutation

> View the eigenvalues as the roots of a polynomial, and use the
coefficient of the polynomial as our parameters

(A1, Ay, As} =r10OtS(1° — I, 1% + I, t — ;1)

» These coefficients are called the “invariants”:

11:A1+;\,2+;\.3 =t1‘(C)
IZ — A1A’2 + Azlg + Al;\fg — %(tr(C)z — tr(CZ))
13 — ;\.1},2;\,3 — d@t(C)

> Characteristic polynomial > —I,t%+I,t — I, = det(tI— C)



Designing potential energy

11:).1+Az+;\.3 =t1‘(C)
IZ — Alkz + Azkg + Al;\fg — %(tr(C)z — tr(CZ))
13 — AIA’Z;\’B —_ det(C)

e We model U(C) = W(Il,IZ,IB)
> How do you do chain rule? (Blackboard)

e [For example neo-Hookean model

A
w(ly, /[, 13) = %(-’1 —3—Inl;3) + 5(\/ I3 — 1)°
e Approximately

U(C) = (5 tr(E)? + utr(E?)) dVy,



Designing potential energy

e One can measure Young’s modulus E, and Poisson ratio V

F/A similar to spring
 AL/L constant

/
VP = — AL usually between O and 0.5; it could be
AL  negative.

e |amé constants

;\’: Evy

(1+v)(1—2v)

o E
U = 2(1+v)




