CSE 291 (SP24) Physical Simulations: Incremental Potential

Albert Chern

Dissipative System

- Dissipative system
- Stability of Euler integrators
- Incremental variational principle
- Adding dissipation
- Higher order method
- Optimization

Dissipative system

• Hamilton's least action principle always give us conservative forces.

$$\left(\int_0^T \left(K(\mathbf{q},\dot{\mathbf{q}}) - V(\mathbf{q})\right) dt\right) = 0 \implies \left[\frac{d}{dt}\frac{\partial K}{\partial \dot{\mathbf{q}}}\right] - \frac{\partial K}{\partial \mathbf{q}} = -\frac{\partial V}{\partial \mathbf{q}}$$

$$\begin{array}{c} \text{change of fictitious momentum force} \\ \text{force} \end{array}$$

 D'Alembert principle is a generalization of least action that allows any force, but it is more like "just adding an additional term"

$$\left(\int_0^T \left(K(\mathbf{q},\dot{\mathbf{q}}) - V(\mathbf{q})\right) dt\right) = \int_0^T \left\langle \mathbf{f}(\mathbf{q},\dot{\mathbf{q}}) | \mathring{\mathbf{q}} \right\rangle dt \quad \text{from any additional force}$$

$$\implies \frac{d}{dt} \frac{\partial K}{\partial \dot{\mathbf{q}}} - \frac{\partial K}{\partial \mathbf{q}} = -\frac{\partial V}{\partial \mathbf{q}} + \mathbf{f}$$

Dissipative system

- Can't dissipative forces be written as derivative of a function?
- Rayleigh (1873) observed the following
 - Suppose we have some linear viscous force

$$m\ddot{\mathbf{q}} = -\frac{\partial V}{\partial \mathbf{q}} - \mathbf{B}\dot{\mathbf{q}}$$
 conservative damping force force linear in velocity

This (linear) damping is actually the variation of some (quadratic) function:

$$\mathbf{B\dot{q}} = \frac{\partial}{\partial \dot{\mathbf{q}}} R(\dot{\mathbf{q}})$$

$$R(\dot{\mathbf{q}}) = \frac{1}{2}\dot{\mathbf{q}}^{\mathsf{T}}\mathbf{B}\dot{\mathbf{q}}$$

Rayleigh dissipation function

Rayleigh's Euler-Lagrange Equation

- Rayleigh: Given kinetic energy $K(\mathbf{q}, \dot{\mathbf{q}})$, potential energy $V(\mathbf{q})$, and a dissipation function $R(\mathbf{q}, \dot{\mathbf{q}})$
 - The equation of motion is given by the classical EL-eq with the derivative of dissipation but only with respect to velocity

Rayleigh's Euler-Lagrange Equation

- Related: Helmholtz's minimal dissipation principle,
 Onsager's maximal dissipation principle.
- Originally Rayleigh only considered quadratic R.
- After 1970's (Moreau) it's discovered that other non-quadratic R can recover nonlinear forces like Coulomb friction and plasticity.
- There is a natural time discretization: incremental potential (Kane, Marsden, Ortiz, West 1999)

Rayleigh's Euler-Lagrange Equation

Conditions:

 $\dot{\mathbf{q}} \mapsto R(\mathbf{q}, \dot{\mathbf{q}})$ is convex, zero at $\dot{\mathbf{q}} = 0$, and otherwise nonnegative.

Energy dissipation

Energy law (recall Noether's theorem for time independence)

$$\frac{d}{dt}(\frac{\partial K}{\partial \dot{\mathbf{q}}}\dot{\mathbf{q}} - K + V) = -\frac{\partial R}{\partial \dot{\mathbf{q}}}\dot{\mathbf{q}}$$

▶ If K and R are quadratic in $\dot{\mathbf{q}}$, then $\frac{\partial K}{\partial \dot{\mathbf{q}}}\dot{\mathbf{q}} = 2K$ $\frac{\partial R}{\partial \dot{\mathbf{q}}}\dot{\mathbf{q}} = 2R$ $\frac{d}{dt}(K+V) = -2R$

► To design dissipation, just model the rate of energy dissipation.

Interpret the equation in discrete setting

- In the discrete setting, let us first focus on the backward Euler method.
- For simplicity of exposition, we assume $K(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2}\dot{\mathbf{q}}^{\mathsf{T}}\mathbf{M}\dot{\mathbf{q}}$ So the equation of motion is $\mathbf{M}\ddot{\mathbf{q}} = -\frac{\partial V}{\partial \mathbf{q}} - \frac{\partial R}{\partial \dot{\mathbf{q}}}$

Stability of Symplectic Euler and Backward Euler

- Dissipative system
- Stability of Euler integrators
- Incremental variational principle
- Adding dissipation
- Higher order method
- Optimization

Back to F=ma

- Suppose the space of positions is given by $Q = \mathbb{R}^m$ where each point has coordinate $\mathbf{q} = (q_1, \dots, q_m)^\mathsf{T}$
- Suppose the inertia is independent of q

KineticEnergy(
$$\dot{\mathbf{q}}$$
) = $\frac{1}{2}\dot{\mathbf{q}}^{\mathsf{T}}\mathbf{M}\dot{\mathbf{q}}$

- Suppose we have a potential energy $U = U(q_1, \ldots, q_m)$
- Then the equation of motion is

$$(\mathbf{M}\ddot{\mathbf{q}})_i = -(dU)_i = -\frac{\partial U}{\partial q_i}$$

- Discretize time $t^{(n)} = n\Delta t$. Call state at n-th time step $\mathbf{q}^{(n)}$
- Approximate 2nd time derivative

$$(\ddot{\mathbf{q}})^{(n)} \approx \frac{1}{\Delta t^2} \left(\mathbf{q}^{(n-1)} - 2\mathbf{q}^{(n)} + \mathbf{q}^{(n+1)} \right)$$

- Euler methods: Given $\mathbf{q}^{(n-1)}$, $\mathbf{q}^{(n)}$ solve for $\mathbf{q}^{(n+1)}$
 - Symplectic (explicit)

$$\frac{1}{\Delta t^2} \left(\mathbf{q}^{(n-1)} - 2\mathbf{q}^{(n)} + \mathbf{q}^{(n+1)} \right) = -\mathbf{M}^{-1} (dU)|_{\mathbf{q}^{(n)}}$$

$$\frac{1}{\Delta t^2} \left(\mathbf{q}^{(n-1)} - 2\mathbf{q}^{(n)} + \mathbf{q}^{(n+1)} \right) = -\mathbf{M}^{-1} (dU)|_{\mathbf{q}^{(n+1)}}$$

Stability analysis on a test equation (A-stability)

$$\mathbf{M}^{-1}dU|_{\mathbf{q}} = \omega^{2}\mathbf{q} \qquad \qquad \ddot{q} + \omega^{2}q = 0 q = a\cos(\omega t) + b\sin(\omega t)$$

Symplectic (explicit)

$$\frac{1}{\Delta t^2} \left(\mathbf{q}^{(n-1)} - 2\mathbf{q}^{(n)} + \mathbf{q}^{(n+1)} \right) = -\mathbf{M}^{-1} (dU)|_{\mathbf{q}^{(n)}}$$

$$\frac{1}{\Delta t^2} \left(\mathbf{q}^{(n-1)} - 2\mathbf{q}^{(n)} + \mathbf{q}^{(n+1)} \right) = -\mathbf{M}^{-1} (dU)|_{\mathbf{q}^{(n+1)}}$$

Stability analysis on a test equation (A-stability)

$$\mathbf{M}^{-1}dU|_{\mathbf{q}} = \omega^2 \mathbf{q}$$

Symplectic (explicit)

$$q^{(n+1)} = -q^{(n-1)} + 2q^{(n)} - \Delta t^2 \omega^2 q^{(n)}$$

$$q^{(n+1)} = -q^{(n-1)} + 2q^{(n)} - \Delta t^2 \omega^2 q^{(n+1)}$$

Stability analysis on a test equation (A-stability)

$$\mathbf{M}^{-1}dU|_{\mathbf{q}} = \omega^2 \mathbf{q}$$

Symplectic (explicit)

$$q^{(n+1)} = -q^{(n-1)} + (2 - \Delta t^2 \omega^2)q^{(n)}$$

$$q^{(n+1)} = \frac{-q^{(n-1)} + 2q^{(n)}}{1 + \Delta t^2 \omega^2}$$

• Symplectic (explicit)
$$q^{(n+1)} = -q^{(n-1)} + (2 - \Delta t^2 \omega^2)q^{(n)}$$

$$\begin{bmatrix} q^{(n)} \\ q^{(n+1)} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 - \Delta t^2 \omega^2 \end{bmatrix} \begin{bmatrix} q^{(n-1)} \\ q^{(n)} \end{bmatrix}$$

► Backward (implicit)
$$q^{(n+1)} = \frac{-q^{(n-1)} + 2q^{(n)}}{1 + \Delta t^2 \omega^2}$$

$$\begin{bmatrix} q^{(n)} \\ q^{(n+1)} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{1+\Delta t^2 \omega^2} & \frac{2}{1+\Delta t^2 \omega^2} \end{bmatrix} \begin{bmatrix} q^{(n-1)} \\ q^{(n)} \end{bmatrix}$$

- Symplectic (explicit) $\begin{bmatrix} q^{(n)} \\ q^{(n+1)} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \Delta t^2 \omega^2 \end{bmatrix} \begin{bmatrix} q^{(n-1)} \\ q^{(n)} \end{bmatrix}$
 - determinant = 1 (area preserving)
 - Both leigenvaluesI=1 when $\Delta t^2 \omega^2 < 4$ (conditional stability)
- ► Backward (implicit) $\begin{bmatrix} q^{(n)} \\ q^{(n+1)} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{1+\Delta t^2 \omega^2} & \frac{2}{1+\Delta t^2 \omega^2} \end{bmatrix} \begin{bmatrix} q^{(n-1)} \\ q^{(n)} \end{bmatrix}$
 - determinant < 1 (shrinking)</p>
 - All leigenvalues < 1 for all $\Delta t^2 \omega^2$ (unconditionally stable)

Incremental Variation

- Dissipative system
- Stability of Euler integrators
- Incremental variational principle
- Adding dissipation
- Higher order method
- Optimization

Backward Euler

Backward Euler

$$\frac{1}{\Delta t^2} \mathbf{M} \left(\mathbf{q}^{(n-1)} - 2\mathbf{q}^{(n)} + \mathbf{q}^{(n+1)} \right) = -(dU)|_{\mathbf{q}^{(n+1)}}$$

• Rearrange, with $\mathbf{q}_{\text{pred}} \coloneqq 2\mathbf{q}^{(n)} - \mathbf{q}^{(n-1)}$

$$\frac{1}{\Delta t^2} \mathbf{M} \left(\mathbf{q}^{(n+1)} - \mathbf{q}_{\text{pred}} \right) + (dU)|_{\mathbf{q}^{(n+1)}} = 0$$

This is actually an optimality condition

$$\mathbf{q}^{(n+1)} = \underset{\mathbf{q} \in \mathbb{R}^m}{\operatorname{argmin}} \ \frac{1}{2\Delta t^2} |\mathbf{q} - \mathbf{q}_{\text{pred}}|_{\mathbf{M}}^2 + U(\mathbf{q})$$

$$\mathbf{q}^{(n-1)}$$

Backward Euler

$$\mathbf{q}^{(n+1)} = \underset{\mathbf{q} \in \mathbb{R}^m}{\operatorname{argmin}} \ \frac{1}{2\Delta t^2} |\mathbf{q} - \mathbf{q}_{\text{pred}}|_{\mathbf{M}}^2 + U(\mathbf{q})$$

In terms of velocity

$$\mathbf{v}_{\text{new}} = \frac{1}{\Delta t} (\mathbf{q}^{(n+1)} - \mathbf{q}^{(n)})$$

$$\mathbf{v}_{\text{old}} = \frac{1}{\Delta t} (\mathbf{q}^{(n)} - \mathbf{q}^{(n-1)})$$

$$\mathbf{q}^{(n)} \overset{\mathbf{v}_{\text{old}}}{\overset{\mathbf{v}_{\text{old}}}{\overset{\mathbf{v}_{\text{new}}}{\mathbf{q}^{(n+1)}}}}$$

$$\mathbf{v}_{\text{new}} = \underset{\mathbf{v} \in \mathbb{R}^m}{\operatorname{argmin}} \ \frac{1}{2} |\mathbf{v} - \mathbf{v}_{\text{old}}|_{\mathbf{M}}^2 + U(\mathbf{q}^{(n)} + \Delta t \mathbf{v})$$

Physical system decides its new velocity by

$$\mathbf{v}_{\text{new}} = \underset{\mathbf{v} \in \mathbb{R}^m}{\operatorname{argmin}} \ \frac{1}{2} |\mathbf{v} - \mathbf{v}_{\text{old}}|_{\mathbf{M}}^2 + U(\mathbf{q}^{(n)} + \Delta t \mathbf{v})$$

- Inertia: It doesn't want to be different from the old velocity (deviation measured by the inertia metric)
- $\mathbf{q}^{(n)} \overset{\mathbf{v}_{\text{old}}}{\overset{\mathbf{v}_{\text{new}}}{\mathbf{q}^{(n+1)}}}$

The new velocity is also penalized with potential energy of the resulting new position.

Physical system decides its new velocity by

$$\mathbf{v}_{\text{new}} = \underset{\mathbf{v} \in \mathbb{R}^m}{\operatorname{argmin}} \ \frac{1}{2} |\mathbf{v} - \mathbf{v}_{\text{old}}|_{\mathbf{M}}^2 + U(\mathbf{q}^{(n)} + \Delta t \mathbf{v})$$

- Every time step just requires a good numerical optimizer
- $\mathbf{q}^{(n)} \mathbf{v}_{\text{old}}$ $\mathbf{q}^{(n-1)} \mathbf{v}_{\text{new}} \mathbf{q}^{(n+1)}$ Collision and contact: (Incremental potential contact 2020) Just build smooth barrier functions in potential and perform optimization properly

Collision and contact:

 (Incremental potential contact 2020)
 Just build smooth barrier functions in potential and perform optimization properly

$$b(d, \hat{d}) = \begin{cases} -(d - \hat{d})^2 \ln\left(\frac{d}{\hat{d}}\right), & 0 < d < \hat{d} \\ 0 & d \ge \hat{d}. \end{cases}$$

Fig. 19. **High-speed impact test**. Top: we show key frames from a high-speed video capture of a foam practice ball fired at a fixed plate. Matching reported material properties (0.04m diameter, $E=10^7 \mathrm{Pa}$, $\nu=0.45$, $\rho=1150\mathrm{kg/m^3}$) and firing speed ($v_0=67\mathrm{m/s}$), we apply IPC to simulate the set-up with Newmark time stepping at $h=2\times10^{-5}\mathrm{s}$ to capture the high-frequency behaviors. Middle and bottom: IPC-simulated frames at times corresponding to the video frames showing respectively, visualization of the simulated velocity magnitudes (middle) and geometry (bottom).

Dissipation in Incremental Variational Formulation

- Dissipative system
- Stability of Euler integrators
- Incremental variational principle
- Adding dissipation
- Higher order method
- Optimization

Dynamical system with dissipation

Recall the backward Euler update on conservative system is

$$\mathbf{q}^{(n+1)} = \underset{\mathbf{q} \in \mathbb{R}^m}{\operatorname{argmin}} \ \frac{1}{2\Delta t^2} |\mathbf{q} - \mathbf{q}_{\text{pred}}|_{\mathbf{M}}^2 + U(\mathbf{q})$$

$$\mathbf{q}_{\text{pred}} := 2\mathbf{q}^{(n)} - \mathbf{q}^{(n-1)}$$

Add dissipation by adding a Rayleigh dissipation function

$$\mathbf{q}^{(n+1)} = \underset{\mathbf{q} \in \mathbb{R}^m}{\operatorname{argmin}} \ \frac{1}{2\Delta t^2} |\mathbf{q} - \mathbf{q}_{\text{pred}}|_{\mathbf{M}}^2 + U(\mathbf{q}) + \Delta t R(\mathbf{q}^{(n)}, \frac{\mathbf{q} - \mathbf{q}^{(k)}}{\Delta t})$$

effective incremental potential

Equivalently

$$\mathbf{v}_{\text{new}} = \underset{\mathbf{v} \in \mathbb{R}^m}{\text{argmin}} \ \frac{1}{2} |\mathbf{v} - \mathbf{v}_{\text{old}}|_{\mathbf{M}}^2 + U(\mathbf{q}^{(n)} + \Delta t \mathbf{v}) + \Delta t R(\mathbf{q}^{(n)}, \mathbf{v})$$

Dynamical system with dissipation

$$\mathbf{v}_{\text{new}} = \underset{\mathbf{v} \in \mathbb{R}^m}{\operatorname{argmin}} \ \frac{1}{2} |\mathbf{v} - \mathbf{v}_{\text{old}}|_{\mathbf{M}}^2 + U(\mathbf{q}^{(n)} + \Delta t \mathbf{v}) + \Delta t R(\mathbf{q}^{(n)}, \mathbf{v})$$

Writing the system in F=ma:

$$\mathbf{M} \frac{\mathbf{v}_{\text{new}} - \mathbf{v}_{\text{old}}}{\Delta t} = -\frac{\partial U}{\partial \mathbf{q}} - \frac{\partial R}{\partial \mathbf{v}}$$

Dynamical system with dissipation

$$\mathbf{M} \frac{\mathbf{v}_{\text{new}} - \mathbf{v}_{\text{old}}}{\Delta t} = -\frac{\partial U}{\partial \mathbf{q}} - \frac{\partial R}{\partial \mathbf{v}}$$

• Example: Quadratic dissipation (lubricated friction, viscosity)

$$R(\mathbf{v}) = \frac{1}{2} \mathbf{v}^\mathsf{T} \mathbf{B} \mathbf{v}$$

Quasi-static system

- To study dissipative system, we often consider a quasi static regime
- Quasi-static: inertia is negligible.

$$\mathbf{M} \frac{\mathbf{v}_{\text{new}} - \mathbf{v}_{\text{old}}}{\Delta t} = -\frac{\partial U}{\partial \mathbf{q}} - \frac{\partial R}{\partial \mathbf{v}}$$

Dissipative force is in balance with potential force and external force:

$$\frac{\partial R}{\partial \mathbf{v}} = -\frac{\partial U}{\partial \mathbf{q}} + \mathbf{f}_{\text{ext}}$$

- For quadratic R, this determines a terminal velocity.
- Traditional way of studying general force: relation between f,q,v
- (Ir)reversible process: f_ext is (not) a function of q

- Law of friction:
 - Amonton's 1st law: Friction force is proportional to the normal force
 - ► Amonton's 2nd law: Friction force is independent of contact area
 - Coulomb's law: Once the motion starts, the friction force is independent of the sliding speed

• The force \mathbf{f}_c at contact lies in a **friction cone** (in the dual space at contact)

- At each point of contact, we have an outward normal (covector) n
- The relative velocity between contact should satisfy

$$\langle \mathbf{n} | \mathbf{v} \rangle \ge 0$$

 The normal and tangential part of the contact force, and tangent velocity:

$$|\mathbf{f}^{\parallel}| \le \mu \mathbf{f}^{\perp} \qquad |\mathbf{f}^{\parallel}| < \mu \mathbf{f}^{\perp} \iff \mathbf{v}^{\parallel} = 0$$

 When tangent velocity is nonzero, tangent force is in the same direction with it

$$\alpha \mathbf{f}^{\parallel} = \flat_{\mathbb{R}^3} \mathbf{v}, \ \alpha \geq 0$$

Classical approach for contact

• Establish the points \mathbf{p}_i of contact

 Solve for velocity and contact force together so that all contact conditions are satisfied.

 Siggraph 2022 course on contact and friction https://siggraphcontact.github.io/

Dissipation function for dry friction

Variational approach to dry friction

$$\mathbf{M} \frac{\mathbf{v}_{\text{new}} - \mathbf{v}_{\text{old}}}{\Delta t} = -\frac{\partial U}{\partial \mathbf{q}} - \frac{\partial R}{\partial \mathbf{v}}$$
$$R(\mathbf{v}) = \mu |\mathbf{v}|$$

• In incremental potential contact paper, it is also smoothed out

Higher Order Method

- Dissipative system
- Stability of Euler integrators
- Incremental variational principle
- Adding dissipation
- Higher order method
- Optimization

Newmark algorithm

Recall backward Euler method is equivalent to

$$\mathbf{q}^{(n+1)} = \underset{\mathbf{q} \in \mathbb{R}^m}{\operatorname{argmin}} \ \frac{1}{2\Delta t^2} |\mathbf{q} - \mathbf{q}_{\operatorname{pred}}|_{\mathbf{M}}^2 + U(\mathbf{q}) + \Delta t R(\mathbf{q}^{(n)}, \frac{\mathbf{q} - \mathbf{q}^{(k)}}{\Delta t})$$
where
$$\mathbf{q}_{\operatorname{pred}} \coloneqq 2\mathbf{q}^{(n)} - \mathbf{q}^{(n-1)}$$

- Make a better prediction using acceleration information
- Source: Kane, Marsden, Ortiz, West 1999 "Variational Integrators and Newmark Algorithm for Conservative and Dissipative Systems."

Newmark algorithm

Let incremental potential be

$$\tilde{U}^{(n)}(\mathbf{q}^{(n+1)}) = U(\mathbf{q}^{(n+1)}) + \Delta t R((1-s)\mathbf{q}^{(n)} + s\mathbf{q}^{(n)}, \frac{\mathbf{q}^{(n+1)} - \mathbf{q}^n}{\Delta t})$$

The acceleration at current time can be read off from

$$\mathbf{a}^{(n)} = \mathbf{M}^{-1} \frac{\partial \tilde{U}^{(n-1)}(\mathbf{q}^{(n)})}{\partial \mathbf{q}^{(n)}}$$

Velocity can be kept track of by

$$\mathbf{v}^{(n)} = \mathbf{v}^{(n-1)} + \Delta t \left((1 - \gamma) \mathbf{a}^{(n-1)} + \gamma \mathbf{a}^{(n)} \right)$$

The prediction of next time step

$$\mathbf{q}_{\text{pred}}^{(n+1)} := \mathbf{q}^{(n)} + \Delta t \, \mathbf{v}^{(n)} + \frac{\Delta t^2}{2} (1 - 2\beta) \mathbf{a}^{(n)}$$

• Solve $\mathbf{q}^{(n+1)} = \underset{\mathbf{q} \in \mathbb{R}^m}{\operatorname{argmin}} \frac{1}{2\Delta t^2} |\mathbf{q} - \mathbf{q}_{\operatorname{pred}}|_{\mathbf{M}}^2 + \beta \tilde{U}^{(n)}(\mathbf{q})$

Numerical Optimization

- Dissipative system
- Stability of Euler integrators
- Incremental variational principle
- Adding dissipation
- Higher order method
- Optimization

Optimization problem

 Using smooth barrier and dissipation function, every time step boils down to one unconstrained optimization problem

$$\underset{\mathbf{x} \in \mathbb{R}^m}{\text{minize } \mathcal{L}(\mathbf{x}) }$$

Here x may be velocity or position

$$\mathbf{q}^{(n+1)} = \underset{\mathbf{q} \in \mathbb{R}^m}{\operatorname{argmin}} \frac{1}{2\Delta t^2} |\mathbf{q} - \mathbf{q}_{\text{pred}}|_{\mathbf{M}}^2 + U(\mathbf{q})$$

$$\mathbf{v}_{\text{new}} = \underset{\mathbf{v} \in \mathbb{R}^m}{\operatorname{argmin}} \frac{1}{2} |\mathbf{v} - \mathbf{v}_{\text{old}}|_{\mathbf{M}}^2 + U(\mathbf{q}^{(n)} + \Delta t \mathbf{v})$$

 Note that the initial guess (from the state of previous time frame) for optimization is usually very close to the optimizer.

Optimization problem

 Using smooth barrier and dissipation function, every time step boils down to one unconstrained optimization problem

• Use gradient descent using some metric
$$\flat = \mathbf{H}$$

$$\mathbf{x}^{(n+1)} \leftarrow \mathbf{x}^{(n)} - \alpha \sharp (d\mathcal{L})_{\mathbf{x}^{(n)}} = \mathbf{x}^{(n)} - \alpha \mathbf{H}^{-1} \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial x_1} \\ \vdots \\ \frac{\partial \mathcal{L}}{\partial x_m} \end{bmatrix}$$

• We have to choose a good H and step size $\alpha > 0$

Optimization problem

$$\mathbf{x}^{(n+1)} \leftarrow \mathbf{x}^{(n)} - \alpha \sharp (d\mathcal{L})_{\mathbf{x}^{(n)}} = \mathbf{x}^{(n)} - \alpha \mathbf{H}^{-1} \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial x_1} \\ \vdots \\ \frac{\partial \mathcal{L}}{\partial x_m} \end{bmatrix}$$

- Classic gradient descent $\,H=I\,$
- Newton's method $H = Hess \mathcal{L}$
- Quasi-Newton's method (approximated Hessian)

Line search

$$\mathbf{x}^{(n+1)} \leftarrow \mathbf{x}^{(n)} - \alpha \sharp (d\mathcal{L})_{\mathbf{x}^{(n)}} = \mathbf{x}^{(n)} - \alpha \mathbf{H}^{-1} \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial x_1} \\ \vdots \\ \frac{\partial \mathcal{L}}{\partial x_m} \end{bmatrix}$$

- ullet Use line search for choosing lpha
- Call $\mathbf{p} = \mathbf{H}^{-1} d\mathcal{L}$; backtracking line search:

Algorithm [edit]

This condition is from Armijo (1966). Starting with a maximum candidate step size value $lpha_0>0$, using search control parameters $au\in(0,1)$ and $c\in(0,1)$, the backtracking line search algorithm can be expressed as follows:

- 1. Set $t=-c\,m$ and iteration counter $j\,=\,0$.
- 2. Until the condition is satisfied that $f(\mathbf{x})-f(\mathbf{x}+lpha_j\,\mathbf{p})\geq lpha_j\,t$, repeatedly increment j and set $lpha_j= au\,lpha_{j-1}$.
- 3. Return α_i as the solution.
- Also make sure that this stepping doesn't pass through a barrier