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Dissipative System

e Dissipative system




Dissipative system

e Hamilton’s least action principle always give us conservative forces.

(Jo K(a,0)~V(@) dtj =0 = |$%- %%

change of conservative
momentum force

e D’Alembert principle is a generalization of least action that allows
any force, but it is more like “just adding an additional term”

virtual work

( f()T (K(qn q) D V(Q)) d tj — f <f(q, q)|q> d [ | from any additional

force
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Dissipative system

e Can'’t dissipative forces be written as derivative of a function?
e Rayleigh (1873) observed the following

> Suppose we have some linear viscous force

md =~y Bd

conservative
force

> This (linear) damping is actually the variation of some
(quadratic) function:

: 0 : : : : Rayleigh
Bq=3;R(@) |R(qQ)=3q"Bq lssipaior



Rayleigh's tuler—Lagrange Equation

e Rayleigh: Given kinetic energy K( ,q), potential energy V(q).
and a dissipation function R(q, q

» The equation of motion is given by the classical EL-eq with
the derivative of dissipation but only with respect to velocity

if’_K__ _3_V_3_R
dt@q aq o0q

change of conservative
momentum force



Rayleigh's tuler—Lagrange Equation

change of conservative
momentum force

> Related: Helmholtz’s minimal dissipation principle,
Onsager’s maximal dissipation principle.

> QOriginally Rayleigh only considered quadratic R.

> After 1970’s (Moreau) it’s discovered that other non-quadratic R
can recover nonlinear forces like Coulomb friction and plasticity.

> There Is a natural time discretization: incremental potential
(Kane, Marsden, Ortiz, West 1999)



Rayleigh's tuler—Lagrange Equation

d oKy OK| | oV| OoR
dt dq| Jq Jq. dq

change of fictitious  conservative
momentum force force

» Conditions:

q— R(q,q) is convex, zero at q = 0, and otherwise
nonnegative.



Energy dissipation

ia_K__ _3_V__
dt@q aq

change of conservative
momentum force

> Energy law (recall Noether’s theorem for time independence)

> If Kand R are quadratlc in q, then a_qq = 2K aRq 2R

L(K+V)=—

> To design dissipation, just model the rate of energy dissipation.



Interpret the equation In discrete setting

ia_K__ _3_V__
dt@q 8q

change of conservative
momentum force

e |n the discrete setting, let us first focus on the
backward Euler method.

e For simplicity of exposition, we assume K(q,q) = %qTMq

So the equation of motionis Mq = —5- — =



Stability of Symplectic Euler
and Backward Euler

o Stability of Euler integrators




Back to F=ma

e Suppose the space of positions is given by Q = R™
where each point has coordinate @ = (q1,...,9,,)!

e Suppose the inertia is independent of q

L. . .. .
KineticEnergy(q) = EqTMq

* Suppose we have a potential energy U = U(q,...,q,,)
e Then the equation of motion is

(Mq); =—(dU); = _S—Z



Symplectic & Backward Euler

e Discretize time t'Y = nAt. Call state at n-th time step q(”)
e Approximate 2nd time derivative

(q)(n) S ALtZ (q(n—l) _ 2q(“) 4 q(n+1))

e Euler methods: Given q(”_l),q(“) solve for q(n+1)

> Symplectic (explicit)

ALtZ (q(n—l) Zq(n) + q(”+1)) —M(d U)|q(n)
» Backward (implicit)

L (@ —2q™ + V) = —MH(d U)o



Symplectic & Backward Euler

e Stability analysis on a test equation (A-stability)

.. 9
—1 2 g+ w°g=20
M~ dUlqy = w™q g = acos(wt)+ bsin(wt)
> Symplectic (explicit)

ALtZ (q(n—l) Zq(”) + q(”“)) —M(d U)|q(n)

> Backward (implicit)
Aitz (q(n_l) Zq(”) + q(““)) —M_l(d U)|q(n—|—1)



Symplectic & Backward Euler

e Stability analysis on a test equation (A-stability)
M 'dU q = w*q
> Symplectic (explicit)
(D) = gD 4 9p() 74226
> Backward (implicit)
() = (1) 4 90 _ A 42,2000+ D)



Symplectic & Backward Euler

e Stability analysis on a test equation (A-stability)
M 'dU q = w*q
> Symplectic (explicit)
gD = (=D 4 (9 Af20)2)g™)
> Backward (implicit)
ey —q " + 29"

1 1+ At2eo?



Symplectic & Backward Euler

> Symplectic (explicit) g = —qlt (2 — At?w?)g

q(n) 0 1 q(n—l)
q(n+1) — |:_1 ) _ AtZwZ] q(n)
(nt1) _ _q(n—l) 4 Zq(n)
1+ At2w?

n+1 T n
q( . T 1¥A2002 1+ A262 q( )

> Backward (implicit) q




Symplectic & Backward Euler

. T LR 0 1 gV
> Symplectlc (epr|C|t) gD — —1 2—At2w2] g™

- determinant = 1 (area preserving)

- Both leigenvaluesl=1 when At“w?* < 4 (conditional stability)

T Wl o 1 |[qV
> Backward (implicit) [q?n+1>]= 1 2 ] qq(n) ]

1+ A2 w? 1+At2w? | L

- determinant < 1 (shrinking)
- All leigenvaluesl<1 for all At“w?* (unconditionally stable)



Incremental Variation

e |ncremental variational principle




Backward keuler

e Backward Euler

ALtZM (q(n—l) — Zq(n) + q(TH-l)) — _(d U)lq(n_|_1)

* Rearrange, with (preq = Zq(“) — q(n—l)

ALtZM (q(n-l—l) o qpred) T (dU)lq(nH) =0

e This is actually an optimality condition
(n+1) 1

q = argmin 5377 |q4 — Qprealyy U@ g
- (n—1) ‘( +1)
n— n
1" o |

qpred




Backward keuler

q(n+1) — arg?;m 2At2 |q qpred'2 T U(q)
qekRm™

- Upred
* |nterms of velocity pTE

View — dt(q( I1)_q(n)) q /’

1
Vold = A—t(q

Ve = argmin 5 [v—vgyl% + U(Q™ + Atv)

veERM



Minimal iIncremental potential principle

e Physical system decides its new velocity by

V.., = argmin %lv— Vodly +U (@™ + Atv)

veER™M
> |nertia: q(n) V(V“'
It doesn’t want to be different from the o—©
old velocity (deviation measured by q(“_l)‘/’ e q(”“)

the inertia metric)

> The new velocity is also penalized with
potential energy of the resulting new position.



Minimal iIncremental potential principle

e Physical system decides its new velocity by

Ve = argflgin %lv— Vodly +U (@™ + Atv)
velR™

» Every time step just requires a q(n) Vg 7
good numerical optimizer o—®
q(n—l)‘/' new q(n-l—l)

» Collision and contact:
(Incremental potential contact 2020)
Just build smooth barrier functions in potential and
perform optimization properly



Minimal iIncremental potential principle

» Collision and contact:
(Incremental potential contact 2020)
Just build smooth barrier functions in potential and
perform optimization properly

—discontinuous
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Minimal iIncremental potential principle

video footage

velocity
magnitude (m/s)

E T .
0 67

simulation

Fig. 19. High-speed impact test. Top: we show key frames from a high-
speed video capture of a foam practice ball fired at a fixed plate. Matching
reported material properties (0.04m diameter, E = 10’Pa, v = 0.45, p =
1150kg/m?>) and firing speed (vy = 67m/s), we apply IPC to simulate the
set-up with Newmark time stepping at h = 2 X 10™s to capture the high-
frequency behaviors. Middle and bottom: IPC-simulated frames at times
corresponding to the video frames showing respectively, visualization of the
simulated velocity magnitudes (middle) and geometry (bottom).



Dissipation in Incremental
Variational Formulation

e Adding dissipation



Dynamical system with dissipation

e Recall the backward Euler update on conservative system is

q(n+1) — argn}nm 2At2 |q qpred|2 T U(q) . () (n—1)
qER qpred r— 2q —(q

e Add dissipation by adding a Rayleigh dissipation function
g = argmin

—ak)
o 2At2 |q qpred|2 T U(q) T AtR(q(n)n qut )
qekRm™

effective incremental potential

e Equivalently

1
V. ., = argmin 5 v — Voldll%/l U(qg™ + Atv) + At R(q™, V)
velR™



Dynamical system with dissipation

1
V.., = argmin 5 v — Voldh%/[ +U(q"™ + Atv) + At R(q™, V)

vERM

e Writing the system in F=ma:



Dynamical system with dissipation

Viaew — Vold oU R
M———=——— —
At oq Jv

e Example: Quadratic dissipation (lubricated friction, viscosity)

1
o —— R(v) = EVTBV

yyyyyy

MMMMM



Quasi-static system

e [0 study dissipative system, we often consider a quasi static regime
e Quasi-static: inertia is negligible.

M ew Y __ _a_U - 8_R
oq OJv
e Dissipative force is in balance with potential force and external force:
oR _ 90U
av T aq T ext

e For quadratic R, this determines a terminal velocity.
e Traditional way of studying general force: relation between f,q,v

e (lr)reversible process: f_ext is (not) a function of g
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Dry friction

e | aw of friction:

> Amonton’s 1st law: Friction force Is
proportional to the normal force

> Amonton’s 2nd law: Friction force is
iIndependent of contact area

» Coulomb’s law: Once the motion starts,
the friction force is independent of the
sliding speed

e The force f. at contact lies in a friction cone
(in the dual space at contact)



Dry friction

e At each point of contact, we have
an outward normal (covector) n

e [he relative velocity between contact

should satisfy
(n|v) >0

e The normal and tangential part of the
contact force, and tangent velocity:

] <uft  |fl|<ufr vl =0

e \When tangent velocity is nonzero, tangent force
IS In the same direction with it

af' =0..v, a >0

mqg



Classical approach for contact

o Establish the points P; of contact

parameters for motion space of contact

(CJR)EQ ‘qbe (Pla'”:Pk)ERBX'”XRB

(ER)€ TemQ —> (b1, Be) ERPx - xR
(&ER) € TemQ 49
—1 :
M do’
T(i,R)Q | (fl,...,fk)ecl><"'XCk

C R x ---R>* P1

e Solve for velocity and contact force together so that all contact
conditions are satisfied.

P2




Dry friction

e Siggraph 2022 course on contact and friction
https://siggraphcontact.github.io/

normal
friction cone




Dissipation function for dry friction

e \ariational approach to dry friction

M —
At oq OJv
R(v) = ulv|
* |n incremental potential contact paper, it Is also smoothed out
1= —discontinuous
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Higher Order Method

e Higher order method



Newmark algorithm

e Recall backward Euler method is equivalent to

. _ (k)
q(n—l—l) — alc.lgeflglln 2A1t2 |q — qpredll%/[ T U(q) T AtR(q(n): qut )

where qu'Ed — Zq(n) _ q(n_l)
e Make a better prediction using acceleration information

e Source: Kane, Marsden, Ortiz, West 1999 “Variational Integrators
and Newmark Algorithm for Conservative and Dissipative Systems.”



Newmark algorithm
e | et incremental potential be
l’”](n)(q(n+1)) — U(q(n+1)) 4 AtR((l _S)q(n) _|_Sq(n+1) q

(n—l—l)_q

e [he acceleration at current time can be read off from

e \/elocity can be kept track of by
v = v 4 A ((1—y)a™ Y + yal™)

e The prediction of next time step

1
Q) = qM 4+ Atv™ + 4 (1—-2p)al

e Solve q(n+1) — argg{nn 2At2 |q qpredl2 T ﬁU(n)(q)
geR™




Numerical Optimization

e Optimization



Optimization problem

e Using smooth barrier and dissipation function, every time step
boils down to one unconstrained optimization problem

minimize £(x)
XeR™

e Here X may be velocity or posmon

q(n—l—l) — arggnn 2At2 |q qpred|2 T U(q)
qekR™

View = argmin 5|V — VOldll%/I + U (q(”) + Atv)

vERM

e Note that the initial guess (from the state of previous time frame) for
optimization is usually very close to the optimizer.



Optimization problem

e Using smooth barrier and dissipation function, every time step
boils down to one unconstrained optimization problem

minimize £(x)
XeR™

e Use gradient descent using some metric h = H 30)dx,
XD x(n) af(dL)ym = x{) — aHl[ : ]
0L/dx,
e We have to choose a good H and step size a > 0O



Optimization problem

dL/0x,
x(t)  x(n) _ at(dL)ym = x\M — aHl[ : ]
0L/dx,

e Classic gradient descent H =1
e Newton’s method H = Hess [

e Quasi-Newton’s method (approximated Hessian)



| INne search

dL/dx,
X" x\ — af(d L)y = x™ — gH !

0L/dx,
e Use line search for choosing a

e Call p=H "dL : backtracking line search:

Algorithm |edit]

This condition is from Armijo (1966). Starting with a maximum candidate step size value ag > 0, using search control parameters 7 & (O, 1) and
e & (0, 1), the backtracking line search algorithm can be expressed as follows:

1. Sett = —cm and iteration counter 7 = 0.
2. Until the condition is satisfied that f(x) — f(x + a; p) > a; t, repeatedly increment j and set ¢; = T o1 .

3. Return Q. as the solution.

e Also make sure that this stepping doesn’t pass through a
barrier



