CSE 291 (SP24) Topics in CSE: Dimensional Analysis

Albert Chern

What is Dimensional Analysis?

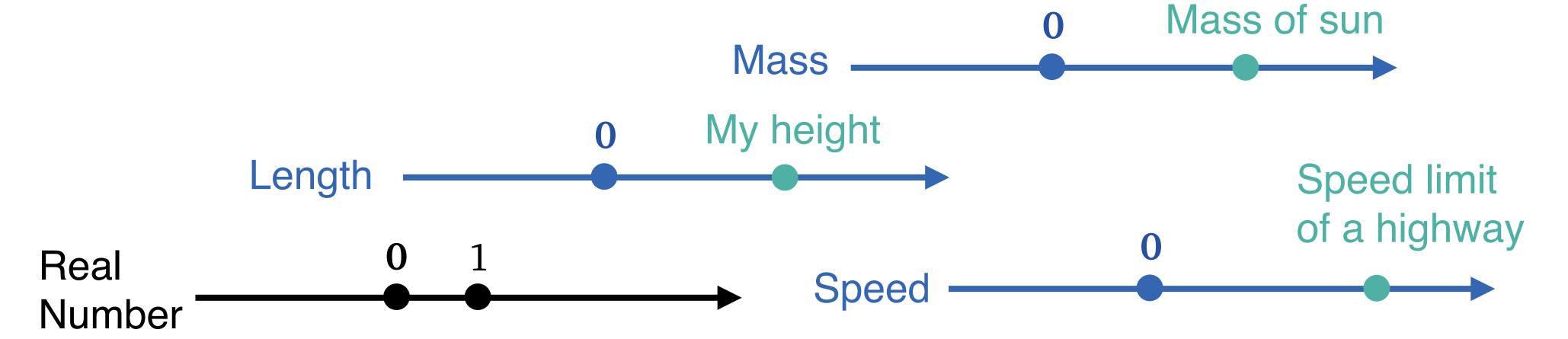
- It is a powerful tool for modeling and analysis.
- It allows us to
 - find the dimensionless quantities
 - reduce the number of parameters
 - perform equivalent system in a scaled model

Dimensions and Units

- Dimensions and units
- Dimension homogeneity
- Dimensionless equations
- Buckingham Pi Theorem

Dimension

- A (physical) dimension is a collection of measurements of one type of physical quantity.
- Example of dimension
 - Length, mass, speed, acceleration, force, energy,...
- Mathematically, a dimension is a one-dimensional vector space.
 - Every element of each 1D vector space is a physical measurement

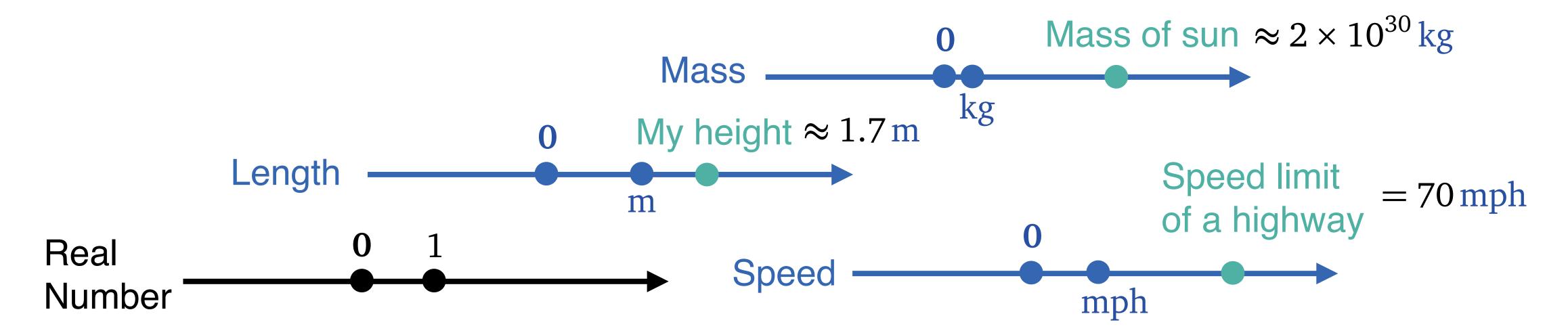


Unit

- A (physical) unit for a dimension is
 a basis for the 1D vector space representing the dimension
- A unit is a way to assign number for each measurement
- Given any two element of the same dimension

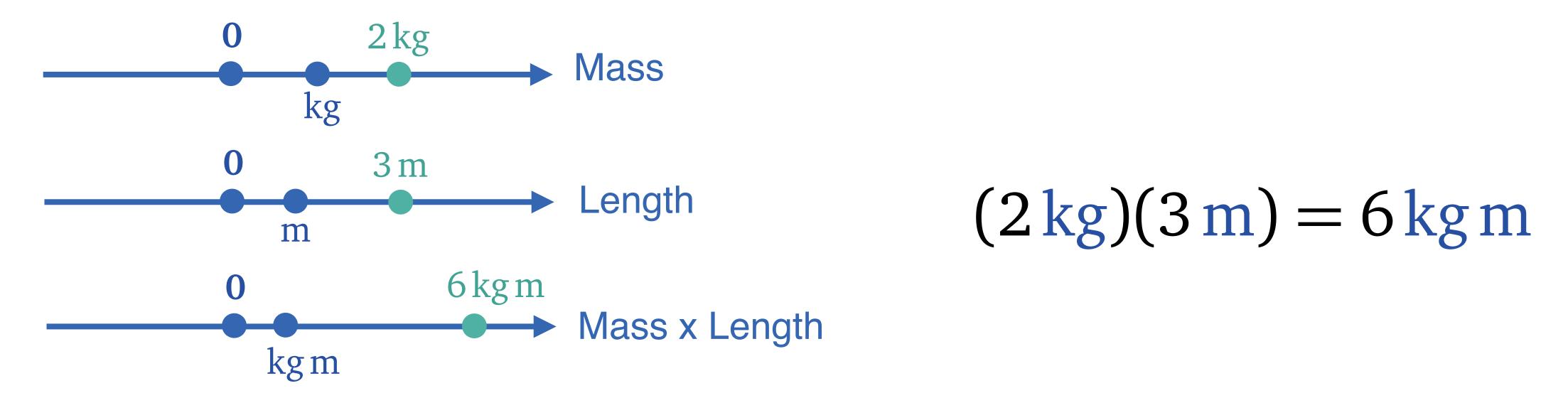
$$x, y \in D$$
 $y \neq 0$

there exists a unique scalar $s \in \mathbb{R}$ so that x = sy



Multiplication between dimensions

- We don't add/subtract measurements of different dimensions
- We can multiply/divide two measurements of different dimensions



 The collection of all possible dimensions involved in a context would look like:

 $\{\mathbb{R}, \mathsf{Mass}, \mathsf{Length}, \mathsf{Mass}\,\mathsf{Length}, \mathsf{Mass}^2\,\mathsf{Length}, \mathsf{Mass}\,\mathsf{Length}^{-1}, \ldots\}$

Notation

- A dimension is denoted by sans serif font D.
- Each element $x \in D$ is a measurement.
- ullet The dimensionless dimension is ${\mathbb R}$ which has a standard unit 1.
- The bracket of a measurement is the dimension it is in:

$$D = [x]$$
 $[kg] = [5kg] = [lb] = M$

Products of measurements produce products in dimensions

$$[x][y] = [xy]$$

We can consider a collection of all dimensions that can be involved

$$\mathscr{D}=\{\mathbb{R}, \mathsf{D}_1, \mathsf{D}_2, \ldots\}$$
 which should be closed under multiplication, forming an abelian group

Physical dimension

 In physics, the space of dimensions is a finitely generated free Abelian group by 7 standard base dimensions

Primary dimension	Symbol	SI Unit
Mass	М	kg (kilogram)
Length	L	m (meter)
Time	Т	s (second)
Temperature	Θ	K (Kelvin)
Electric current	I	A (Ampere)
Amount of light	C	cd (candela)
Amount of matter	N	mol (mole)

Every physical dimension takes the form of

$$M_{1}L_{2}T_{3}\Theta_{4}I_{5}C_{6}N_{7}$$

- Represent it as a 7D vector $(n_1, \dots, n_7)^{\mathsf{T}} \in \mathbb{R}^7$
 - Multiplications between dimensions become additions between 7D vectors

Physical dimension

What is the 7D vector representation of the "force" dimension?

hint: force is mass times acceleration

[force] = MLT⁻²
$$(1, 1, -2, 0, 0, 0, 0)^{\mathsf{T}}$$

 $\mathsf{M}^{n_1} \mathsf{L}^{n_2} \mathsf{T}^{n_3} \ominus^{n_4} \mathsf{I}^{n_5} \mathsf{C}^{n_6} \mathsf{N}^{n_7}$

 What is the 7D vector representation of the dimension of a dimensionless number?

$$(0,0,0,0,0,0,0)^T$$

Dimension Homogeneity

- Dimensions and units
- Dimension homogeneity
- Dimensionless equations
- Buckingham Pi Theorem

Dimension homogeneity

In an equation or inequality, every additive term must have the same dimension.

Dimension homogeneity: Example 1

• Example: Bernoulli equation

In a steady incompressible fluid flow,

the measurements at each point

P: density

g: gravity

 ν : velocity

z: height

p: pressure satisfy

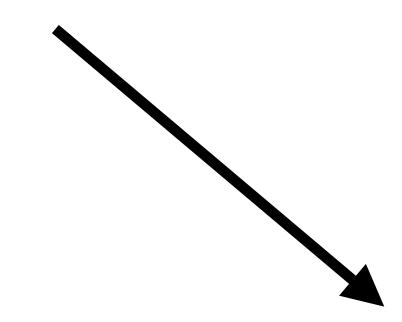
$$\frac{1}{2}\rho v^2 + p + \rho gz = \text{Constant}$$

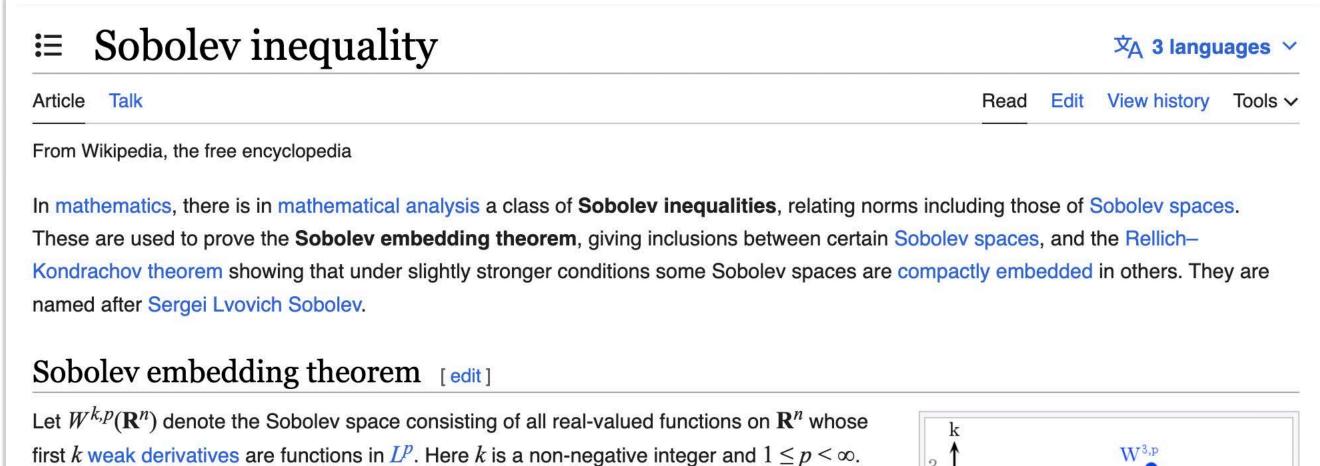
Dimension homogeneity: Example 2

Example: Sobolev embedding

Sobolev space of functions is defined by
$$W^{k,p}(\mathbb{R}^n) = \left\{ f: \mathbb{R}^n \to \mathbb{R} \left| \int_{\mathbb{R}^n} |D^k f|^p \, dx_1 \dots dx_n < \infty \right. \right\}$$

 Can you get the relationship between p, q given k, l, n?





The first part of the Sobolev embedding theorem states that if $k > \ell$, p < n and $1 \le p < q < \infty$

$$W^{k,p}({f R}^n)\subseteq W^{\ell,q}({f R}^n)$$

are two real numbers such that



Dimensionless Equations

- Dimensions and units
- Dimension homogeneity
- Dimensionless equations
- Buckingham Pi Theorem

Dimensionless equations

Rescale the physical variables so that they are all dimensionless.
 Rescale the equation so that it becomes a *relationship between dimensionless variables*.

• The process will leave us as few parameters as possible.

 We obtain the same result when the dimensionless parameters matches, even if the original problems are at vastly different scale.

Parabolic free fall

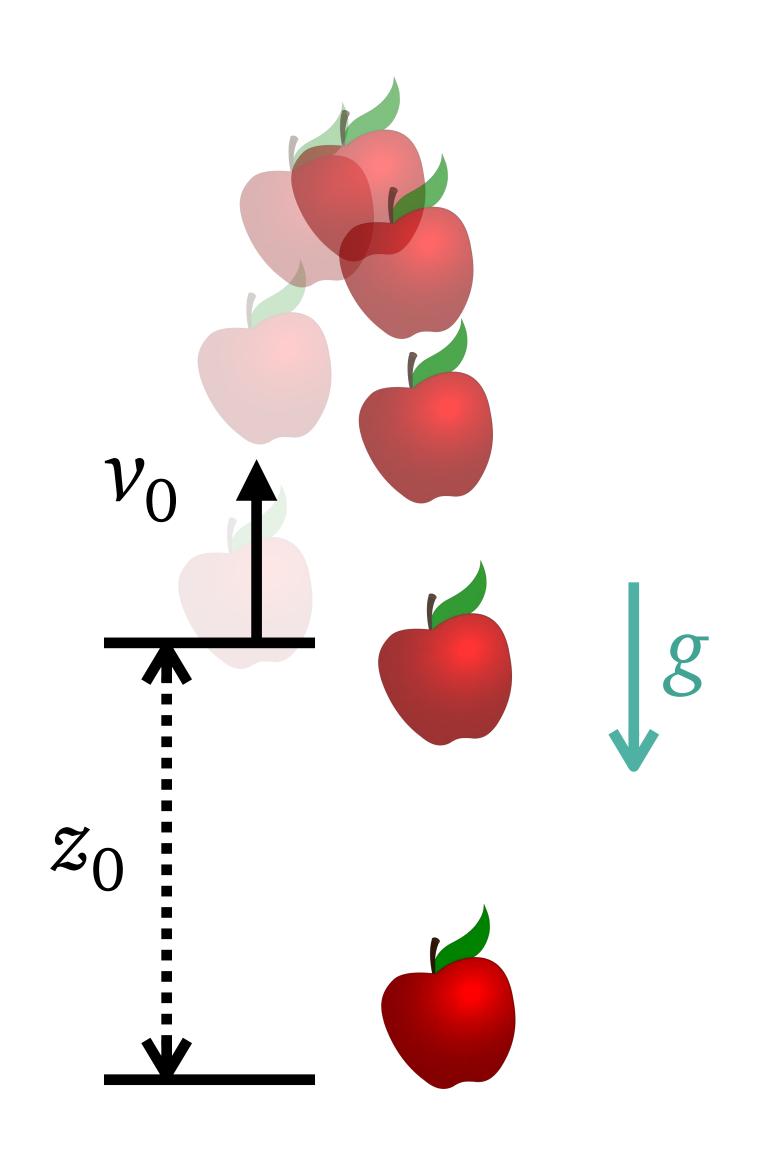
 Height as a function of time, initial velocity, initial height, and gravity:

$$z(t) = z_0 + v_0 t - \frac{g}{2}t^2$$

It's the solution to

$$z''(t) = -g, \quad z(0) = z_0, \quad z'(0) = v_0$$

 There are 3 parameters, but we can reduce them into 1 parameter!



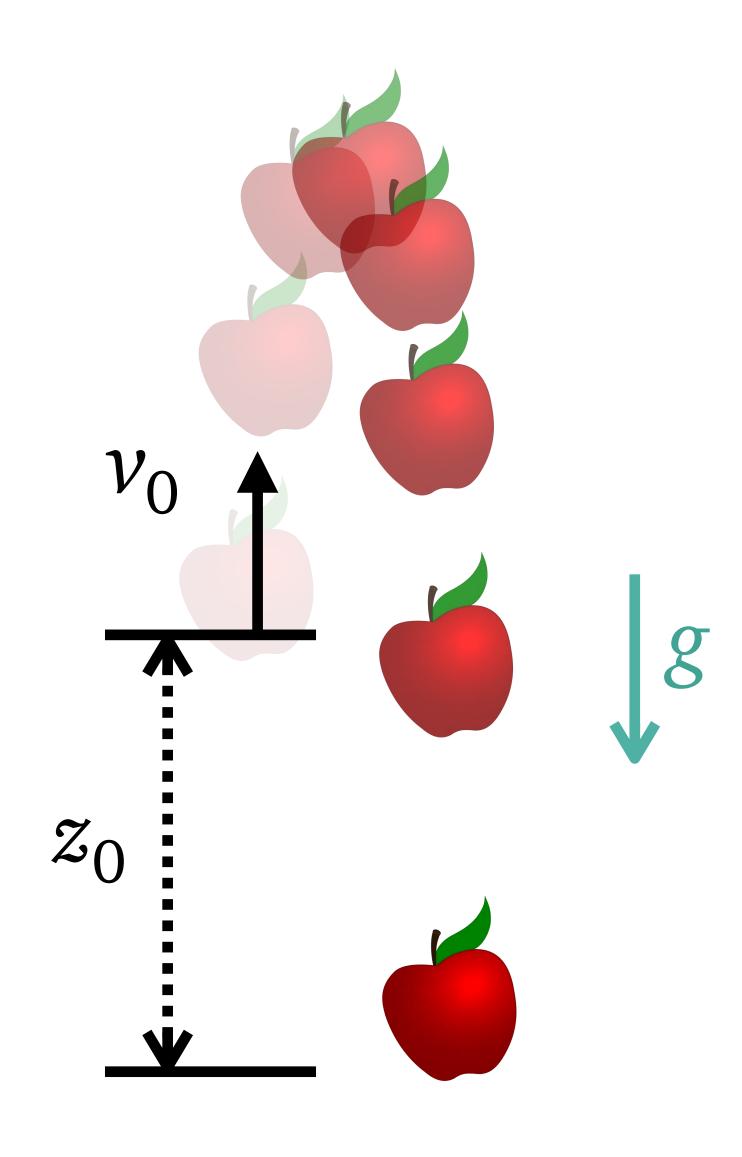
Parabolic free fall

$$z^* = \frac{z}{z_0} \qquad t^* = \frac{tv_0}{z_0}$$

• Froude number $Fr = \frac{v_0}{\sqrt{gz_0}}$

$$z^* = 1 + t^* - \frac{1}{2Fr^2}t^{*2}$$

$$z_{\text{max}}^* = 1 + \frac{Fr^2}{2}$$

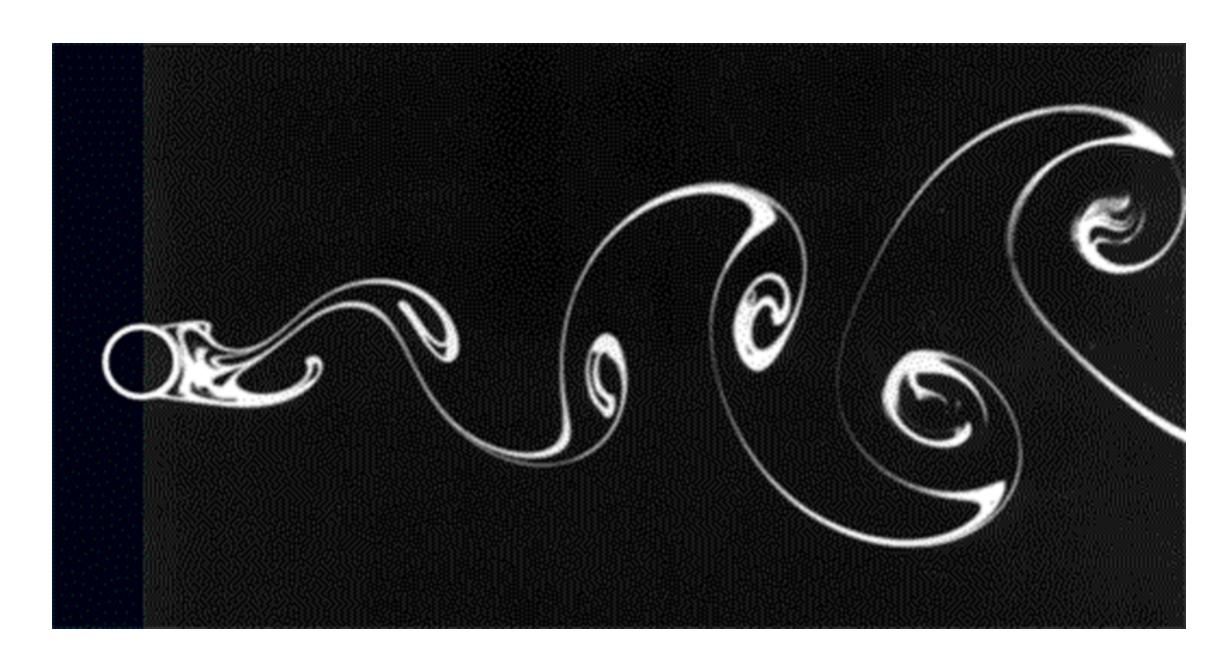


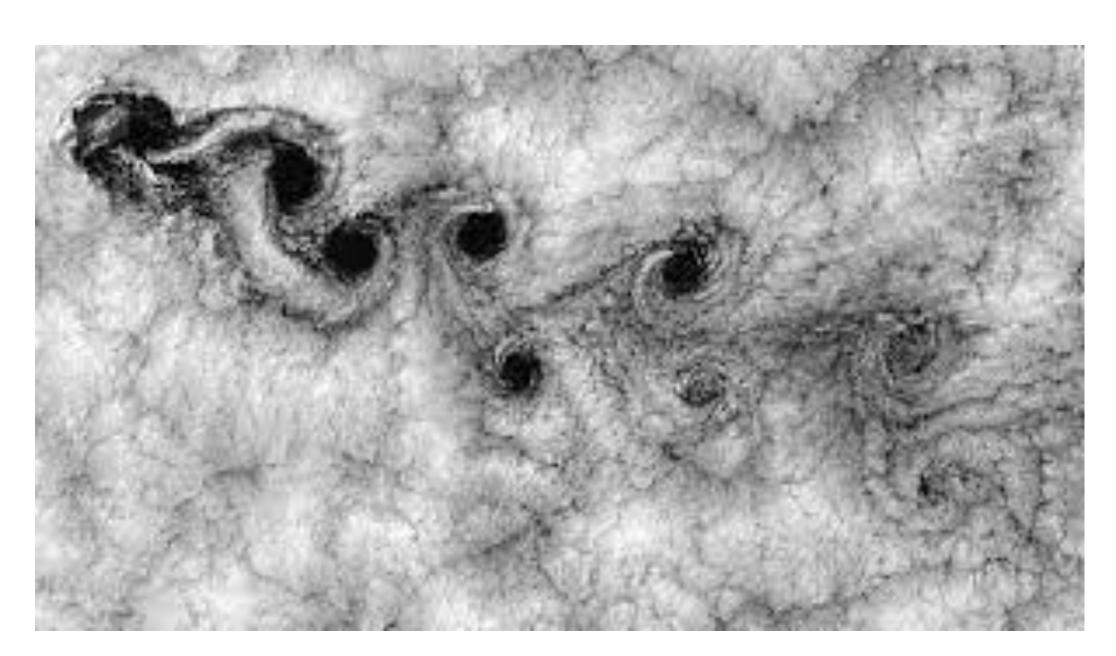
Navier–Stokes equation

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{\nabla p}{\rho} + \frac{\mu}{\rho} \nabla \cdot \nabla \mathbf{u}$$

- ► Time and time derivative: [t] = T $\left[\frac{\partial}{\partial t}\right] = T^{-1}$
- ▶ Space and spatial derivatives: $[\mathbf{x}] = \mathbf{L}^{-1}[\nabla] = \mathbf{L}^{-1}[\nabla \cdot \nabla] = \mathbf{L}^{-2}$
- Velocity: $[\mathbf{u}] = \mathbf{LT}^{-1}$
- ▶ Density and pressure: $[\rho] = ML^{-3}$ $[p] = ML^{-1}T^{-2}$
- ▶ Viscosity (stress per speed gradient) $[\mu] = ML^{-1}T^{-1}$
 - (Assume density and viscosity are constant)

- ullet Characteristic length L and characteristic speed U
- They can be the diameter of obstacle and the background speed





Von Karman vortex street

$$\mathbf{x}^* := \mathbf{x}/L$$

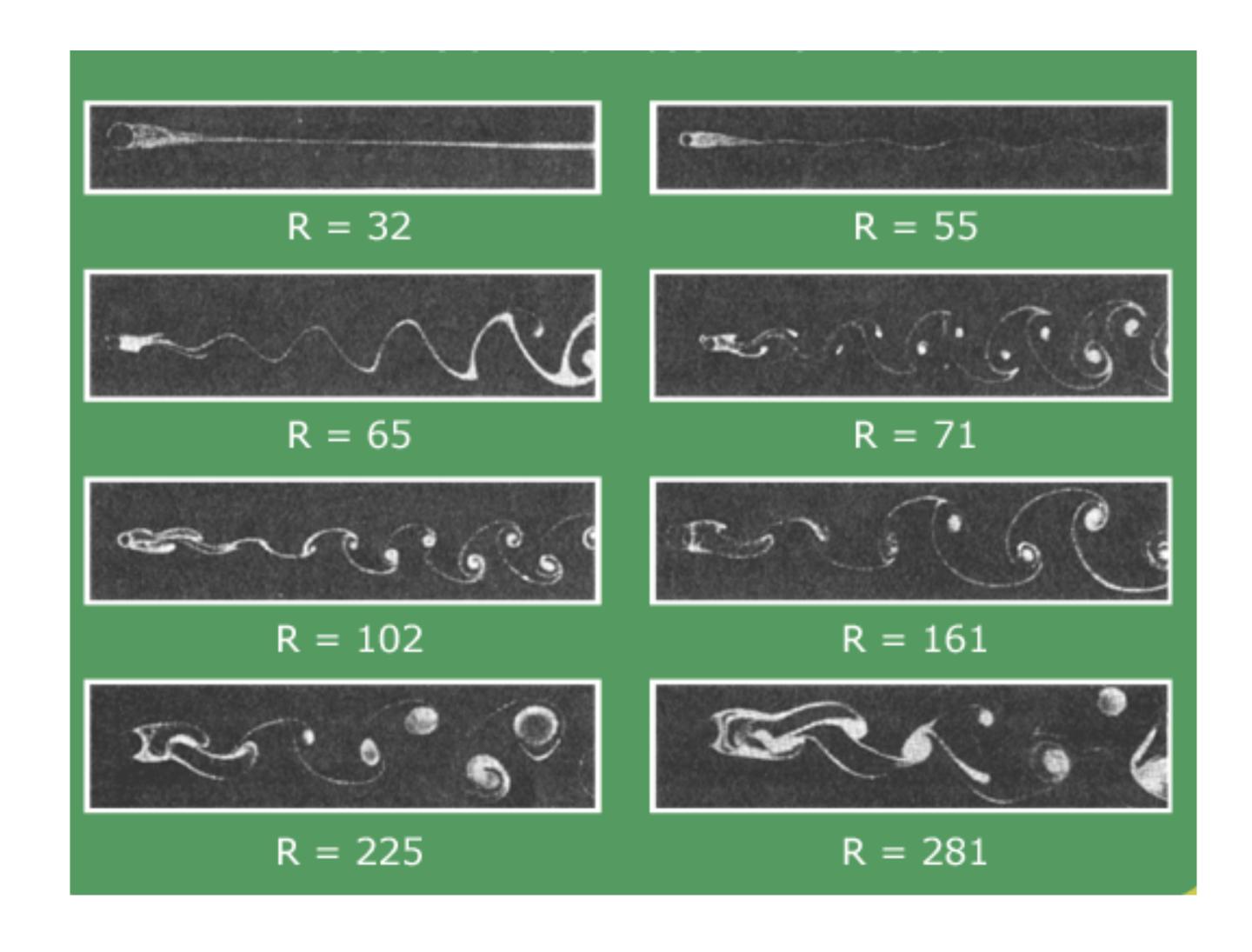
$$t^* := (U/L)t$$

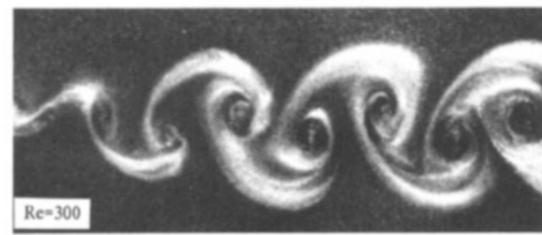
$$\mathbf{u}^* := \mathbf{u}/U$$

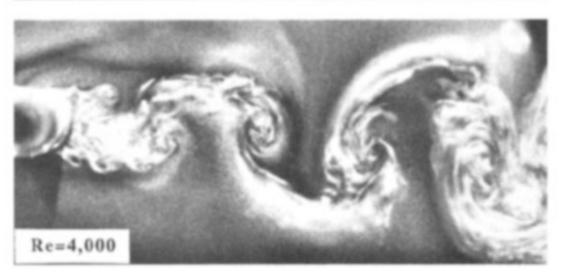
$$p^* := \frac{p}{\rho U^2}$$

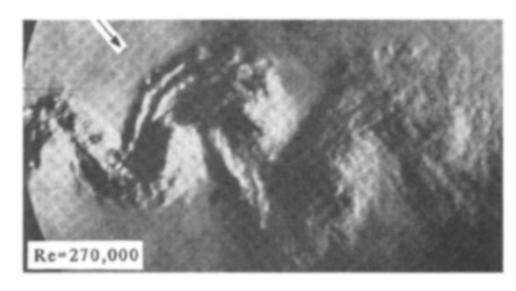
$$\frac{\partial \mathbf{u}^*}{\partial t^*} + \mathbf{u}^* \cdot \nabla^* \mathbf{u}^* = -\nabla^* p^* + \frac{1}{\text{Re}} \nabla^* \cdot \nabla^* \mathbf{u}^*$$

• Reynolds number: Re = $\frac{\rho U L}{\mu}$



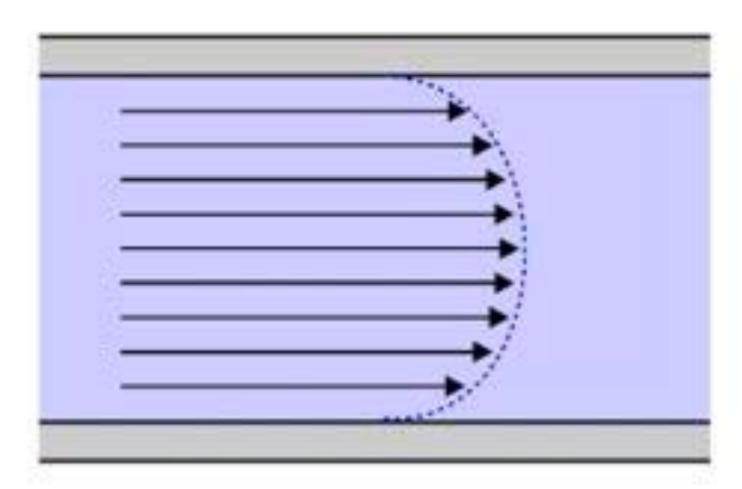






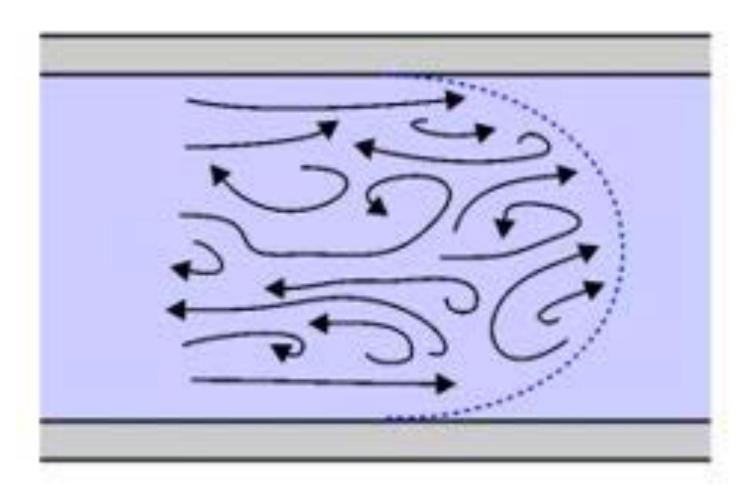
$$Re = \frac{\rho U L}{\mu}$$

Laminar flow (low Reynolds)



Efficient fluid transport

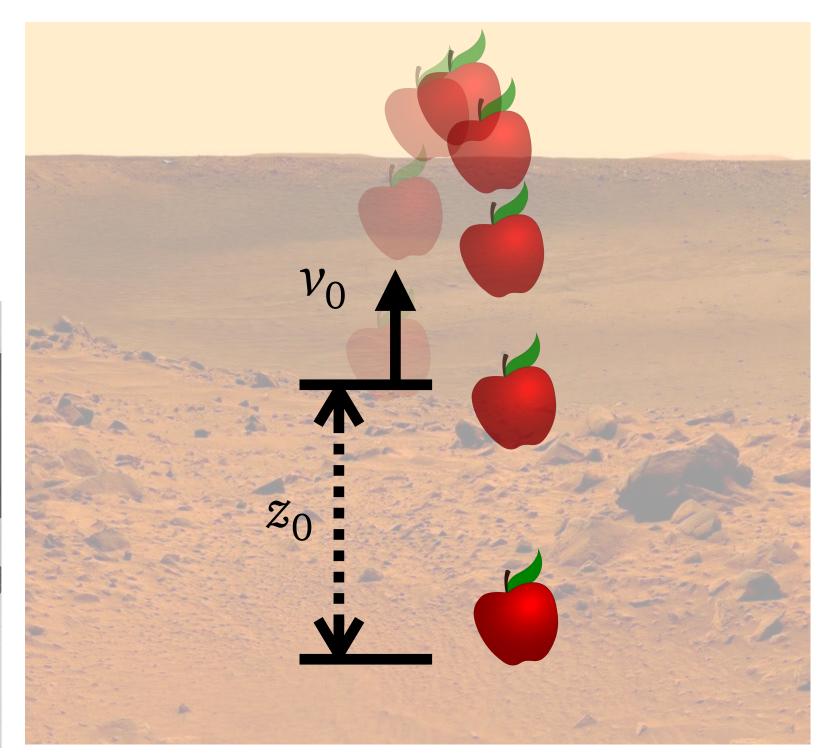
Turbulent flow (high Reynolds)



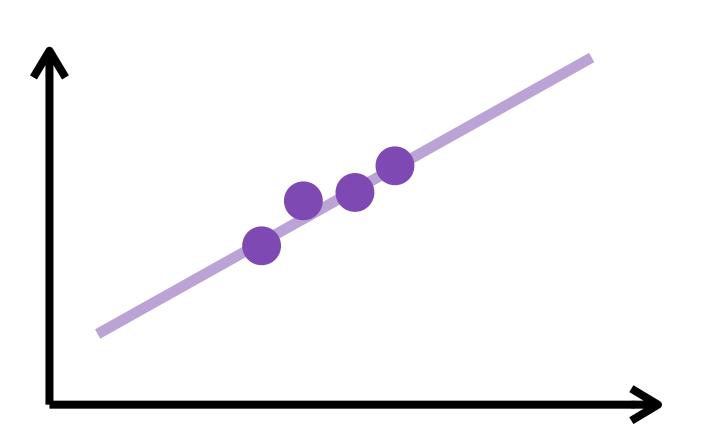
Inefficient transport (causing Asthma)
$$\operatorname{Re} = \frac{\rho U L}{\mu}$$

Dimensionless equations: summary

- Reduction of parameters
- Similarity between systems



Extrapolation of data



- Dimensions and units
- Dimension homogeneity
- Dimensionless equations
- Buckingham Pi Theorem

Buckingham II-theorem

Suppose we have a physical equation relating n quantities

$$f(q_1,\ldots,q_n)=0$$

- Suppose the *n* quantities only involve *k* independent physical dimensions.
- Then the equation can be restated as

$$F(\Pi_1,\ldots,\Pi_p)=0$$

for some $\,p=n-k\,$ dimensionless variables/parameters $\,\Pi_1,\ldots,\Pi_p\,$

$$f(q_1,\ldots,q_n)=0$$

Consider base dimension (e.g. the 7 base dimension)

$$B_1, \ldots, B_\ell$$

Expand the dimensions of the quantities in this base

$$[q_i] = \mathsf{B_1}^{m_{1i}} \dots \mathsf{B_\ell}^{m_{\ell i}}$$

Expand the dimensions of the quantities in this base

$$[q_i] = \mathsf{B}_1^{m_{1i}} \dots \mathsf{B}_\ell^{m_{\ell i}}$$

- Take log: $\log[q_i] = m_{1i} \log B_1 + \ldots + m_{\ell i} \log B_{\ell}$
- This is a change of basis formula

$$(\log[q_1] \quad \cdots \quad \log[q_n]) = (\log B_1 \quad \cdots \quad \log B_\ell) \begin{pmatrix} m_{11} & \cdots & m_{1n} \\ \vdots & \ddots & \vdots \\ m_{\ell 1} & \cdots & m_{\ell n} \end{pmatrix}$$

M dimension matrix

$$(\log[q_1] \quad \cdots \quad \log[q_n]) = (\log B_1 \quad \cdots \quad \log B_\ell) \begin{pmatrix} m_{11} & \cdots & m_{1n} \\ \vdots & \ddots & \vdots \\ m_{\ell 1} & \cdots & m_{\ell n} \end{pmatrix}$$

M dimension matrix

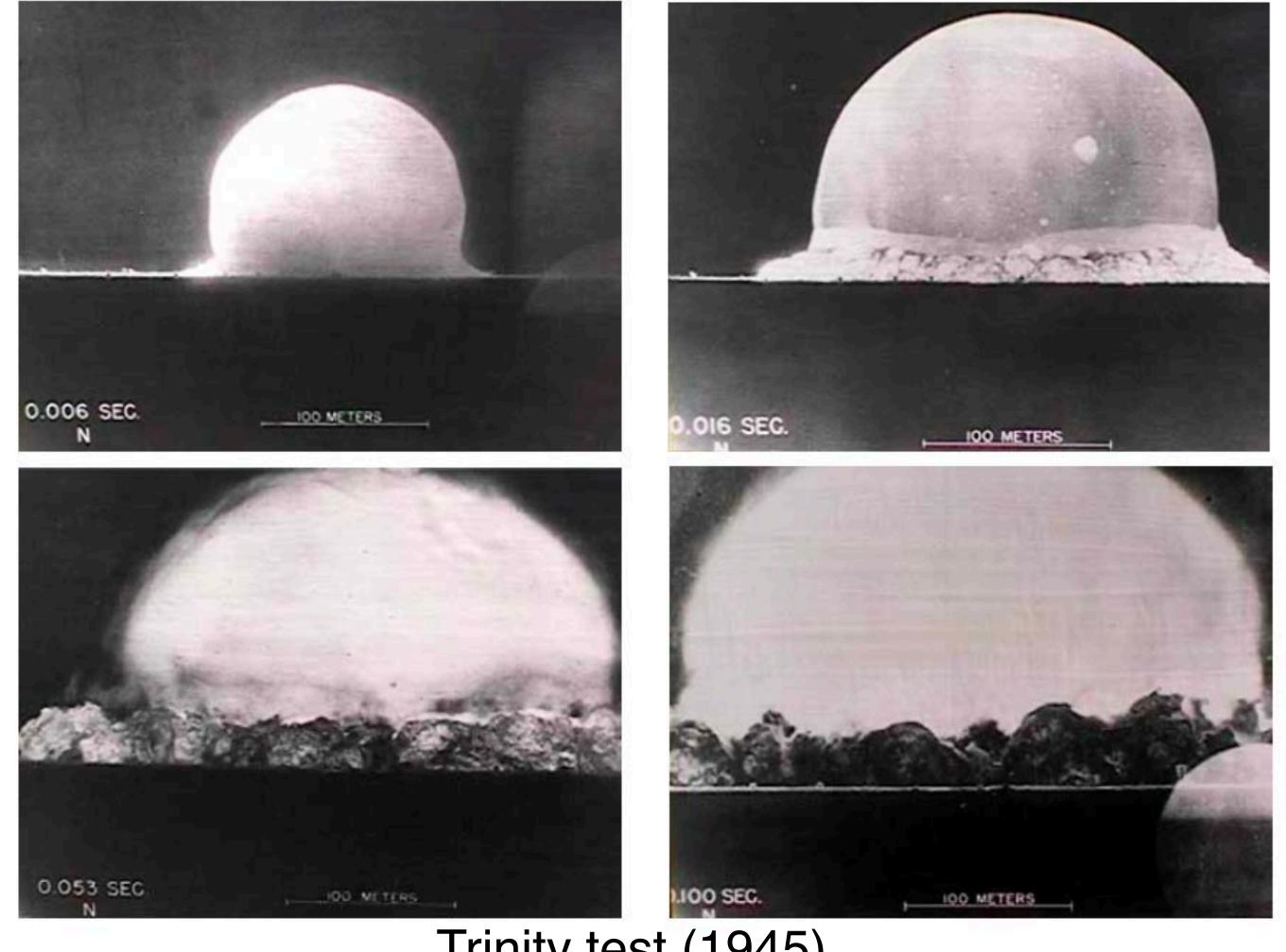
- The physical quantities involve only k independent dimension \iff \mathbf{M} has rank k (dimension of the image)
- Rank–Nullity Thm: The null space of ${\bf M}$ has dimension p=n-k

• Find a basis for the null space
$$\mathbf{a}_1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \end{pmatrix}, \ldots, \mathbf{a}_p = \begin{pmatrix} a_{1p} \\ \vdots \\ a_{np} \end{pmatrix}$$

$$(\log[q_1] \cdots \log[q_n]) = (\log B_1 \cdots \log B_\ell) \begin{pmatrix} m_{11} & \cdots & m_{1n} \\ \vdots & \ddots & \vdots \\ m_{\ell 1} & \cdots & m_{\ell n} \end{pmatrix}$$

M dimension matrix

- Find a basis for the null space $\mathbf{a}_1=\begin{pmatrix}a_{11}\\ \vdots\\ a_{n1}\end{pmatrix},\ldots,\mathbf{a}_p=\begin{pmatrix}a_{1p}\\ \vdots\\ a_{np}\end{pmatrix}$
- Then $(\log[q_1] \cdots \log[q_n])\mathbf{a}_j = \mathbf{0}$
- That is, $\Pi_j \coloneqq C_j q_1^{a_{1j}} \cdots q_n^{a_{nj}}$ are dimensionless



Trinity test (1945)

From the released photograph G.I. Taylor estimated the energy (which was confidential)

- Assume that the relevant variables are

• Dimension matrix
$$\mathbf{M} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & -3 & 2 & 0 \\ 0 & 0 & -2 & 1 \end{pmatrix}$$

• One dimensional null space spanned by $a = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

▶ Radius
$$r$$
 of the fireball
 Padius r of the fireball
 ▶ Density $ρ$ of surrounding air
 ▶ Energy E released by the bomb
 $[F] = M^0L^1T^0$
 $[F] = M^1L^{-3}T^0$
 $[E] = M^1L^2T^{-2}$
 ▶ Time t since the ignition
 $[E] = M^0L^0T^1$

- Assume that the relevant variables are
 - Radius r of the fireball
 - Density p of surrounding air
 - \triangleright Energy E released by the bomb
 - ► Time *t* since the ignition
- One dimensional null space spanned by $\mathbf{a} = \begin{pmatrix} -3 \\ -1 \\ 1 \\ 2 \end{pmatrix}$ Found a dimensionless quantity $\Pi = r^{-5} \rho^{-1} E^1 t^2 = 0$ Physical law tokes that

 - Physical law takes the form $F(\Pi) = 0$
 - This mathematically implies $\Pi = Constant$

• Any explosion satisfies $\frac{Et^2}{r^5\rho} = C$

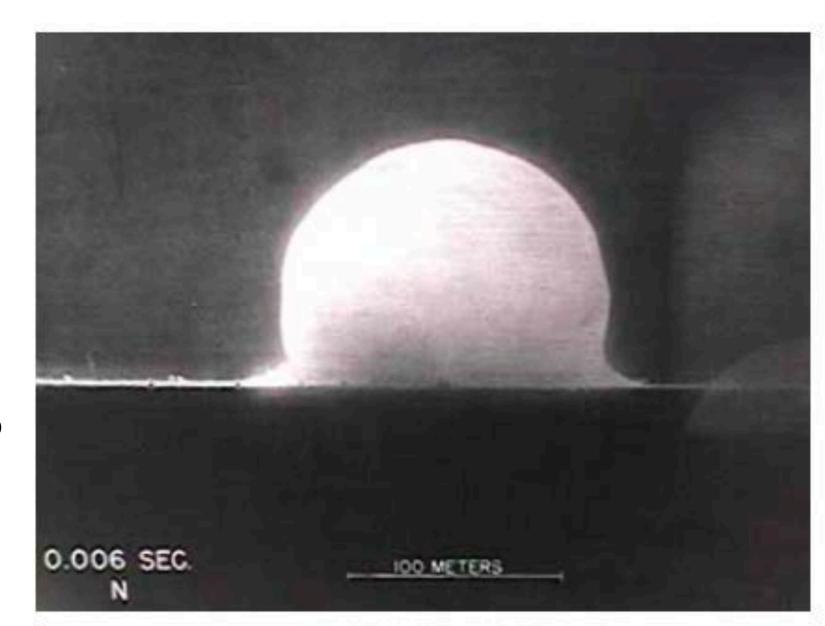
$$\frac{Et^2}{r^5\rho} = C$$

- Some smaller experiments suggest $C \approx 1.033$
- Given the photograph indicating

$$t = 0.006s$$
 $r = 80 \text{ m}$ $\rho_{\text{TestSite}} = 1.1 \text{ kg/m}^3$

$$E pprox rac{Cr^5
ho}{t^2} \; pprox 10^{14} \, \mathrm{J}$$
 $pprox 24 \; \mathrm{kilotons} \; \mathrm{of} \; \mathrm{TNT}$

- Taylor got 22 kilotons TNT using more frames
- Ground truth is 20 kilotons TNT



Example 2: Drag of a car

- A moving car will experience aerodynamic drag
- Reasonable postulate: there exists a function relating the following 5 quantities
 - ► Car's length scale *L*
 - Car speed V
 - ► Air density *P*
 - ► Air viscosity *µ*
 - ► Drag force *F*

```
[L] = M^{0}L^{1}T^{0}
[V] = M^{0}L^{1}T^{-1}
[\rho] = M^{1}L^{-3}T^{0}
[\mu] = M^{1}L^{-1}T^{-1}
[F] = M^{1}L^{1}T^{-2}
```


- Find a set of dimensionless parameters (how many?)
- Given a scaled wind tunnel experiment, deduce the drag force in real-life.