CSE 291 (SP24) Physics Simulation Introduction

Albert Chern

Course information

Physics Simulation

- Instructor: Albert Chern
- TA: Chad Mckell
- Course website: https://cseweb.ucsd.edu/~alchern/teaching/cse291_sp24/
- We use Piazza and Gradescope

Course information

Physics Simulation

- Goal: Mathematical principles behind simulation tasks
 Hands-on experience with physics-based animations
- Applications: Computer animation, scientific computing classical mechanics, theory abstraction
- Grade: HW0–4 (written and mini-project)
- Collaboration: Final submissions should be individual work, but we encourage you to study the math and solve the problems together!

Course information

Physics Simulation

• Prerequisites:

- Linear algebra, multivariable calculus, elementary physics
- Using one programming platform with visualization that is capable of using/importing sparse matrix library
 - e.g. graphics software: Houdini, Blender, Unity
 - e.g. C++, Python, MATLAB, Javascript+WebGL

• What tools can you use:

Build your own solver from lower level (you can use built-in geometry processing functions) Don't use a full-blown built-in simulation solver.

Syllabus

Week	Tuesday	Thursday
1	4/2: Lecture prerecorded Introduction •	4/4: Lecture prerecorded Ordinary Differential Equations •
2	4/9: Dimensional Analysis	4/11: Differentials and gradients • HW0 due (miniproject)
3	4/16: Calculus of variations	4/18: Least action principle • HW1 due (written)
4	4/23: Constrained systems	4/25: Rigid body motion
5	4/30: Geodesic equation	5/2: Incremental potential • HW2 due (written part 2.1, 2.2)
6	5/7: Tensors	5/9: Tensors • HW2 due (miniproject part 2.3)
7	5/14: Elasticity	5/16: Elasticity
8	5/21: Lecture prerecorded Fluids	5/23: Lecture prerecorded Fluids
9	5/28: Fluids (numerics) • HW3 due (miniproject)	5/30: Fluids
10	6/4: Hamiltonian mechanics	6/6: No class (instructor unavailable)
Final	6/11: No class • HW4 due (miniproject)	6/13: No class
	Summer break	

Simulation, Physics, Math

- Simulation, Physics, Math
- Getting started: F = ma
- Solve ODEs numerically

- In computational physics, engineering, computer graphics,...
- Generate computer-generated data that mimic that we would observe in the physical world.
- Why?
 - Make predictions, conduct virtual experiments
 - Believable visual effects
- How?

How?

► Mathematical modeling

Turn physical phenomena into mathematical equations. (What are the variables? What are the laws of physics)

Analysis

Get a general idea of how the solution should behave. (Is the problem well-posed?)

Computation

Solve (approximate) solutions analytically or numerically.

We will focus on general principles

- Dimensional analysis
- Least action principle
- Incremental potential formulation
- Constitutive modeling in continuum mechanics

Systems we will cover

- Small mechanical systems
- Rigid body
- Constrained system (linkage, robotics, collision and contact)
- Elastic body
- Fluids

Youtube "Soft Body Tetris [01]" by ImbaPixel

https://youtu.be/rm44SV8xUDo

Nabizadeh, Wang, Ramamoorthi, C. Covector Fluids 2022

Getting started: F=ma

- Simulation, Physics, Math
- Getting started: F = ma
- Solve ODEs numerically

Physics based motion

Exercise 0.1 — 5pt. Using your favorite program to produce an animation of a simple physical system. It could be a pendulum motion like demonstrated in the lecture, or other system.

- (a) Upload a video of your result.
- (b) Upload a written document that briefly explains the system. (Include the equation of motion, an explanation of what each variable in the equation means, and what the time stepping algorithm looks like.)
- (c) Upload the source file(s) (for example .zip).

Physics based motion

Rough idea:

- Position of each object is governed by Newton's law of motion
- Rate of change of position is called velocity
- Rate of change of velocity is called acceleration
- Model "force" as a function of position and velocity
- Newton's law of motion: Mass x acceleration = force

- Animate an object attached to a spring
- Identify the moving position: x
- Associated velocity v

Force

$$\mathbf{f}(\mathbf{x}, \mathbf{v}) = -k(\mathbf{x} - \mathbf{x}_0) - \mu \mathbf{v}$$
rest position

Force

$$\mathbf{f}(\mathbf{x}, \mathbf{v}) = -k(\mathbf{x} - \mathbf{x}_0) - \mu \mathbf{v}$$
stiffness of spring

Force

$$\mathbf{f}(\mathbf{x}, \mathbf{v}) = -k(\mathbf{x} - \mathbf{x}_0) - \mu \mathbf{v}$$
friction

Force

$$\mathbf{f}(\mathbf{x}, \mathbf{v}) = -k(\mathbf{x} - \mathbf{x}_0) - \mu \mathbf{v}$$

Equations of motion

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}$$

relationship between position and velocity

$$\frac{d\mathbf{v}}{dt} = \frac{1}{m} \mathbf{f}(\mathbf{x}, \mathbf{v})$$

relationship between acceleration and force

mass

Force

$$\mathbf{f}(\mathbf{x}, \mathbf{v}) = -k(\mathbf{x} - \mathbf{x}_0) - \mu \mathbf{v}$$

Equations of motion

$$\frac{d\mathbf{x}}{dt} = \mathbf{v}$$

$$\frac{d\mathbf{v}}{dt} = \frac{1}{m}\mathbf{f}(\mathbf{x}, \mathbf{v})$$

$$= -\frac{k}{m}(\mathbf{x} - \mathbf{x}_0) - \frac{\mu}{m}\mathbf{v}$$

We use the overhead dots to indicate time derivatives

$$\frac{d\mathbf{x}(t)}{dt} = \dot{\mathbf{x}}(t) \qquad \frac{d^2\mathbf{x}(t)}{dt^2} = \ddot{\mathbf{x}}(t)$$

Equations of motion

$$\dot{\mathbf{x}} = \mathbf{v}$$

$$\dot{\mathbf{v}} = -\frac{k}{m}(\mathbf{x} - \mathbf{x}_0) - \frac{\mu}{m}\mathbf{v}$$

• Substitute v:

$$\ddot{\mathbf{x}} = -\frac{k}{m}(\mathbf{x} - \mathbf{x}_0) - \frac{\mu}{m}\dot{\mathbf{x}}$$

- Equation involving x and its derivatives
- This is called an ordinary differential equation (ODE)

Types of problems

- Equations of motion $\ddot{\mathbf{x}} = -\frac{k}{m}(\mathbf{x} \mathbf{x}_0)$
 - This is called an ordinary differential equation (ODE)
- Initial value problem (forward simulation)
 - Given initial conditions i.e. the values of $\mathbf{x}|_{t=0}$, $\mathbf{v}|_{t=0}$

Extend them into function of time

$$\mathbf{x}(t), \mathbf{v}(t)$$
 $t \geq 0$

Types of problems

- Equations of motion $\ddot{\mathbf{x}} = -\frac{k}{m}(\mathbf{x} \mathbf{x}_0)$
 - ► This is called an *ordinary differential* equation (ODE)
 - Control problem
 - Given desired location to arrive at some future time,
 - find minimal correction force to achieve the goal.
 - Robotics, control systems, physics-based keyframe animations

Another example

Pendulum

Solving ODE Numerically

- Simulation, Physics, Math
- Getting started: F = ma
- Solve ODEs numerically

ODE

- Derive the differential equation (ODE) from physical laws
- Solve the differential equation (ODE)
 - Hard to solve it by hand most of the time
 - Numerical method is needed

ODE

Given any differential equation, for example,

$$\ddot{\mathbf{x}} + \ddot{\mathbf{x}}\dot{\mathbf{x}} + \sin(\ddot{\mathbf{x}}) = 1$$

- Convert it into a 1st order system of ODEs (involving at most first derivative)
 - Give each derivative a separate name (except for the highest order derivative) $\mathbf{v} = \dot{\mathbf{x}}$ $\mathbf{a} = \ddot{\mathbf{x}}$

ODE

Given any differential equation, for example,

$$\ddot{\mathbf{x}} + \ddot{\mathbf{x}}\dot{\mathbf{x}} + \sin(\ddot{\mathbf{x}}) = 1$$

$$\dot{\mathbf{x}} = \mathbf{v}$$

$$\dot{\mathbf{v}} = \mathbf{a}$$

$$\dot{\mathbf{a}} = 1 - \mathbf{a}\mathbf{v} - \sin(\mathbf{a})$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix}$$
 ODE becomes $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y})$

- Generic ODE $\dot{y} = f(y)$
- Discretize time into time-frames $\mathbf{y}^{(n)} = \mathbf{y}(n\Delta t)$
- (Forward) Euler method $\frac{\mathbf{y}^{(n+1)} \mathbf{y}^{(n)}}{\Delta t} \approx \mathbf{f}(\mathbf{y}^{(n)})$

$$\mathbf{y}^{(n+1)} \approx \mathbf{y}^{(n)} + \Delta t \cdot \mathbf{f}(\mathbf{y}^{(n)})$$

• (Forward) Euler method $\frac{\mathbf{y}^{(n+1)} - \mathbf{y}^{(n)}}{\Lambda t} \approx \mathbf{f}(\mathbf{y}^{(n)})$

$$\mathbf{y}^{(n+1)} \approx \mathbf{y}^{(n)} + \Delta t \cdot \mathbf{f}(\mathbf{y}^{(n)})$$

 $\mathbf{y}^{(2)}$ $\mathbf{y}^{(0)}$ $\mathbf{y}^{(0)}$ $0 \quad \Delta t \quad 2\Delta t$

- Advantages
 - ► There is an explicit formula to plug in old state to get new state
 - Fast and simple
- Limitations
 - ightharpoonup Not very accurate unless Δt is tiny
 - Can be energy increasing (unphysical)

• (Forward) Euler method $\frac{\mathbf{y}^{(n+1)} - \mathbf{y}^{(n)}}{\Delta t} \approx \mathbf{f}(\mathbf{y}^{(n)})$

$$\mathbf{y}^{(n+1)} \approx \mathbf{y}^{(n)} + \Delta t \cdot \mathbf{f}(\mathbf{y}^{(n)})$$

Backward Euler method

$$\frac{\mathbf{y}^{(n+1)} - \mathbf{y}^{(n)}}{\Delta t} = \mathbf{f}(\mathbf{y}^{(n+1)})$$

- Limitations
 - Not very accurate unless Δt is tiny
 - Have to solve for new state (implicit) instead of explicit update

Backward Euler method

$$\frac{\mathbf{y}^{(n+1)} - \mathbf{y}^{(n)}}{\Delta t} = \mathbf{f}(\mathbf{y}^{(n+1)})$$

- Limitations
 - ightharpoonup Not very accurate unless Δt is tiny
 - Have to solve for new state (implicit) instead of explicit update
- Advantages
 - Energy decreasing (dissipating), which looks physical
 - ightharpoonup Can take larger time steps Δt without instability
 - Can incorporate collision (just add constraint to the implicit solves)

- Euler method $\mathbf{y}^{(n+1)} \approx \mathbf{y}^{(n)} + \Delta t \cdot \mathbf{f}(\mathbf{y}^{(n)})$ $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y})$
- Runge-Kutta method (RK4) (Accurate, stable, explicit)

$$\mathbf{k}_{1} = \mathbf{f}(\mathbf{y}^{(n)})$$

$$\mathbf{k}_{2} = \mathbf{f}(\mathbf{y}^{(n)} + \frac{\Delta t}{2} \mathbf{k}_{1})$$

$$\mathbf{k}_{3} = \mathbf{f}(\mathbf{y}^{(n)} + \frac{\Delta t}{2} \mathbf{k}_{2})$$

$$\mathbf{k}_{4} = \mathbf{f}(\mathbf{y}^{(n)} + \Delta t \mathbf{k}_{3})$$

$$\mathbf{y}^{(n+1)} = \mathbf{y}^{(n)} + \frac{\Delta t}{6} (\mathbf{k}_{1} + 2\mathbf{k}_{2} + 2\mathbf{k}_{3} + \mathbf{k}_{4})$$

(collision handling is not as elegant as backward Euler)

- In most cases the RK4 method works very well
- Sometimes the underlying physical system has additional structures (energy conservation, momentum conservation)
- Special algorithm (non-RK4) aims at preserving energy or momentum
 - Variational integrator
 - Symplectic integrator
 - Lie group integrator

Example: pendulum equation.

Energy conservation

$$\frac{1}{2}m\dot{\theta}^2 - mg\cos\theta = \text{const}$$

✓ Integrable system

$$m\ddot{\theta} = -mg\sin\theta$$

Example: pendulum equation.

$$m\ddot{\theta} = -mg\sin\theta$$

 High order differential equation solver (4th order Runge-Kutta method)

Given
$$(\theta_i, \nu_i = \dot{\theta}_i)$$

$$\theta_{i+1/2}^* = \theta_i + \frac{\Delta t}{2} \nu_i \qquad \nu_{i+1/2}^* = \nu_i - \frac{\Delta t}{2} \sin \theta_i$$

$$\theta_{i+1/2}^* = \theta_i + \frac{\Delta t}{2} \nu_i \qquad \nu_{i+1/2}^* = \nu_i - \frac{\Delta t}{2} \sin \theta_i$$

$$\theta_{i+1/2}^{**} = \theta_i + \frac{\Delta t}{2} \nu_{i+1/2}^* \qquad \nu_{i+1/2}^{**} = \nu_i - \frac{\Delta t}{2} \sin \theta_{i+1/2}^*$$

$$\bullet \quad \theta_{i+1}^{***} = \theta_i + \Delta t \nu_{i+1/2}^{**} \qquad \nu_{i+1}^{***} = \nu_i - \Delta t \sin \theta_{i+1/2}^{**}$$

$$\begin{array}{ll} \text{Output} & \theta_{i+1} = \theta_i + \frac{\Delta t}{6} \left(\nu_i + 2 \nu_{i+1/2}^* + 2 \nu_{i+1/2}^{**} + \nu_{i+1}^{***} \right) \\ \\ & \nu_{i+1} = \nu_i - \frac{\Delta t}{6} \left(\sin \theta_i + 2 \sin \theta_{i+1/2}^* + 2 \sin \theta_{i+1/2}^{**} + \sin \theta_{i+1/2}^{***} \right) \end{array}$$

Example: pendulum equation.

$$m\ddot{\theta} = -mg\sin\theta$$

• High order differential equation solver (4th order Runge-Kutta method)

Given
$$(\theta_i, \nu_i = \dot{\theta}_i)$$

$$\theta_{i+1/2}^* = \theta_i + \frac{\Delta t}{2} \nu_i$$
 $\nu_{i+1/2}^* = \nu_i - \frac{\Delta t}{2} \sin \theta_i$

$$\theta_{i+1/2}^* = \theta_i + \frac{\Delta t}{2} \nu_i \qquad \nu_{i+1/2}^* = \nu_i - \frac{\Delta t}{2} \sin \theta_i$$

$$\theta_{i+1/2}^{**} = \theta_i + \frac{\Delta t}{2} \nu_{i+1/2}^* \qquad \nu_{i+1/2}^{**} = \nu_i - \frac{\Delta t}{2} \sin \theta_{i+1/2}^*$$

$$\bullet \quad \theta_{i+1}^{***} = \theta_i + \Delta t \nu_{i+1/2}^{**} \qquad \nu_{i+1}^{***} = \nu_i - \Delta t \sin \theta_{i+1/2}^{**}$$

$$\begin{array}{ll} \text{Output} & \theta_{i+1} = \theta_i + \frac{\Delta t}{6} \left(\nu_i + 2 \nu_{i+1/2}^* + 2 \nu_{i+1/2}^{**} + \nu_{i+1}^{***} \right) \\ \\ & \nu_{i+1} = \nu_i - \frac{\Delta t}{6} \left(\sin \theta_i + 2 \sin \theta_{i+1/2}^* + 2 \sin \theta_{i+1/2}^{**} + \sin \theta_{i+1/2}^{***} \right) \end{array}$$

Example: pendulum equation.

$$m\ddot{\theta} = -mg\sin\theta$$

 High order differential equation solver (4th order Runge-Kutta method)

Given
$$(\theta_i, \nu_i = \dot{\theta}_i)$$

$$\theta_{i+1/2}^* = \theta_i + \frac{\Delta t}{2} \nu_i \qquad \nu_{i+1/2}^* = \nu_i - \frac{\Delta t}{2} \sin \theta_i$$

$$\theta_{i+1/2}^* = \theta_i + \frac{\Delta t}{2} \nu_i \qquad \nu_{i+1/2}^* = \nu_i - \frac{\Delta t}{2} \sin \theta_i$$

$$\theta_{i+1/2}^{**} = \theta_i + \frac{\Delta t}{2} \nu_{i+1/2}^* \qquad \nu_{i+1/2}^{**} = \nu_i - \frac{\Delta t}{2} \sin \theta_{i+1/2}^*$$

$$\bullet \quad \theta_{i+1}^{***} = \theta_i + \Delta t \nu_{i+1/2}^{**} \qquad \nu_{i+1}^{***} = \nu_i - \Delta t \sin \theta_{i+1/2}^{**}$$

Output
$$\theta_{i+1} = \theta_i + \frac{\Delta t}{6} \left(v_i + 2v_{i+1/2}^* + 2v_{i+1/2}^{**} + v_{i+1}^{***} \right)$$

$$v_{i+1} = v_i - \frac{\Delta t}{6} \left(\sin \theta_i + 2 \sin \theta_{i+1/2}^* + 2 \sin \theta_{i+1/2}^{**} + \sin \theta_{i+1}^{***} \right)$$
 $\Delta t = 0$

Example: pendulum equation.

$$m\ddot{\theta} = -mg\sin\theta$$

A 2nd order discretization

$$\frac{\theta_{i-1} - 2\theta_i + \theta_{i+1}}{\Delta t^2} = -\sin \theta_i$$

Example: pendulum equation.

$$m\ddot{\theta} = -mg\sin\theta$$

A 2nd order discretization

$$\frac{\theta_{i-1} - 2\theta_i + \theta_{i+1}}{\Delta t^2} = -\sin \theta_i$$

Energy conservation in "asteroid belts"

Example: pendulum equation.

$$m\ddot{\theta} = -mg\sin\theta$$

Least action principle $\int \left(\frac{m}{2}\dot{\theta}^2 + mg\cos\theta\right) dt$

A 2nd order discretization

$$\frac{\theta_{i-1} - 2\theta_i + \theta_{i+1}}{\Delta t^2} = -\sin \theta_i$$

First introduce discrete action, then derive the least action paths

Energy conservation in "asteroid belts"

$$\Delta t = 0.9$$

Example: pendulum equation.

$$m\ddot{\theta} = -mg\sin\theta$$

Another 2nd order discretization

$$\frac{\theta_{i-1} - 2\theta_i + \theta_{i+1}}{\Delta t^2} = -\sin \theta_i$$

$$\frac{\theta_{i-1} - 2\theta_i + \theta_{i+1}}{\Delta t^2} = 4 \arg \left(1 + \frac{\Delta t^2}{4} e^{-\mathbf{i}\theta_i} \right)$$

Example: pendulum equation.

$$m\ddot{\theta} = -mg\sin\theta$$

Another 2nd order discretization

$$\frac{\theta_{i-1} - 2\theta_i + \theta_{i+1}}{\Delta t^2} = -\sin \theta_i$$

$$\frac{\theta_{i-1} - 2\theta_i + \theta_{i+1}}{\Delta t^2} = 4 \arg \left(1 + \frac{\Delta t^2}{4} e^{-\mathbf{i}\theta_i} \right)$$

general

no-structure

quantitative high-precision

$$\Delta t = 0.1$$

 $\Delta t = 0.9$

4th order Runge-Kutta

Variational integrator

Discrete integrable system rare

