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Course information

Physics Simulation
e |Instructor: Albert Chern

e TA: Chad Mckell

o Course website: nitps://cseweb.ucsd.edu/~alchern/teaching/cse291_sp24/

e \We use Piazza and Gradescope



Course information

Physics Simulation

e Goal: Mathematical principles behind simulation tasks
Hands-on experience with physics-based animations

e Applications: Computer animation, scientific computing
classical mechanics, theory abstraction

e Grade: HW0—4 (written and mini-project)

e Collaboration: Final submissions should be individual work, but
we encourage you to study the math and solve the problems
together!



Course information

Physics Simulation

e Prerequisites:
> Linear algebra, multivariable calculus, elementary physics

> Using one programming platform with visualization that is
capable of using/importing sparse matrix library

- e.g. graphics software: Houdini, Blender, Unity
- e.9. C++, Python, MATLAB, Javascript+WebGL

e What tools can you use:

> Build your own solver from lower level (you can use
built-in geometry processing functions) Don't use
a full-blown built-in simulation solver.



Svyllabus

Week

10

Final

Tuesday

4/2: Lecture prerecorded
Introduction

4/9: Dimensional Analysis

4/16: Calculus of variations

4/23: Constrained systems

4/30: Geodesic equation

5/7: Tensors

5/14: Elasticity

5/21: Lecture prerecorded Fluids

5/28: Fluids (numerics)
e HW3 due (miniproject)

6/4: Hamiltonian mechanics

6/11: No class
e HW4 due (miniproject)

Summer break

Thursday

4/4: Lecture prerecorded
Ordinary Differential Equations

4/11: Differentials and gradients
e HWO due (miniproject)

4/18: Least action principle
e HW1 due (written)

4/25: Rigid body motion

5/2: Incremental potential
e HW2 due (written part 2.1, 2.2)

5/9: Tensors
e HW2 due (miniproject part 2.3)

5/16: Elasticity

5/23: Lecture prerecorded Fluids

5/30: Fluids

6/6: No class (instructor unavailable)

6/13: No class




Simulation, Physics, Math

e Simulation, Physics, Math




Physics simulation

e |n computational physics, engineering, computer graphics,...

e (Generate computer-generated data that mimic that we would
observe in the physical world.

e Why?

> Make predictions, conduct virtual experiments
» Believable visual effects

e How?



Physics simulation

e How?

» Mathematical modeling
Turn physical phenomena into mathematical equations.
(What are the variables? What are the laws of physics)

» Analysis

Get a general idea of how the solution should behave.
(Is the problem well-posed?)

» Computation
Solve (approximate) solutions analytically or numerically.



Physics simulation

We will focus on general principles

e Dimensional analysis

e | east action principle

e |ncremental potential formulation

e Constitutive modeling in continuum mechanics

Systems we will cover

¢ Small mechanical systems

e Rigid body

e Constrained system (linkage, robotics, collision and contact)
e Elastic body

o Fluids



Physics simulation




Physics simulation

Youtube “Soft Body Tetris [01]” https://youtu.be/rm44SV8xUDo
by ImbaPixel



Nabizadeh, Wang, Ramamoorthi, C.
Covector Fluids
2022




Getting started: F=ma

e (Getting started: F = ma




PNysics based motion

Exercise 0.1 — 5pt. Using your favorite program to produce an animation of a simple
physical system. It could be a pendulum motion like demonstrated in the lecture, or other
system.

(a) Upload a video of your result.

(b) Upload a written document that briefly explains the system. (Include the equation
of motion, an explanation of what each variable in the equation means, and what the
time stepping algorithm looks like.)

(c) Upload the source file(s) (for example .zip).




PNysics based motion

Rough idea:

e Position of each object is governed by Newton’s law of motion

e Rate of change of position is called velocity

e Rate of change of velocity is called acceleration
e Model “force” as a function of position and velocity

e Newton’s law of motion: Mass x acceleration = force



Example

e Animate an object attached to a spring

e |dentify the moving position: x
e Associated velocity v




xample

e [orce

f(x,v) =—k(x —@ — UV

rest position
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f(x,v) = —KX —Xy) — UV

stiffness of spring




xample

e [orce

f(x,v) =—k(x—x,) —MV

friction




-xample

e [orce
f(Xa V) — _k(X — X()) — UV

e Equations of motion

g _ relationship between
dt —V position and velocity

d_V — lf( ) relationship between
dt o m X,V acceleration and force




Example

e [orce
f(x,v) =—k(x—xy) — uv

e Equations of motion

dx

— =V

dt

dv 1

= f

= (%, V)
k

= ——(x—Xp) — EV
m m




Example

e \We use the overhead dots to indicate time derivatives

dx(t) . d*x(t)
dt “(t) dt2

= %(t)



Example

e Equations of motion X=1V
, k
V=——(x—Xy)— Ll
m m
. k .
e Substitute v: X=——(Xx—Xy)— EX
m m

> Equation involving X and its derivatives

> This is called an ordinary differential
equation (ODE)




Types of problems

. . ) k u .
e Equations of motion X =——(x—X,)— —X
m m
> This is called an ordinary differential

equation (ODE)

¢ [nitial value problem (forward simulation)
V=0
> @Given initial conditions

l.e. the values of X|t=()) VltZO

X|,_
Extend them into function of time |t—0

x(t),v(t) t=0



Types of problems

. . ) k u .
e Equations of motion X =——(x—X,)— —X
m m
> This is called an ordinary differential

equation (ODE)

e Control problem

. | | . V|t=0
» (Given desired location to arrive at

some future time,

find minimal correction force X|t:o
to achieve the goal.

> Robotics, control systems, L
physics-based keyframe animations



Another example

e Pendulum




Solving ODE Numerically

e Solve ODEs numerically




ODE

e Derive the differential equation (ODE) from physical laws
e Solve the differential equation (ODE)

» Hard to solve it by hand most of the time
» Numerical method Is needed



ODE

e (Given any differential equation, for example,

X+ Xx +sin(x) =1

e Convert it into a 1st order system of ODEs (involving at most
first derivative)

> (Give each derivative a separate name (except for the

highest order derivative) v =X a=x
X =1V
> Then v=a

a—=1—av—sin(a)



ODE

e (Given any differential equation, for example,

X+ Xx +sin(x) =1
X =1V

» Then v=a

a—=1—av—sin(a)

X

» Let = |V ODE becomes y = f(Y)
a



Numerical ODE

e Generic ODE vy =1{(y)

e Discretize time into time-frames y(”) = y(nAt)

. (n+1)_ (n) (2)
(Forward) Euler method Y AN f(y(n)) . y
y
yYe ©
y ) &y 4 At - f(y ) >

0O At 2At



Numerical ODE

yt ) &yl 4 At - f(yW) e @
————>
e Advantages 0 At 2ac

> There is an explicit formula to plug in old state to get new state
> Fast and simple

e | imitations
» Not very accurate unless At is tiny

» Can be energy increasing (unphysical)




Numerical ODE

y(n 1) ~,

e Backward Euler method

)
_ f(y(n-l—l))

(n+1) (n
At

y

e | imitations
» Not very accurate unless At is tiny

> Have to solve for new state (implicit) instead of explicit update



Numerical ODE

e Backward Euler method
(n)

(n+1)

y Ty

—r— =)

e | imitations
» Not very accurate unless At is tiny

> Have to solve for new state (implicit) instead of explicit update
e Advantages

» Energy decreasing (dissipating), which looks physical
» Can take larger time steps At without instability
> (Can incorporate collision (just add constraint to the implicit solves)



Numerical ODE

e Euler method y(”“) R y(”) + At - f(y(n))

e Runge—Kutta method (RK4) (Accurate, stable, explicit)
k, = f(Y(n))
k, = fly"™ + %kﬂ
k; = fy"™ + %kz)
k, = f(y"™ + Atk;)

(n+1) _ y(n) 4 %(kl -+ 21{2 + 21(3 + k4)

(collision handling is not as elegant as backward Euler)

y



Numerical ODE

¢ |n most cases the RK4 method works very well

e Sometimes the underlying physical system has additional
structures (energy conservation, momentum conservation)

e Special algorithm (non-RK4) aims at preserving energy or
momentum

> Variational integrator
> Symplectic integrator

> Lie group integrator



Pendulum equation

Example: pendulum equation.

v Energy COnservatlon

g -maosd =cons Am
V' Integrable system \ /




Pendulum equation

Example: pendulum equation.
mo = —mg sin O

e High order differential equation solver

(4th order Runge—Kutta method) f\
Given (0;,v; = 6;)
At At ‘-

6/, = 0+ SV Vi, = v sind, “y
At At
*k : * *k . *
> 9i+1/z _ Qi | 9 Vi+1/z Vi+1/z — Vi 9 s 9i+1/2
d)kk kk dkk . %k
> 07 = 9i+Atvi+1/2 29 —vl-—At51119i+1/2

sinf. +2sin 0", +2sin .

At
Vit1 = Vi ( i+1/2 i+1/2

. kkk
+ sin Ql. +1)



Pendulum equation

Example: pendulum equation.
mo = —mg sin O

e High order differential equation solver
(4th order Runge—Kutta method)

Given (0;,v; = 6;)

At At v
> 9;:_1/2 — Qi i 2 Vl' ng+1/2 — Vi 2 S1I Qi
At At
Kk - | X Kk - X
> 91+1/2 Ql | 9 Vi+1/2 Vi+1/2 — Vi 2 Sin 91+1/2
KKK XKk XKk Kk
> 077 =0+ AtV v =v;— Atsin0, 1/,
9 _ 9 , At ok skkok
Output 0,,; = 0, - V; +2vl+1/2—l—2v 11 T Vin
Vii1 = V; sin 0; + 2 sin i T Sin v, TSINO



Pendulum equation

Example: pendulum equation.
mo = —mg sin O

e High order differential equation solver
(4th order Runge—Kutta method)

Given (0;,v; = 6;)
At At

- 07, Iy = O, 1 5 V; Vi, =V 5 sin 6,
At At .

> 0, = 0;- 5 Vie, Vi =V 5 O 0/,

© G SO ALy, Vi T AL, Structure not preserved
At

Output 6,47 = 6; 1 (vi +2v7,, + 2V, + v;‘f{)
At _
Viei = V; (sin 0. + 2sin 9;;1/2 + 2sin Qi"jfl/z + sin Qi’fik) At=0.9



Pendulum equation

Example: pendulum equation.
mo = —mg sin O

e A 2nd order discretization

01 —20;, + 6,4

Atz =—Sin9i

At = 0.1



Pendulum equation

Example: pendulum equation.
mo = —mg sin O

e A 2nd order discretization

01 —20;, + 6,4

Atz =—Sin9i

v Energy conservation
in “asteroid belts”




Pendulum equation

Example: pendulum equation.

Least action principle 0

mo = —mg sin O

f(%éz mg cos 0) dt
o A 2nd order discretization

01 —20;, + 6,4

Atz =—Sin9i

First introduce discrete action,
then derive the least action paths

v Energy conservation
in “asteroid belts”



Pendulum equation

Example: pendulum equation.
mo = —mg sin O

—————

fn\ |
N

e Another 2nd order discretization

0,1 —20; + 0,14 — 4arg| 1 At® o
At?

Vv Integrable system
At =0.1



Pendulum equation

Example: pendulum equation.
mo = —mg sin O

e Another 2nd order discretization

20
\ /

s

0,1 —20;, + 6,4
—— = 4arg| 1
At? g(

Vv Integrable system



Pendulum equation

general 4th order Runge—Kutta Variational integrator Discrete integrable system ragre
no-structure structure
oL reservin
quantitative P 9
high-precision .
qualitative

exact



