1.1 Dimensional Analysis

Exercise 1.1 — 10 pts. Consider a liquid in a cylindrical container that is rotating at a certain frequency Ω (e.g. counted as rounds per minute). At equilibrium, the liquid surface will have an elevation difference h between the center and the rim. We postulate that this height h is a function of the rotating frequency Ω, the radius R of the container, the liquid’s density ρ, and the gravitational acceleration g. Use dimensional analysis to answer the following questions.

(a) We already know that the aspect ratio $\Pi_1 = \frac{h}{R}$ is one of the dimensionless variables. Using the Buckingham Π Theorem, this aspect ratio is determined by some other dimensionless variables $\Pi_1 = f(\Pi_2, \ldots)$. How many and what are these other dimensionless variables? (Choose Π_2, \ldots so that they do not involve h by a suitable linear combination of the null vectors of the dimension matrix.)

(b) Does the aspect ratio $\Pi_1 = \frac{h}{R}$ depend on the density ρ?

(c) Perform the rotating bucket experiment on both Earth and Mars using the same bucket size R. To achieve the same aspect ratio ($\frac{h}{R}$) for the liquid surfaces on both planets, how much faster or slower should the rotation frequency (Ω) on Mars be compared to the rotation frequency on Earth? (Earth’s gravity is 9.806 m/s2, while Mars’ gravity is 3.721 m/s2.)
1.2 Vectors, Covectors, Differentials, and Adjoint

Exercise 1.2 — 20 pts. Consider a Cartesian–Euclidean xy-plane and an alternative coordinate system in the first quadrant defined by the following two coordinate functions:

$$
\theta_1 = \sqrt{xy}, \quad \theta_2 = \sqrt{\frac{x}{y}}. \tag{1}
$$

This can be expressed equivalently as:

$$
x = \theta_1 \theta_2, \quad y = \frac{\theta_1}{\theta_2} \tag{2}
$$

assuming that θ_1, θ_2, x, and y are all positive. The differentials of the coordinate functions yield two covector bases, (dx, dy) and $(d\theta_1, d\theta_2)$. A coordinate vector basis is defined as the dual basis of a covector basis. Specifically, (\vec{e}_x, \vec{e}_y) is the dual basis to (dx, dy), and $(\vec{e}_{\theta_1}, \vec{e}_{\theta_2})$ is the dual basis to $(d\theta_1, d\theta_2)$.

(a) Establish the transformation matrices for the change of covector bases. That is, what are the coefficients $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ in the following relationships?

$$
\begin{align*}
&dx = a_{11} d\theta_1 + a_{12} d\theta_2, & dy = a_{21} d\theta_1 + a_{22} d\theta_2 \tag{3} \\
&d\theta_1 = b_{11} dx + b_{12} dy, & d\theta_2 = b_{21} dx + b_{22} dy. \tag{4}
\end{align*}
$$

More concisely,

$$
\begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} d\theta_1 \\ d\theta_2 \end{bmatrix}, \quad \begin{bmatrix} d\theta_1 \\ d\theta_2 \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}. \tag{5}
$$
Please express both \(a_{ij} \)’s and \(b_{ij} \)’s in terms of \(\theta_1 \) and \(\theta_2 \).

Hint Matrix inversion.

(b) What are the coefficients \(\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \) and \(\mathbf{G} = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \) as expressions of \(\theta_1, \theta_2 \) that relate the coordinate vectors?

\[
\begin{bmatrix} \vec{e}_{\theta_1} & \vec{e}_{\theta_2} \end{bmatrix} = \begin{bmatrix} \vec{e}_x & \vec{e}_y \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}, \quad \begin{bmatrix} \vec{e}_{\theta_1} & \vec{e}_{\theta_2} \end{bmatrix} = \begin{bmatrix} \vec{e}_x & \vec{e}_y \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}.
\]

(6)

Hint Use the results from (a).

(c) Consider the function \(U = x^2 + y^2 = \theta_1^2 \theta_2^2 + \theta_1^2 \). Given that \(dU = 2xdx + 2ydy = 2\theta_1 \theta_2 dx + 2\theta_1 \theta_2 dy \) (since \(\frac{\partial U}{\partial x} = 2x \) and \(\frac{\partial U}{\partial y} = 2y \)), compute the partial derivatives \(\frac{\partial U}{\partial \theta_1} \) and \(\frac{\partial U}{\partial \theta_2} \) of \(U \) with respect to the \((\theta_1, \theta_2) \) coordinate system.

Hint By definition \(dU = \frac{\partial U}{\partial \theta_1} d\theta_1 + \frac{\partial U}{\partial \theta_2} d\theta_2 \). Apply one of the transformation matrices from (a), (b).

(d) Consider again \(U = x^2 + y^2 = \theta_1^2 \theta_2^2 + \theta_1^2 \). What is the gradient vector \(\vec{v} = \nabla U = -\vec{e}_{\theta_1} + \vec{e}_{\theta_2} \) written in the \((\theta_1, \theta_2) \) coordinate system? Note that \(\vec{e}_x, \vec{e}_y \) are orthonormal, so \(\vec{v} = \nabla U = 2x \vec{e}_x + 2y \vec{e}_y \).

\(\blacksquare \)

Exercise 1.3 — 10 pts. Let \(U, V \) be two vector spaces of the same dimension. The space \(\text{Hom}(U, V) \) of all linear maps, \(\text{Hom}(U, V) = \{ \mathbf{X} : U \overset{\text{linear}}{\rightarrow} V \} \), from \(U \) to \(V \) forms a vector space itself. The dual space \(\text{Hom}(U, V)^* \) is indeed \(\text{Hom}(U, V)^* = \text{Hom}(V, U) = \{ \mathbf{Y} : V \overset{\text{linear}}{\rightarrow} U \} \), where the dual pairing \(\langle \mathbf{Y} | \mathbf{X} \rangle \) for \(\mathbf{Y} \in \text{Hom}(V, U) \) and \(\mathbf{X} \in \text{Hom}(U, V) \) is given by

\[
\langle \mathbf{Y} | \mathbf{X} \rangle = \text{tr}(\mathbf{Y} \mathbf{X}) = \text{tr}(\mathbf{X} \mathbf{Y}).
\]

Let \(\mathbf{B} \in \text{Hom}(V, V^*) \) be a given symmetric bilinear form, with \(\mathbf{B}^* = \mathbf{B} \). Consider the following (nonlinear) function:

\[
f : \text{Hom}(U, V) \rightarrow \text{Hom}(U, U^*), \quad f(\mathbf{X}) := \mathbf{X}^* \mathbf{B} \mathbf{X}.
\]

(8)

(a) What is the differential \(df|_\mathbf{X} : \text{Hom}(U, V) \overset{\text{linear}}{\rightarrow} \text{Hom}(U, U^*) \) of \(f \) at \(\mathbf{X} \)? That is, for a given perturbation direction \(\mathbf{E} \in \text{Hom}(U, V) \), compute \(df|_\mathbf{X}[\mathbf{E}] = \frac{d}{d\epsilon} f(\mathbf{X} + \epsilon \mathbf{E}) \bigg|_{\epsilon=0} \).

(b) What is the adjoint \((df|_\mathbf{X})^* : \text{Hom}(U^*, U) \overset{\text{linear}}{\rightarrow} \text{Hom}(V, U) \) of the linear map \(df|_\mathbf{X} \) from part (a)? That is, for a given \(\mathbf{S} \in \text{Hom}(U^*, U) \), compute \((df|_\mathbf{X})^*[\mathbf{S}] \), which should satisfy \(\langle (df|_\mathbf{X})^*[\mathbf{S}] | \mathbf{E} \rangle = \langle \mathbf{S} | df|_\mathbf{X}[\mathbf{E}] \rangle \) for all \(\mathbf{E} \in \text{Hom}(U, V) \).

Hint The trace operator satisfies linearity \(\text{tr}(\mathbf{A}_1 + \mathbf{A}_2) = \text{tr}(\mathbf{A}_1) + \text{tr}(\mathbf{A}_2) \), cyclic permutability \(\text{tr}(\mathbf{A}_1 \mathbf{A}_2 \cdots \mathbf{A}_n) = \text{tr}(\mathbf{A}_2 \cdots \mathbf{A}_n \mathbf{A}_1) \), and \(\text{tr}(\mathbf{A}) = \text{tr}(\mathbf{A}^*) \).

\(\blacksquare \)