CSE 167 (FA 2022) Exercise 8 — Due 11/16/2022

Exercise 8.1 - $\mathbf{2}$ pts. In ray tracing, suppose we have a camera

- located at eye position $=\left[\begin{array}{c}-5 \\ 1 \\ 0\end{array}\right]$
- looking at target $=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
- with up vector $=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
- with field of view $w_{y}=90^{\circ}$
- and an image resolution of width $=135$ pixels and height $=90$ pixels.

All positions are relative to a common world coordinate. At pixel $(i, j)=(82,22)$, what is the ray $\left(\mathbf{p}_{0}, \mathbf{d}\right)$ shooting through the center of the pixel? (Here, $\mathbf{p}_{0} \in \mathbb{R}^{3}$ is the source point of the ray, and $\mathbf{d} \in \mathbb{R}^{3}$ is the unit vector for the direction of the ray; both in the world coordinate.) Hint \mathbf{p}_{0} is trivial. For \mathbf{d}, see slides on "RayTracing," page 20 and page 26.

Exercise 8.2 - $\mathbf{2}$ pts. Suppose we have a triangle with its 3 vertex positions given by

$$
\mathbf{p}_{1}=\left[\begin{array}{l}
4 \tag{1}\\
0 \\
0
\end{array}\right], \quad \mathbf{p}_{2}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right], \quad \mathbf{p}_{3}=\left[\begin{array}{l}
0 \\
0 \\
8
\end{array}\right] .
$$

Now, suppose we have a ray sourced at $\mathbf{p}_{0}=\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right]$ with direction $\mathbf{d}=\left[\begin{array}{c}2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right]$. The ray will intersect with the triangle. What is the position $\mathbf{q} \in \mathbb{R}^{3}$ of this ray-triangle intersection? What is the distance t traveled by the ray (distance between the source and the intersection)? What are the barycentric coordinates $\lambda_{1}, \lambda_{2}, \lambda_{3}$ for \mathbf{q} with respect to the triangle $\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}$?
Hint Follow page 36 of the slides on "RayTracing." You may use symbolic calculator like Wolfram Alpha for solving equations.

