CSE 167 (FA 2022) Exercise 2 — Due 10/5/2022

You've probably seen it when you first learned matrix algebra. The inversion of 2×2 matrices has a simple formula: swap the diagonals, add a minus sign on the off diagonals, and divide the result by the determinant.

$$
\left[\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Exercise 2.1-3 pts. Let V be a 2 -dimensional vector space. Let $\vec{a}_{1}, \vec{a}_{2} \in V$ be a pair of linearly independent vectors (a basis). Let $\vec{b}_{1}, \vec{b}_{2} \in V$ be another basis satisfying the relation:

$$
\begin{equation*}
\vec{b}_{1}=-\vec{a}_{1}+2 \vec{a}_{2}, \quad \vec{b}_{2}=3 \vec{a}_{1}-5 \vec{a}_{2} . \tag{2}
\end{equation*}
$$

Now, let $\vec{v} \in V$ be a vector with coefficients $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ under the basis $\left(\vec{a}_{1}, \vec{a}_{2}\right)$; that is,

$$
\vec{v}=\left[\begin{array}{ll}
\vec{a}_{1} & \vec{a}_{2}
\end{array}\right]\left[\begin{array}{c}
1 \tag{3}\\
-1
\end{array}\right]=\vec{a}_{1}-\vec{a}_{2} .
$$

What is the coefficients of \vec{v} under the basis $\left(\vec{b}_{1}, \vec{b}_{2}\right)$? That is, what is x, y in

$$
\vec{v}=\left[\begin{array}{ll}
\vec{b}_{1} & \vec{b}_{2}
\end{array}\right]\left[\begin{array}{l}
x \tag{4}\\
y
\end{array}\right]=x \vec{b}_{1}+y \vec{b}_{2} ?
$$

Exercise 2.2 - $1 \mathbf{p t}$. In the lecture we mentioned that matrix multiplication is not commutative. Given an example of \mathbf{A}, \mathbf{B}, both square matrices of the same size, so that $\mathbf{A B} \neq \mathbf{B} \mathbf{A}$.

