CSE 167 (FA22) Computer Graphics: Colors

Albert Chern

Color Science

- Color science
- Inner product between functions
- Physical color
- Perceived color
- Color space and gamut

Color

- Phenomenological description
- What causes color?
- How can we measure color?
- How can we describe color?
- How can we control color?

Discovering color (pigment)

- Artists studied color for millennia
- They knew that mixing 3 primary color creates a full range of hues

Discovering color (light)

- Isaac Newton experimented with prism
- White light contains all the "rainbow color"
- Colored light combines into white
- C. Huygens (1678), T. Young (1800): light are waves with wavelength around 380–760nm
- Young, Helmholtz, Maxwell: 3 primary color of light

Additive and subtractive color

Additive Subtractive

Descriptions of color

RGB

Controls the light bulbs in each pixel

CMYK

Controls the ink in a printer

Descriptions of color

Hue, Saturation, Lightness/Brightness/Value (HSL, HSB, HSV)

- More intuitive
- Useful in design

Real Story

- The above description of color is based on what we perceive.
- What is the objective and mathematical description of color?
- We need to distinguish physical color & perceived color.

L² pairing between functions

- Color science
- Inner product between functions
- Physical color
- Perceived color
- Color space and gamut

Recall. The inner product (dot product) between two arrays

$$f = (f_0, f_1, \dots, f_{n-1}) \in \mathbb{R}^n$$
$$g = (g_0, g_1, \dots, g_{n-1}) \in \mathbb{R}^n$$

is the sum of elementwise product

$$\sum_{i=0}^{n-1} f_i g_i$$

Definition. The L^2 pairing between two functions

$$f: [a,b] \rightarrow \mathbb{R}$$

$$g:[a,b] \rightarrow \mathbb{R}$$

on an interval [a, b] is the integral

$$\int_{a}^{b} f(x)g(x)dx$$

- You can think of it as the inner product between functions.
- Here, we will view f, g playing different roles.

$$\int_{a}^{b} f(x)g(x)dx$$

$$\int_{a}^{b} sensor signal$$

- Here, we will view f, g playing different roles.
 - $\rightarrow f(x)$ is assumed to be a continuous function.
 - \triangleright g(x) can be a **distribution** (derivative of a possibly discontinuous function).

- \triangleright g(x) can be a **distribution** (derivative of a possibly discontinuous function).
 - Continuous functions are distribution
 - Integrable functions are distribution
 - Generalized functions such as the δ -functions are distribution

Definition. The δ -function $\delta_c(x)$ concentrated at $c \in [a, b]$ is the derivative of the step function jumping at c:

$$\delta_c(x) = \frac{d}{dx} H_c(x)$$

$$H_c(x) = \begin{cases} 0, & x < c \\ 1, & x \ge c \end{cases}$$

Definition. The δ -function $\delta_c(x)$ concentrated at $c \in [a,b]$ is the derivative of the step function jumping at c:

$$\delta_c(x) = \frac{d}{dx} H_c(x)$$

$$H_c(x) = \begin{cases} 0, & x < c \\ 1, & x \ge c \end{cases}$$

- Infinite impulse: $\delta_c(x) = \begin{cases} \infty, & x = c \\ 0, & x \neq c \end{cases}$
- ► Translation $\delta_c(x) = \delta_0(x c)$
- $L^2 pairing \int_c^b f(x) \delta_c(x) dx = f(c)$

Physical color

- Color science
- Inner product between functions
- Physical color
- Perceived color
- Color space and gamut

Definition. A **colored light** is a nonnegative distribution over the spectral interval [380nm, 750nm] representing the radiance power for each wavelength.

- This is called the spectral power distribution.
- Single-spectral light is a δ -function.

Definition. A **colored light** is a nonnegative distribution over the spectral interval [380nm, 750nm] representing the radiance power for each wavelength.

- This is called the spectral power distribution.
- Single-spectral light is a δ -function.
- Blackbody radiation

Definition. A **colored light** is a nonnegative distribution over the spectral interval [380nm, 750nm] representing the radiance power for each wavelength.

- This is called the spectral power distribution.
- Single-spectral light is a δ -function.
- Blackbody radiation
- Rayleigh scattering

Definition. Two colored lights $P_1(\lambda)$, $P_2(\lambda)$ have the same chromatic color if they differ only by a scale

$$P_1(\lambda) = \alpha P_2(\lambda)$$

The chromoticity lives in a projective space (infinite dimensional).

Perceived color

- Color science
- Inner product between functions
- Physical color
- Perceived color
- Color space and gamut

Vision

- Cone and rod photoreceptors in the retina turn light into neural signals.
- Rod is 100 times more sensitive to the cones, but slow response time.
 Rod is responsible for night vision (scotopic vision).
- Under sufficient illumination we use cone cells (photopic vision).
- It can take 10–30 minutes to switch between scotopic/photopic vision.

Color vision

- Under sufficient illumination we use cone cells (photopic vision).
- 90% of you have 3 types of cone cells with different sensitivity depending on the spectrum (long, middle, short).
- The sensitivity are continuous functions of the wavelength:

$$\overline{\ell}(\lambda)$$
 $\overline{m}(\lambda)$ $\overline{s}(\lambda)$

Color vision

 The sensitivity are continuous functions of the wavelength:

$$\overline{\ell}(\lambda)$$
 $\overline{m}(\lambda)$ $\overline{s}(\lambda)$

• When you watch a colored light $P(\lambda)$, the strength of the neural signals from the 3 cones are the L^2 -pairings:

$$L = \int_{380}^{750} \overline{\ell}(\lambda) P(\lambda) d\lambda \qquad M = \int_{380}^{750} \overline{m}(\lambda) P(\lambda) d\lambda \qquad S = \int_{380}^{750} \overline{s}(\lambda) P(\lambda) d\lambda$$

Color vision

$$L = \int_{380}^{750} \overline{\ell}(\lambda) P(\lambda) d\lambda \qquad M = \int_{380}^{750} \overline{m}(\lambda) P(\lambda) d\lambda \qquad S = \int_{380}^{750} \overline{s}(\lambda) P(\lambda) d\lambda$$

Definition. Two colored lights $P_1(\lambda)$, $P_2(\lambda)$ appear the same if the LMS values match

$$(L_1, M_1, S_1) = (L_2, M_2, S_2)$$

Definition. Two perceived colors $(L_1, M_1, S_1), (L_2, M_2, S_2)$ have the same chromatic color if $L_1: M_1: S_1=L_2: M_2: S_2$

- The perceived chromaticities live on a 2-dimensional projective space.
- The colored light may be a combination of 3 monotone lights (RGB screen), but still appear the same as a natural colored light.

Color Space and Gamut

- Color science
- Inner product between functions
- Physical color
- Perceived color
- Color space and gamut

LMS color space

- Not all points in the 3D LMS space correspond to a color.
 - L,M,S are always nonnegative.
 - The source light is always a nonnegative distribution.
 - There is no light that would stimulate only the M cone cell but not the L cone cell.
 - All colored lights are mapped into the convex hull of the cone spanned by the spectral locus.

LMS color space

Visualize the chromatic color on a 2D slice

LIMS color space

Visualize the chromatic color on a 2D slice

- Every artificial light that combines 3 lights must lie in the interior of a triangle.
- It is impossible to reproduce all colors by using 3 light bulbs.

LIMS color space

Visualize the chromatic color on a 2D slice

- Every artificial light that combines 3 lights must lie in the interior of a triangle.
- It is impossible to reproduce all colors by using 3 light bulbs.
- ► The standard RGB

Grassmann Law

Grassmann Law

Given any triangle as the basis, say RGB, there exists functions $\overline{r}(\lambda)$, $\overline{g}(\lambda)$, $\overline{b}(\lambda)$ such that any physical light $P(\lambda)$ appear to have the same color as the point

$$rR + gG + bB$$

with the coefficients computed by the pairing

$$r = \int \overline{r}(\lambda)P(\lambda)d\lambda \qquad g = \int \overline{g}(\lambda)P(\lambda)d\lambda$$
$$b = \int \overline{b}(\lambda)P(\lambda)d\lambda$$

Grassmann Law

$$rR + gG + bB$$

$$r = \int \overline{r}(\lambda)P(\lambda)d\lambda \qquad g = \int \overline{g}(\lambda)P(\lambda)d\lambda$$
$$b = \int \overline{b}(\lambda)P(\lambda)d\lambda$$

- To determine $\overline{r}, \overline{g}, \overline{b}$, take RGB as 3 known light bulbs, and take $P(\lambda) = \delta_{\lambda_0}(\lambda)$
- Tune the coefficients r, g, b in rR + gG + bB so that the synthetic light looks the same as $P(\lambda) = \delta_{\lambda_0}(\lambda)$
- Then we obtain $\overline{r}(\lambda_0) = r$, $\overline{g}(\lambda_0) = g$, $\overline{b}(\lambda_0) = b$.
- We call $\overline{r}, \overline{g}, \overline{b}$ the matching function.

Color matching experiment

Color matching experiment

CIE 1931 XYZ color space

- In 1931, CIE (International Commission on Illumination) proposed another basis based on 3 imaginary primaries X, Y, Z.
 - Mixture of XYZ gives all color
 - The corresponding matching functions $\overline{x}, \overline{y}, \overline{z}$ are linear transforms of $\overline{r}, \overline{g}, \overline{b}$
 - ► \overline{x} , \overline{y} , \overline{z} are nonnegative (equivalent to the first item above)
 - $ightharpoonup \overline{x}, \overline{y}, \overline{z}$ have equal areas under their curves.
- ► The y-coefficient $\int \overline{y}(\lambda)P(\lambda)d\lambda$ is defined to be the **luminance**.

CIE 1931 XYZ color space

Color gamut

- Color gamut: The range of chromaticities that can be produced by mixing primaries.
- Real device gamut are limited, can't produce all chromaticities.
- Gamut mapping: Methods to approximate out-of-gamut chromaticities
 - Typically involves desaturating source chromaticities until they fall within the gamut boundaries.

sRGB Specification

Primary	x	У		
Red	0.6400	0.3300		
Green	0.3000	0.6000		
Blue	0.1500	0.0600		
White Point	0.3127	0.3290		

Color gamut

ProPhoto RGB 520 540 Adobe RGB 1998 560 Colormatch RGB SRGB SWOP CMYK 580 600 D65 white point 620 0.2 0.3 0.4 0.6

Various hardwares

Various specs

Color gamut

Wide gamut and Hide dynamical range

Conversion between different bases

- XYZ, RGB are 3D vectors with respect to different bases
- Relation between them is recorded by a 3x3 matrix

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.4360747 & 0.3850649 & 0.1430804 \\ 0.2225045 & 0.7168786 & 0.0606169 \\ 0.0139322 & 0.0971045 & 0.7141733 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 3.1338561 & -1.6168667 & -0.4906146 \\ -0.9787684 & 1.9161415 & 0.0334540 \\ 0.0719453 & -0.2289914 & 1.4052427 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Conversion between different bases

 Different versions of RGB's are given in the form of different matrix relating to XYZ

RGB Working Space	Reference White	RGB to XYZ [M]			XYZ to RGB [M] ⁻¹	
Adobe RGB (1998)	D50	0.6097559 0.3111242 0.0194811	0.2052401 0.6256560 0.0608902	0.1492240 0.0632197 0.7448387	1.9624274 -0.6105343 -0.9787684 1.9161415 0.0286869 -0.1406752	-0.3413404 0.0334540 1.3487655
AppleRGB	D50	0.4755678 0.2551812 0.0184697	0.3396722 0.6725693 0.1133771	0.1489800 0.0722496 0.6933632	2.8510695 -1.3605261 -1.0927680 2.0348871 0.1027403 -0.2964984	-0.4708281 0.0227598 1.4510659
Bruce RGB	D50	0.4941816 0.2521531 0.0157886	0.3204834 0.6844869 0.0629304	0.1495550 0.0633600 0.7464909	2.6502856 -1.2014485 -0.9787684 1.9161415 0.0264570 -0.1361227	-0.4289936 0.0334540 1.3458542
CIE RGB	D50	0.4868870 0.1746583 -0.0012563	0.3062984 0.8247541 0.0169832	0.1710347 0.0005877 0.8094831	2.3638081 -0.8676030 -0.5005940 1.3962369 0.0141712 -0.0306400	0.1047562
NTSC RGB	D50	0.6343706 0.3109496 -0.0011817	0.1852204 0.5915984 0.0555518	0.1446290 0.0974520 0.7708399	1.8464881 -0.5521299 -0.9826630 2.0044755 0.0736477 -0.1453020	-0.0690396

Device calibration

Next time

Transparency

