CSE 167 (FA22)
Computer Graphics:
Ray Tracing

Albert Chern

UC San Diego

OOOOOOOOOOOOOOOOOOOOOOOOO

Overview

e (Goal: photorealism

e Ray tracing framework

Image
Camera / 8 Light Source

LA View Ray Shadow Ray

e (Global illumination

Scene Object

@

e Rendering equation
(next Monday 11/14
pre-recorded lecture)

Rendering pnotorealistic Images

o Effects for realistic images
> (Soft) shadows

> Reflections (mirror and glossy)
» Transparent (water, glass)
> |nter-reflections (color bleeding)

» Realistic materials

e Difficult in OpenGL pipeline
e Easy in raytracing framework

History of ray casting/tracing

o Appel 1968 e Whitted 1980 e | ots of work on
recursive ray tracing

e Real time ray tracing

> 2009 Nvidia OptiX API
> 2020 PlayStation5, Xbox series X and S

Ray Tracing Framework

e Ray tracing framework

Rasterization v.s. Ray tracing

Rasterization Ray tracing (a.k.a. ray casting)
for each geometry in scene for each pixel in screen
for each pixel in screen for each geometry In scene
output the fragment if the output the intersection if the
triangle occupies that triangle occupies that
pixel. pixel.
end for end for
end for end for

has the information of
the geometry (position, normal)
and the in-coming ray (ray direction or pixel)

Rasterization v.s. Ray tracing

Rasterization Ray tracing (a.k.a. ray casting)
for each geometry in scene for each pixel in screen
for each pixel in screen for each geometry in scene
output the fragment If the output the intersection If the
triangle occupies that triangle occupies that
pixel. pixel.
end for end for
end for end for

e These two approaches give the same images as long as the
shading models are the same

e But it iIs much easier for ray tracer to include realistic shading model

Ray tracing framework

e Does not rely on OpenGL (OpenGL is a rasterizer).

e We will prepare our own “buffers” as C++ arrays/containers.
e We will run our own loop in C++ to search for ray-geo intersection.

e Most of the HW3 framework (scene building, camera control)

IS re-usable.
(replace setting OpenGL buffers, skip shaders,...)

e OpenGL could be used to visualize final result by setting our
computed pixel color in a texture and show it on a square.
GLUT is still useful for keyboard controls.

Ray tracing framework

e Essential objects
> Scene (container for geometries, lights, etc)

> |Image (container for pixel colors, info of width and height)
» Camera (position, orientation, field of view angle, etc)
> Ray (position and direction)

> |ntersection (geometry info and ray info)

void Raytrace(Camera cam, Scene scene, Image &image){
int w = 1mage.width; int h = image.height;
for (int J=0; j<h; J++){
for (int 1=0; 1<w; 1++)({
Ray ray = RayThruPixel(cam, 1, Jj, w, h);
Intersection hit = Intersect(ray, scene);
image.pixel[1][]] FindColor(hit);
}
}
}

Ray tracing framework

void Raytrace(Camera cam, Scene scene, Image &image){
int w = image.width; int h = image.height;
for (int j=0; j<h; J++){
for (int i=0; i<w; i++){
Ray ray = RayThruPixel(cam, 1, J, w, h);
Intersection hit = Intersect(ray, scene);
image.pixel[1][]J] = FindColor(hit);
}
}

} 1
e RayThruPixel(cam, i, |, w, h) generates
a ray originated from the camera position,

through the center of the (i,j) pixel into the
world

Ray tracing framework

void Raytrace(Camera cam, Scene scene, Image &image) {
int w = image.width; int h = image.height;
for (int 3=0; j<h; J++){
for (int 1=0; 1<w; 1++){
Ray ray = RayThruPixel(cam, 1, j, w, h);
Intersection hit = Intersect(ray, scene);
image.pixel[1][]J] = FindColor(hit);
}
}
}

¢ Intersect(ray, scene) searches over all
all geometries Iin the scene and returns
the closest hit

Ray tracing framework

void Raytrace(Camera cam, Scene scene, Image &image) {
int w = image.width; int h = image.height;
for (int 3=0; j<h; J++){
for (int 1=0; 1<w; 1++){
Ray ray = RayThruPixel(cam, 1, Jj, w, h);
Intersection hit = Intersect(ray, scene);
image.pixel[1][]J] = FindColor(hit);
}

- Q@ ¢

e FindColor(hit) shade the light color
seen by the in-coming ray

> For example,
Ambient + Lambertian-diffuse
+ Blinn—Phong formula

Ray tracing framework

e FindColor(hit) shade the light color
seen by the in-coming ray

> For example, mage .
Ambient + Lambertian-diffuse “@mera / Light Source
+ Blinn—Phong formula @ el s

» Add the contribution of light
only when the ray connecting
the hit and the light source does
not have any intersection with the

scene. (Shadows!)

» To avoid self-shadowing, the secondary ray is
shot off slightly above the hitting point.

” Scene Object

Ray tracing framework

e FindColor(hit) shade the light color
seen by the in-coming ray

> For example,
Ambient + Lambertian-diffuse
+ Blinn—Phong formula

» Add the contribution of light
only when the ray connecting
the hit and the light source does
not have any intersection with the
scene. (Shadows!)

e
%

> |nstead of ambient+diffuse+specular,

do recursive ray tracing.

Example: Adding mirror reflection

Color FindColor(hit X
e (Generate secondary rays to all lights
> color = Visible? ShadingModel : O;
e ray2 = Generate mirror-reflected ray

> hit2 = Intersect(ray2, scene);
> color += specular * FindColor(hit2);

e return color;

;

Implementation Details

e Ray through pixel
e Ray-geometry intersection

e Organizing image and scene

The essential functions
e Ray ray = RayThruPixel(cam, i, |, width, height)

e |ntersection hit = Intersect(ray, scene)

Ray through pixel

e Ray through pixel

Ray

e Aray is a described by a point Py € R” and a direction d € R>.

e Mathematically, the ray is a continuous set of points parametrized as

Camera

e A camera has position and orientation described by
eyeeR° ueR’ veR’ weR’

e Recall that the camera matrix is
[T .

u v w eye

[N
0 0 0 1

e Given eye € R° targetc R° up € R’

C —

eye — target up X w
W= ——— U= ——— V=WX1u
leye — target lup x w|

Camera

e Other relevant parameters:

width
height

aspectratio a =

field of view (angle) f ovy

Ray through pixel

e Givencamera eye€ R’ ueR’ veR’ weR’

q — width f
~ height ovYy

e Given pixel (i,j)
i €10,...,width— 1}
j€{0,...,height—1}

e Qur goal is to work out the ray
through the center of the pixel

Ray through pixel

e |f screen ranges from (0,0) to (1,1) from top-left to bottom right
(screen space coordinate)

e The corner of pixel (i, j)

(i Jj) ke
Ixel (0,0
width ™ height (e

screen)
e The center of pixel (i, j)

i+5 j+5
width’ height

(screen)

Ray through pixel

e |f screen ranges from (-1,-1) to (1,1) from bottom-left to top right
(normalized device coordinate NDC)

e The center of pixel (i, j)

: 1 - 1
0. 12 115 172
width height -
Define i + %
a=2 : — 1
width 1
1
B=1-—2 /T

| height (-1,-1)

Ray through pixel

* Givencamera eye€ R’ ueR’ veR’ weR’ a={

e Given pixel (i,7]) fovy

(a .- tan(fOTVy), P tan(f%y), —1)

width

e |n camera coordinate,
» Source of ray = (0,0,0) "

> Ray passes through /

(a-a-tan(fo%),ﬁ -tan(fOTvy),—l) -‘/ 2

. . Q[‘QJI[/‘%,

e |n world, the ray is given by)
Po = €Y€
d = NORMALIZE (a N tan(ﬁ% u+f - tan(f% WV—W

Ray through pixel

* Givencamera eye€ R’ ueR’ veR’ weR’ a={

e Given pixel (i,7]) fovy

width

e |n world coordinate,

Po = €YC€

d = NORMALIZE (a N tan(ﬁ% u+pf - tan(foTvy)V—W)
: 1 - 1
i + 3 + =
T2y g=1-2. 2
width height

a=2

The essential functions

e Ray ray = RayThruPixel(cam, i, |, width, height)

e |ntersection hit = Intersect(ray, scene)

Intersection

e Ray-geometry intersection

INnformation in intersection

e Aray-scene intersection contains the following information

> Position of the intersection

» Surface normal n

> Direction to the in-coming ray v
> Pointers to material, or object etc
» Distance to the source of ray

Il

Ray-object intersection

* The core helper function is
> |ntersection Intersect(Ray ray, Object element);

e Elements can be
> [riangle
> Sphere
> Transformations of sphere (ellipsoids)

> ... any other element which you
know how to compute intersection

Ray-scene Intersection

e Once we have ray-object intersection
e Ray-scene intersection follows the pseudocode

Intersection Intersect(Ray ray, Scene scene){
Distance mindist = INFINITY;
Intersection hit;
foreach (object in scene){
Intersection hit temp = Intersect(ray, object);
if (hit temp.dist< mindist) {
mindist = hit temp.dist;
hit = hit temp;
}
}

return hit;

Ray-object intersection

e \We will focus on

> Ray-triangle intersection
> Ray-sphere intersection

> Ray-ellipsoid intersection

Ray-object intersection

e \We will focus on

> Ray-triangle intersection

Ray-triangle intersection

e Givenray (Po,d)
e Given triangle P P> Ps

e Any point along the ray takes
the form

q=p,+td

e Any point on the plane spanned by
the triangle takes the form

q=AP; + APy + A3Ps
Al +;\,2 +2.3 —]_

Ray-triangle intersection
q=p,+td

q= AP+ APy + A3P3
;\.1 +Az +A’3 —]_

APy + APy + Asps — td = py
;\.1 _I_A’Z +A3 — 1

Ray-triangle intersection

A1P1 + AsPa + Asp3 —td = pg D
A’l —+ AZ —+ ;\.3 — 1 PO
Solve .
[R (R B I 17
P1 Py p3—d Ay _ | Po D
[R R N I | °
1 1 1 O t 1

if all A{,A5,A3and t are = 0 then we have an intersection.

Ps3

Ray-triangle intersection

e |[f we have an intersection,
use the barycentric coordinate
(what we just solved)

A, Ao, Ag

to interpolate position and vertex
attributes, such as normals

q=A1P1 + A3P5 + A3Ps3
n = normalize(A;n, + A,n, + A3n,)

Po

e The variable t we solved is exactly the distance
between the ray source and the intersection.

Ray-object intersection

> Ray-sphere intersection

Ray-sphere intersection

e Sphere representation
> Center ¢ € R’
> Radius r > 0

e Apoint g € R’ lies on the sphere if and only if

(@q—c)-(q—c)=1r7

e Ray representation
» Source Py € R® and direction d € R”

e Any point along the ray takes
the form q =p, + td

Ray-sphere intersection

(q—c¢)-(q—c)=r"
q=p,+td

e Substitution
(pog+td—c)-(py+td—c)=r-

e Expand
d|*t*+2d- (p,—c)t + |py—c|*—r*=0

e The ray direction is always normalized |d| =1

t“+2d-(py—c)t +|py—c|*—r*=0

Ray-sphere intersection

2+ 2d-(py—c)t +|py—cl*—r*=0

e Quadratic formula
t=—d-(pp—c)x+/(d-(po—c))*—Ipy—c|*+r1?

e If the expression in 4/- is negative

» NO Intersection Q

e If the expressionin 4/- is zero
> tangent @

Ray-sphere intersection

t=—d-(pp—c)x+/(d-(pp—c))*—I|py—c|*+r1?

e If the expression in 4/- is negative

» NO Intersection Q

e If the expressionin 4/- is zero

> tangent

e If the expression in 4/- is positive
> two Intersections

> Need to take the smallest positive t

Ray-sphere intersection

e Once we find t (which is distance to the source)
e Positionis givenby q =p,+ td
e Normal is given by normalize(q— c)

Ray-object intersection

e \We will focus on

> Ray-ellipsoid intersection

Transformed object

e Ellipsoid is a transformed sphere

> We only need to talk about the
transformation rule for ray-object
iIntersection under change of coordinate

Transformed object

e Suppose the model coordinate and the world coordinate
are related by a 4x4 model matrix M

e Transform the ray to the model Po d
coordinate, intersect

e [ransform the intersection

information back to world M/'

- World coordinate

d

~JS

Po

Model coordinate

Transformed object

e Given aray (Pg, d) in the world coordinate

e [he ray in the model coordinate is computed by

~J ~S

_ A1
Plo — ML Plo c|l = A (li
1 1 : - -
d < normalize(d)
%
. A *
where A = mat3(M), thatis M = .

Transformed object

e Perform intersect(ray, obj) in the model coordinate

> Obtain intersection position q and normal n

e Transform the intersection position and normal back to the world

(|l — M (ll Nn| = A_T n
1 1 .
n < normalize(n)
e Compute the rest of the intersection info in the world coordinate

t =|q—pol

Tips for handling Image and
Scene

e QOrganizing image and scene

|mage

void Raytrace(Camera cam, Scene scene, Image &image) {
int w = image.width; int h = \image.height;
for (int 3=0; j<h; J++){
for (int 1=0; 1<w; 1++){

Ray ray = RayThruPixel(cam, 1, Jj, w, h);
Intersection—-hit = Intersect(ray, scene);
image.pixel[i][j])= FindColor(hit);

\ } [J*w + 1] Iif using linear array instead of multi-array

}

e Image is a list of pixels class Image{
public:

int width, height;
std: :vector<glm::vec3> pixel;
void 1nitialize();

}
e (Calling Raytrace will assign pixel values to the image

e [0 show an image on screen, you can store it as a texture and
transfer it to the frame bulffer.

|mage

e Global variables (or encapsulated in your Tmage class)

unsigned int fbo;
unsigned int texture;

e Initialize buffers (e.q. in initialization of Tmage class)

glGenFrameBuffers(1l,&fbo);
glGenTextures (1, &texture);

e Display (e.q. in a “draw” method of Tmage class)

glBindTexture(GL TEXTURE 2D, texture);
glTexImage2D(GL TEXTURE 2D,0,GL RGB,widht,height,
0,GL RGB,GL FLOAT, &pixel[0][0]);

glBindFramebuffer (GL READ FRAMEBUFFER, fbo);
glFramebufferTexture2D(GL READ FRAMEBUFFER,
GL COLOR ATTACHMENTO, GL TEXTURE 2D, texture, 0);

glBlitFramebuffer(0,0,width,height, 0,0,width,height,
GL COLOR BUFFER BIT, GL NEAREST);

Scene

void Raytrace(Camera cam, Scene scene, Image &image) {
int w = image.width; int h = image.height;
for (int 3=0; j<h; J++){
for (int 1=0; 1<w; 1++){
Ray ray = RayThruPixel(cam, 1, Jj, w, h);
Intersection hit = Intersect(ray, scene);
image.pixel[1][]J] = FindColor(hit);
}
}
}

e Scene contains a list (or some data structure)
of triangles (or other geometric primitives)

std::vector<Triangle> triangle_soup; class Triangle{

3 vertex positions, 3 vertex normals,
4 b 4 D ¢ o pointer to material }4

Scene

e Scene contains a list (or some data structure)
of triangles (or other geometric primitives)

std::vector<Triangle> triangle_soup; class Triangle{
3 vertex positions, 3 vertex normals,
b 4 D ¢ o pointer to material }4

e When searching for intersection in “Intersect (ray, scene)”
we can iterate triangle over scene.triangle soup

e We can still build complex scene like in HW3

Scene

e Scene contains a list (or some data structure)
of triangles (or other geometric primitives)

e Re-use HW3 scene graph description. During depth first search,
instead of calling “draw” model, just dump all triangles into a list

(with position/normal transformed to the world coordinate)

class Triangle{
3 vertex positions, 3 vertex normals,

pointer to material } 4

std::vector<Triangle> triangle_soup;

SOup

generate
triangle

ceramlc wooden
teapot cube

Global lllumination

e (Global illumination

Global illumination

e | ocal illumination evaluates color
directly using light source.

e \We have seen a glimpse of
global illumination.

> Visibility test from light source
» Recursive mirror reflection

* |n a more realistic global illumination,
the diffuse color is also recursive!

Global illumination

* |n a more realistic global illumination,
the diffuse color is also recursive!

iIndirect lighting 4
effect

Global illumination

e | ocal illumination is also called direct lighting.

e We add indirect lighting, which are paths that have more bounces.

Direct lighting Indirect lighting

Diffuse light

e To make both diffuse and specular reflection recursive, evaluate
color by the color of the reflected ray

e |nstead of mirror reflecting ray, diffuse reflection generates

: . . IN coming ray
a reflected ray in a random direction

> The color shaded by a random
reflection won't look right

reflected ray

> But after averaging thousands
of random samples, the
that contributes to

resulting color is physically
accurate. &
~) a unit area of the

unit area surface

portion of the light

Shading model (from direct to recursive)

e | et us recall OpenGL shading model
e Given a ray-object intersection “hit” (or fragment)

» Vv: direction to the source of in coming ray
> n: surface normal

> p: position of this hit
» Material color Ciffce Cspecular

e Qutput light color L..., seen by in-coming ray

Shading model (from direct to recursive)

e Direct shading model we did in OpenGL

Lseen — Z CdiffuseL light maX(n ' li: O)

= source;
1€lights l

+ Cypecular BlinnPhong(v, n, LightSources) 0 @
© T g

P

Shading model (from direct to recursive)

e Add shadow in ray tracing

Lseen = Z Caifruse L lighe max(n - 1;,0) visibility,

= source;
1€lights l

+ Cypecular BlinnPhong(v, n, LightSources) 0 @
© T g

P

Shading model (from direct to recursive)

e Add recursive specular reflection

Lseen Z CdlffuseL light maX(n 11: O) V151b111tyl

source;
1€lights l

D1 “.\T\L ~om ol am T 2l e O o mmns =)
T \Jspecularuu HIE 11OV, 11, LIZIILOU UL LTS) @ @
= o
J

Shading model (from direct to recursive)

e Add recursive specular reflection

Lseen = Z Caifruse L lighe max(n-1;,0) visibility,

= source;
1€lights l

T Cspeculax L(p,r)

» mirror reflection direction
r=2(n-v)n—v

Shading model (from direct to recursive)

e As for adding recursive diffuse shading
Lseen — Z CdiffuseL light | IIlaX(Il) li: O) ViSibﬂityi
1€lights SOUIEE

T CspecularL(p,r)

CdiffuseL(p,d)(n ' d)

where d is a random direction
uniformly distributed on the
hemisphere

Shading model (from direct to recursive)

e As for adding recursive diffuse shading

Lseen = Z Caifruse L lighe max(n-1;,0) visibility,

= source;
1€lights l

T CspecularL(p,r)

CdiffuseL(p,d)(n ' d)

> This is like thinking of every
direction is a light source

Shading model (from direct to recursive)

e As for adding recursive diffuse shading

Lscen = CdiffuseL(p,d)(n -d)

T CspecularL(p,r)

e Problem: evaluating this color require
generating two additional rays.

> The number of rays in the recursion will
grow exponentially O(2")

» Solution: just combine the two terms

Shading model (from direct to recursive)

e Final shading model
CdiffuseL(p,d)(Il -d) with probability 0.5
Lseen — Or

CSPecularL(P,r) with probability 0.5

Shading model (from direct to recursive)

e Final shading model
CdiffuseL(p,d)(Il -d) with probability 0.5
Lseen B Or

CSPecularL(P,r) with probability 0.5

e Most general shading model

Lseen — CBRDF (Va d)L(p,d)
> BRDF: Bidirectional reflectance distribution function
» What one would do in CSE168 (advanced rendering)

Averaging the randomized color

Fork =1,...,N (hnumber of samples)

e Shoot a ray through a random point in the pixel
e Hit some surface and evaluate the color of the hit:

CdiffuseL(p,d)(n y d) with probability 0.5

Lseen — Or

CopecutarLp,r) with probability 0.5

e [etthe recursion unfold with a max recursion depth.
e |f the max depth is reached, set the color as old-school diffuse

E CiffuseL tighe max(n-1;,0) visibility,
e 1. sourcei;
1€lights

e Accumulate L.+ =L..,
EndFor

1
Lpixel — NLcum

Averaging the randomized color

1 sample path per pixel 10 sample paths per pixel 1000 sample paths per pixel

Disney Big Hero 6 (2014)

Path lengths (recursion depth)

e The recursion depth is also the number of bounces of ray
o |f we just set a fixed recursion depth, the result will be too dark

Q
1 bounces + 2 bounces \ >0d pout*™”
+ ... + 9 bounces *

Disney Big Hero 6 (2014)

Path lengths (recursion depth)

e The recursion depth is also the number of bounces of ray
o |f we just set a fixed recursion depth, the result will be too dark

1 bounce + 2 bounce

A lot of bounces

1 bounces + 2 bounces
+ ... + 9 bounces

INfiNnite sum

e The color of pixel should be

[Color of 1-bounce paths] + [Color of 2-bounce paths] +
... + [Color of L-bounce paths] + . . .

(how do you compute infinite sum?)

Direct lighting Indirect lighting

A method for infinite sum

e The color of pixel should be

[Color of 1-bounce paths] + [Color of 2-bounce paths] +
... + [Color of L-bounce paths] + . . .

e The method of Russian Roulette:

> Let the ray bounce indefinitely until randomly terminated

> Every bounce has a termination probability p

> The probability of getting a k-bounce pathsis (1 —p)*p
1

(1—p)p

th k bonces . (PSS S

. s
- '

> |f we get a k-bounce path, weight the result by

» Expectation: 2501 result wi

Next

e Radiosity

e Rendering equation

