Complex Scenes

- Complex scenes
- Matrix stack
- Drawing command sequence
- Graph traversal
- Scene graph data structure
Modeling a complex object
Motivation for **modular modeling**

- A model may require many subcomponents.
 - Materials can vary over different subcomponents.
- A component can appear multiple times.
 - Define a component once and instance it multiple times to optimize memory usage for complex scenes.
- Using correlated subcomponents facilitates the animation of subparts.
 - Just apply simple transformations at the joint, instead of editing the whole mesh.
 - When a leg is transformed, the foot beneath it should also be transformed together.
Modeling a complex object

The Hierarchical modeling principle

Whenever possible, construct models hierarchically.
Try to make the modeling hierarchy correspond to a functional hierarchy for ease of animation.

Diagram showing the hierarchical structure of a leg model.
The diagram showing the hierarchical relationship is the **scene graph**.

- Nodes are atomic (source/leaf) or group components.
- The scene graph is an acyclic directed graph.
- Each edge is annotated with a transformation matrix.

For a graphics software the supports scene graph:

- There is a scene graph data structure.
- There is an algorithm that traverses over the graph and renders every component efficiently.
Softwares used in industry

• e.g. SideFX Houdini
We will separate our discussion into two levels

- First, given a conceptual scene graph, we study what the sequence of commands is to render the scene graph efficiently.

- We design a scene graph data structure, so that the sequence of commands are generated automatically by some graph traversal algorithm.
Matrix stack

- Complex scenes
- Matrix stack
- Drawing command sequence
- Graph traversal
- Scene graph data structure
What are the info for drawing an object?

• Geometry spreadsheet (VAO)
 ▶ Usually static. We don’t change the value in VAO if we just linear/affine/projectively transform the object, or move around the camera.

• Modelview matrix (VM)
 ▶ If V is the view matrix, and M is the model matrix, then the modelview matrix is VM.

• Projection matrix (P)
 ▶ The matrix for perspectivity. Usually fixed during the scene.
Basic setup

Vertex shader

```
#version 330 core

// Inputs
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 color;

// Uniforms
uniform mat4 projection;
uniform mat4 modelview;

// Extra outputs, if any
out vec3 color;

void main() {
    gl_Position = projection * modelview
               * vec4(position, 1.0f);
}
```
• We often need to draw a lot of objects, each of which need a **modelview** matrix

```c
void display(void){

    ... // compute VM1

    glUniformMatrix4fv(modelviewPos, 1, GL_FALSE, &VM1[0][0]);
    drawMyObj1;

    ... // compute VM2

    glUniformMatrix4fv(modelviewPos, 1, GL_FALSE, &VM2[0][0]);
    drawMyObj2;

    ...
}
```
Scene Hierarchy

- We often need to draw a lot of objects, each of which need a **modelview** matrix.
Matrix Stack

- In a large scene with many objects, whose modelview matrices are
 \[VM_1 M_2 M_3 M_5 \quad VM_1 M_2 M_3 M_6 \quad VM_1 M_2 M_3 M_5 M_7 \quad \text{etc.} \]

 - We don’t want to recompute repetitively the same matrix multiplications.
 - We use a stack to store the results of matrix multiplication of intermediate stages.
Stack

Definition

A **stack** of type \mathbb{T}

\[
\text{std::stack} \langle \mathbb{T} \rangle \quad \mathbf{a}
\]

is an array of objects of type \mathbb{T} with an arbitrary length

\[
\mathbf{a} = (a_1, \ldots, a_k) \in \mathbb{T}^k
\]

together with the following three operations:

- push
- pop
- top
Stack

- **push**

 \[\text{PUSH: } \mathbb{T}^k \times \mathbb{T} \rightarrow \mathbb{T}^{k+1} \]

 \[(a_1, \ldots, a_k).\text{PUSH}(b) = (a_1, \ldots, a_k, b)\]

- **pop**
- **top**
Stack

• push
 \(\text{PUSH}: \mathbb{T}^k \times \mathbb{T} \rightarrow \mathbb{T}^{k+1} \)
 \((a_1, \ldots, a_k).\text{PUSH}(b) = (a_1, \ldots, a_k, b)\)

• pop
 \(\text{POP}: \mathbb{T}^k \rightarrow \mathbb{T}^{k-1} \)
 \((a_1, \ldots, a_{k-1}, a_k).\text{POP}() = (a_1, \ldots, a_{k-1})\)

• top
Stack

- **push**
 \[
 \text{PUSH}: \mathbb{T}^k \times \mathbb{T} \rightarrow \mathbb{T}^{k+1}
 \]
 \[(a_1, \ldots, a_k).\text{PUSH}(b) = (a_1, \ldots, a_k, b)\]

- **pop**
 \[
 \text{POP}: \mathbb{T}^k \rightarrow \mathbb{T}^{k-1}
 \]
 \[(a_1, \ldots, a_{k-1}, a_k).\text{POP}() = (a_1, \ldots, a_{k-1})\]

- **top**
 \[
 \text{TOP}: \mathbb{T}^k \rightarrow \mathbb{T}
 \]
 \[(a_1, \ldots, a_k).\text{TOP}() = a_k\]
Stack

- **push**
 \[\text{PUSH: } T^k \times T \rightarrow T^{k+1} \]
 \[(a_1, \ldots, a_k).\text{PUSH}(b) = (a_1, \ldots, a_k, b)\]

- **pop**
 \[\text{POP: } T^k \rightarrow T^{k-1} \]
 \[(a_1, \ldots, a_{k-1}, a_k).\text{POP}() = (a_1, \ldots, a_{k-1})\]

- **top**
 \[\text{TOP: } T^k \rightarrow T \]
 \[(a_1, \ldots, a_k).\text{TOP}() = a_k\]

We only have access to the top of the stack
Stack

- Sometimes, pop refers to top-pop combined.

We only have access to the top of stack

Last-in, first-out
Sequence of commands for rendering a scene using a matrix stack

- Complex scenes
- Matrix stack
- Drawing command sequence
- Graph traversal
- Scene graph data structure
General principle

• Prepare two variables
 ▶ Current modelview matrix
 ▶ A stack of some previously calculated matrices

• When moving down:
 ▶ Push current into stack
 ▶ Update current modelview by multiplying current by the matrix on the edge

• When moving back up:
 ▶ Replace current by pop of stack
Matrix Stack

- Define a **modelviewStack** \(\text{STACK} \in \text{std::stack<glm::mat4>} \)
- Let \(\text{VM} \) be the current modelview matrix
- Initially \(\text{VM} = V \)
Matrix Stack

- Define a `modelviewStack` `STACK`
- Let `VM` be the current modelview matrix
- Initially `VM = V`
- Push `STACK.push(VM)`
Matrix Stack

- Define a `modelviewStack STACK`
- Let VM be the current modelview matrix
- Initially $VM = V$
- Push $STACK\cdot push(VM)$
Matrix Stack

- Initially \(\text{VM} = V \)
- Push \(\text{STACK}.\text{PUSH}(\text{VM}) \)
- Update \(\text{VM} = \text{VM} \times M_1 \)
Matrix Stack

- Initially \(\text{VM} = V \)
- Push \(\text{STACK}.\text{PUSH}(\text{VM}) \)
- Update \(\text{VM} = \text{VM} \times M_1 \)
Matrix Stack

- Initially $VM = V$
- Push $\text{STACK}_.\text{PUSH}(VM)$
- Update $VM = VM \cdot M_1$
- drawRoom
Matrix Stack

- Initially $\text{VM} = V$
- Push $\text{STACK}.\text{push}(\text{VM})$
- Update $\text{VM} = \text{VM} \times M_1$
- drawRoom
- Push $\text{STACK}.\text{push}(\text{VM})$

\begin{align*}
\text{VM} = V \\
V \\
\text{VM}_1
\end{align*}

\begin{align*}
\text{STACK} & \\
\text{VM}
\end{align*}
Matrix Stack

- Initially $VM = V$
- Push $STACK\cdot PUSH(VM)$
- Update $VM = VM * M_1$
- drawRoom
- Push $STACK\cdot PUSH(VM)$
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK}.\text{PUSH}(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(\text{STACK}.\text{PUSH}(VM) \)
- Update \(VM = VM \times M_2 \)
Matrix Stack

- Initially $VM = V$
- Push `STACK.PUSH(VM)`
- Update $VM = VM \times M_1$
- `drawRoom`
- Push `STACK.PUSH(VM)`
- Update $VM = VM \times M_2$

```
| VM_1 | V | VM_1M_2 |
```

STACK VM
Matrix Stack

- Initially \(\text{VM} = V \)
- Push \(\text{STACK}.\text{PUSH}(\text{VM}) \)
- Update \(\text{VM} = \text{VM} \times M_1 \)
- drawRoom
- Push \(\text{STACK}.\text{PUSH}(\text{VM}) \)
- Update \(\text{VM} = \text{VM} \times M_2 \)
- drawChair

\[
\begin{array}{c|c|c}
\text{VM}_1 & V & \text{VM}_1\text{M}_2 \\
\hline
\end{array}
\]

STACK VM
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = \text{STACK}.\text{pop} \)

\[
\begin{array}{c|c|c}
\text{STACK} & \text{VM} \\
\hline
VM_1 & V & VM_1M_2 \\
\end{array}
\]
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = \text{STACK}.\text{pop} \)
Matrix Stack

- Initially: \(VM = V \)
- Push: \(\text{STACK}.\text{push}(VM) \)
- Update: \(VM = VM \times M_1 \)
- drawRoom
- Push: \(\text{STACK}.\text{push}(VM) \)
- Update: \(VM = VM \times M_2 \)
- drawChair
- Pop: \(VM = \text{STACK}.\text{pop} \)
- Push: \(\text{STACK}.\text{push}(VM) \)
Initially \(\text{VM} = V \)
- Push \(\text{STACK}.\text{push}(\text{VM}) \)
- Update \(\text{VM} = \text{VM} \times M_1 \)
- drawRoom
- Push \(\text{STACK}.\text{push}(\text{VM}) \)
- Update \(\text{VM} = \text{VM} \times M_2 \)
- drawChair
- Pop \(\text{VM} = \text{STACK}.\text{pop} \)
- Push \(\text{STACK}.\text{push}(\text{VM}) \)
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK.push}(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(\text{STACK.push}(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = \text{STACK.pop} \)
- Push \(\text{STACK.push}(VM) \)
- Update \(VM = VM \times M_3 \)
- drawChair

- Push \(\text{STACK.push}(VM) \)
- Update \(VM = VM \times M_4 \)
- Pop \(VM = \text{STACK.pop} \)
- Push \(\text{STACK.push}(VM) \)
- Update \(VM = VM \times M_5 \)
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \cdot M_1 \)
- drawRoom
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \cdot M_2 \)
- drawChair
- Pop \(VM = \text{STACK}.\text{pop} \)
- Push \(\text{STACK}.\text{push}(VM) \)

\[
\begin{array}{c|c|c}
VM_1 & V & VM_1M_3 \\
\hline
\end{array}
\]

\[\text{STACK} \quad \text{VM} \]

Update \(VM = VM \cdot M_3 \)
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = \text{STACK}.\text{pop} \)
- Push \(\text{STACK}.\text{push}(VM) \)

\[
\begin{array}{ccc}
\text{STACK} & \rightarrow & \text{VM} \\
\downarrow & & \downarrow \\
VM_1 & & VM_1M_3 \\
\vdots & & \vdots \\
V & & \vdots \\
\end{array}
\]
Matrix Stack

- Initially $VM = V$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_1$
- drawRoom
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_2$
- drawChair
- Pop $VM = STACK.POP$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_3$
- Push $STACK.PUSH(VM)$

VM_1M_3

VM_1

V

VM_1M_3

Stack VM
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = \text{STACK}.\text{pop} \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_3 \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_4 \)
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_1 \)
- \text{drawRoom}
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_2 \)
- \text{drawChair}
- Pop \(VM = \text{STACK}.\text{pop} \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_3 \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_4 \)

\[
\begin{array}{c|c}
\text{STACK} & VM \\
\hline
V & VM_1 M_3 M_4 \\
VM_1 & \\
V & \\
\end{array}
\]
Matrix Stack

- Initially $VM = V$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_1$
- drawRoom
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_2$
- drawChair
- Pop $VM = STACK.POP$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_3$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_4$
- drawBook

$VM_1 M_3$

VM_1

V

$VM_1 M_3 M_4$

STACK

VM

M_1

P^3_{world}

V

M_2

P^3_{room}

M_3

P^3_{table}

M_4

P^3_{chair}

M_5

P^3_{book}

P^3_{laptop}

P^3_{camera}
Matrix Stack

- Initially $VM = V$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_1$
- drawRoom
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_2$
- drawChair
- Pop $VM = STACK.POP$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_3$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \times M_4$
- drawBook
- Pop $VM = STACK.POP$

VM_1M_3

VM_1

V

$VM_1M_3M_4$

$STACK$

VM
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK.push}(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(\text{STACK.push}(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = \text{STACK.pop} \)
- Push \(\text{STACK.push}(VM) \)

- Update \(VM = VM \times M_3 \)
- Push \(\text{STACK.push}(VM) \)
- Update \(VM = VM \times M_4 \)
- drawBook
- Pop \(VM = \text{STACK.pop} \)
- Push \(\text{STACK.push}(VM) \)

- Update \(VM = VM \times M_5 \)
- drawLaptop
- Pop \(VM = \text{STACK.pop} \)
- Push \(\text{STACK.push}(VM) \)
Matrix Stack

- Initially \(VM = V \)
- Push \(\text{STACK.PUSH}(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(\text{STACK.PUSH}(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = \text{STACK.POP} \)
- Push \(\text{STACK.PUSH}(VM) \)
- Update \(VM = VM \times M_3 \)
- drawBook
- Push \(\text{STACK.PUSH}(VM) \)
- Update \(VM = VM \times M_4 \)
- drawTable

\[
\begin{array}{c|c|c}
\text{STACK} & VM \\
\hline
V & VM_1M_3 \\
\end{array}
\]
Matrix Stack

- Initially $VM = V$
- Push $STACK\text{.}PUSH(VM)$
- Update $VM = VM \times M_1$
- drawRoom
- Push $STACK\text{.}PUSH(VM)$
- Update $VM = VM \times M_2$
- drawChair
- Pop $VM = STACK\text{.}POP$
- Push $STACK\text{.}PUSH(VM)$
- Update $VM = VM \times M_3$
- Push $STACK\text{.}PUSH(VM)$
- Update $VM = VM \times M_4$
- drawBook
- Pop $VM = STACK\text{.}POP$
- drawTable
- Push $STACK\text{.}PUSH(VM)$
Matrix Stack

- Initially $VM = V$
- Push $STACK.PUSH(VM)$
- Update $VM = VM * M_1$
- drawRoom
- Push $STACK.PUSH(VM)$
- Update $VM = VM * M_2$
- drawChair
- Pop $VM = STACK.POP$
- Push $STACK.PUSH(VM)$
- Update $VM = VM * M_3$
- Push $STACK.PUSH(VM)$
- Update $VM = VM * M_4$
- drawBook
- Push $STACK.PUSH(VM)$
- drawTable
- Push $STACK.PUSH(VM)$
- Pop $VM = STACK.POP$

$VM_1 M_3$

VM_1

V

$VM_1 M_3$
Initially $VM = V$
- Push \text{STACK}.\text{PUSH}(VM)$
- Update $VM = VM \times M_1$
- drawRoom
- Push \text{STACK}.\text{PUSH}(VM)$
- Update $VM = VM \times M_2$
- drawChair
- Pop $VM = \text{STACK}.\text{POP}$
- Push \text{STACK}.\text{PUSH}(VM)$
- Update $VM = VM \times M_3$
- Update $VM = VM \times M_4$
- drawBook
- Push \text{STACK}.\text{PUSH}(VM)$
- Pop $VM = \text{STACK}.\text{POP}$
- drawTable
- Push \text{STACK}.\text{PUSH}(VM)$
- Update $VM = VM \times M_5$
Initially \(VM = V \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = \text{STACK}.\text{pop} \)
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_3 \)
- Update \(VM = VM \times M_4 \)
- drawTable
- Push \(\text{STACK}.\text{push}(VM) \)
- Pop \(VM = \text{STACK}.\text{pop} \)
- drawBook
- Push \(\text{STACK}.\text{push}(VM) \)
- Update \(VM = VM \times M_5 \)
Matrix Stack

- Initially: VM = V
- Push: STACK.PUSH(VM)
- Update: VM = VM * M₁
- drawRoom
- Push: STACK.PUSH(VM)
- Update: VM = VM * M₂
- drawChair
- Pop: VM = STACK.POP
- Push: STACK.PUSH(VM)
- Update: VM = VM * M₃
- drawLaptop

- Update: VM = VM * M₃
- Push: STACK.PUSH(VM)
- Update: VM = VM * M₄
- drawBook
- Pop: VM = STACK.POP
- drawTable
- Push: STACK.PUSH(VM)
- Update: VM = VM * M₅
- drawLaptop

<table>
<thead>
<tr>
<th>STACK</th>
<th>VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM₁ M₃</td>
<td>VM₁</td>
</tr>
<tr>
<td>V</td>
<td>VM₁ M₃ M₅</td>
</tr>
</tbody>
</table>
Matrix Stack

- Initially $VM = V$
- Push $STACK.PUSH(VM)$
- Update $VM = VM * M_1$
- drawRoom
- Push $STACK.PUSH(VM)$
- Update $VM = VM * M_2$
- drawChair
- Pop $VM = STACK.POP$
- Push $STACK.PUSH(VM)$
- Update $VM = VM * M_3$
- Update $VM = VM * M_4$
- drawTable
- Push $STACK.PUSH(VM)$
- drawBook
- Pop $VM = STACK.POP$
- Push $STACK.PUSH(VM)$
- drawLaptop
- Pop $VM = STACK.POP$
- Push $STACK.PUSH(VM)$
- Update $VM = VM * M_5$
- drawTable
- Pop $VM = STACK.POP$

VM_1M_3

VM_1

V

$VM_1M_3M_5$

STACK | VM
Matrix Stack

- Initially \(VM = V \)
- Push \(STACK.PUSH(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(STACK.PUSH(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = STACK.POP \)
- Push \(STACK.PUSH(VM) \)
- Update \(VM = VM \times M_3 \)
- Update \(VM = VM \times M_4 \)
- drawBook
- Push \(STACK.PUSH(VM) \)
- drawTable
- Pop \(VM = STACK.POP \)
- drawLaptop
- Pop \(VM = STACK.POP \)

\[
\begin{array}{c|c|c}
VM_1 & V & VM_1M_3 \\
\hline
STACK & VM & \\
\end{array}
\]
Matrix Stack

- Initially \(\text{VM} = V \)
- Push \(\text{STACK.PUSH(VM)} \)
- Update \(\text{VM} = \text{VM} \times M_1 \)
- drawRoom
- Push \(\text{STACK.PUSH(VM)} \)
- Update \(\text{VM} = \text{VM} \times M_2 \)
- drawChair
- Pop \(\text{VM} = \text{STACK.POP} \)
- Push \(\text{STACK.PUSH(VM)} \)
- Update \(\text{VM} = \text{VM} \times M_3 \)
- Update \(\text{VM} = \text{VM} \times M_4 \)
- drawBook
- Push \(\text{STACK.PUSH(VM)} \)
- Pop \(\text{VM} = \text{STACK.POP} \)
- drawTable
- Push \(\text{STACK.PUSH(VM)} \)
- Update \(\text{VM} = \text{VM} \times M_5 \)
- drawLaptop
- Pop \(\text{VM} = \text{STACK.POP} \)
- Pop \(\text{VM} = \text{STACK.POP} \)
Matrix Stack

- Initially $VM = V$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \cdot M_1$
- drawRoom
- Push $STACK.PUSH(VM)$
- Update $VM = VM \cdot M_2$
- drawChair
- Pop $VM = STACK.POP$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \cdot M_3$
- Push $STACK.PUSH(VM)$
- Update $VM = VM \cdot M_4$
- drawBook
- Pop $VM = STACK.POP$
- drawTable
- Push $STACK.PUSH(VM)$
- Update $VM = VM \cdot M_5$
- drawLaptop
- Pop $VM = STACK.POP$
- Pop $VM = STACK.POP$
Matrix Stack

- Initially $\text{VM} = V$
- Push $\text{STACK}.\text{push(VM)}$
- Update $\text{VM} = \text{VM} \times M_1$
- drawRoom
- Push $\text{STACK}.\text{push(VM)}$
- Update $\text{VM} = \text{VM} \times M_2$
- drawChair
- Pop $\text{VM} = \text{STACK}.\text{pop}$
- Push $\text{STACK}.\text{push(VM)}$
- Update $\text{VM} = \text{VM} \times M_3$
- Update $\text{VM} = \text{VM} \times M_4$
- drawBook
- Push $\text{STACK}.\text{push(VM)}$
- drawTable
- Pop $\text{VM} = \text{STACK}.\text{pop}$
- drawLaptop
- Push $\text{STACK}.\text{push(VM)}$
- Update $\text{VM} = \text{VM} \times M_5$
- drawTable
- Pop $\text{VM} = \text{STACK}.\text{pop}$
- Pop $\text{VM} = \text{STACK}.\text{pop}$
- Pop $\text{VM} = \text{STACK}.\text{pop}$
Initially \(VM = V \)
- Push \(STACK.PUSH(VM) \)
- Update \(VM = VM \times M_1 \)
- drawRoom
- Push \(STACK.PUSH(VM) \)
- Update \(VM = VM \times M_2 \)
- drawChair
- Pop \(VM = STACK.POP \)
- Push \(STACK.PUSH(VM) \)
- Update \(VM = VM \times M_3 \)
- drawLaptop
- Push \(STACK.PUSH(VM) \)
- Update \(VM = VM \times M_4 \)
- drawBook
- Pop \(VM = STACK.POP \)
- drawTable
- Push \(STACK.PUSH(VM) \)
- Update \(VM = VM \times M_5 \)
- drawRoom
- Pop \(VM = STACK.POP \)
- Pop \(VM = STACK.POP \)
- Pop \(VM = STACK.POP \)
At any moment, VM is the model-view matrix of the “cursor” and the **stack** is always the list of model-view matrices of each node in the path connecting the world to the laptop.
Graph traversal

- Complex scenes
- Matrix stack
- Drawing command sequence
- **Graph traversal**
- Scene graph data structure
Graph traversal problem

General graph

Tree, acyclic graph

Directed acyclic graph
Graph traversal problem

- Breadth first search (BFS)
 (Prioritize “overviewing” over “exploring”)

- Depth first search (DFS)
 (Prioritize “exploring” over “overviewing”)

Tree, acyclic graph
Graph traversal problem

- Breadth first search (BFS)
 (Prioritize “overviewing” over “exploring”)
 A B E C D F

- Depth first search (DFS)
 (Prioritize “exploring” over “overviewing”)

Tree, acyclic graph
Graph traversal problem

- Breadth first search (BFS)
 (Prioritize “overviewing” over “exploring”)
 A B E C D F

- Depth first search (DFS)
 (Prioritize “exploring” over “overviewing”)
 A B C D F E

Tree, acyclic graph
Graph traversal problem

- **Breadth first search (BFS)**
 (Prioritize “overviewing” over “exploring”)

 A B E C D F

 Put A into a queue Q.
 While (Q is nonempty)
 x = Q.dequeue();
 process/visit x;
 Put neighbors of x into Q;
 EndWhile

- **Depth first search (DFS)**
 (Prioritize “exploring” over “overviewing”)

 A B C D F E

Tree, acyclic graph
Graph traversal problem

- **Breadth first search (BFS)**

 Put A into a queue Q.

 While (Q is nonempty)

 - x = Q.dequeue();
 - process/visit x;
 - Put neighbors of x into Q;

 EndWhile

- **Depth first search (DFS)**

 Push A into a stack S.

 While (S is nonempty)

 - x = S.pop();
 - process/visit x;
 - Push neighbors of x into S;

 EndWhile

Tree, acyclic graph
Graph traversal problem

- **Breadth first search (BFS)**

 Put A into a queue \(Q \).

 While (\(Q \) is nonempty)

 \(x = Q . \text{dequeue}() \);

 process/visit \(x \); Mark \(x \) as visited;

 Put unvisited neighbors of \(x \) into \(Q \);

 EndWhile

- **Depth first search (DFS)**

 Push A into a stack \(S \).

 While (\(S \) is nonempty)

 \(x = S . \text{pop}() \);

 process/visit \(x \); Mark \(x \) as visited;

 Push unvisited neighbors of \(x \) into \(S \);

 EndWhile
Directed acyclic graph
Directed acyclic graph

“Rooted” directed acyclic graph (it has a single sink)
Directed acyclic graph

“Rooted” directed acyclic graph (it has a single sink)
Directed acyclic graph

“Rooted” directed acyclic graph (it has a single sink)

Family “tree”
Directed acyclic graph

“Rooted” directed acyclic graph (it has a single sink)

Causal network
Any directed graph (such as shown on the right) has a **reachability relation** \(\preceq \) on the node set:

\[
\text{node}_1 \preceq \text{node}_2
\]

if there exists a path traveling from \(\text{node}_1 \) to \(\text{node}_2 \).
A directed graph is acyclic if the reachability relation \leq becomes a **partial ordering**. That is,

$$X \leq Y \quad \& \quad Y \leq X \quad \implies \quad X = Y$$

If you like this sort of stuff, check out the lecture note.
We want to traverse over all paths in a rooted directed acyclic graph that ends at the sink (root).
Traversing over a rooted DAG

- **Breadth first search (BFS)**

 Put A (root) into a queue Q.

 While (Q is nonempty)

 $x = Q$.dequeue();
 process/visit x; Mark x as visited;
 Put unvisited children of x into Q;

 EndWhile

- **Depth first search (DFS)**

 Push A (root) into a stack S.

 While (S is nonempty)

 $x = S$.pop();
 process/visit x; Mark x as visited;
 Push unvisited children of x into S;

 EndWhile
Traversing over a rooted DAG

- **Breadth first search (BFS)**

 Put A (root) into a queue Q.

 While (Q is nonempty)

 - $x = Q$.dequeue();
 - process/visit x; Mark x as visited;
 - Put unvisited children of x into Q;

 EndWhile

- **Depth first search (DFS)**

 Push A (root) into a stack S.

 While (S is nonempty)

 - $x = S$.pop();
 - process/visit x; Mark x as visited;
 - Push unvisited children of x into S;

 EndWhile

this resembles our low-level matrix stack procedure
Traversing over a scene graph

Let x denote the current node.
Let vm denote the current modelview matrix.

Let $node_stack$ denote a stack of nodes.
Let $matrix_stack$ denote a stack of nodes.

- Initialize $x = \text{the “World” node}$.
- Initialize $vm = \text{camera’s view matrix}$.
- Push x into the $node_stack$ and vm into the $matrix_stack$.

While $node_stack$ is nonempty

- $x = node_stack.pop(); \ vm = matrix_stack.pop();$
- Draw all models attached to x:
 - Set shader’s modelview to $[vm*(\text{matrix associated to the edge})]$;
 - Draw the model;
- Push each child node into the $node_stack$
 and correspondingly $[vm*(\text{matrix associated to the edge})]$ into the $matrix_stack$.

EndWhile
Traversing over a scene graph

- The current node x and the current modelview matrix vm are always correctly paired.

- At any moment, both stacks $\text{node_stack} = (x_1, \ldots, x_k)$, $\text{matrix_stack} = (m_1, \ldots, m_k)$ have the same size, and x_i, m_i are correctly paired for all $i=1,\ldots,k$.

- Whenever we draw models in x, we have the correct modelview matrix ready.
Scene graph data structure

- Complex scenes
- Matrix stack
- Drawing command sequence
- Graph traversal
- Scene graph data structure
Scene graph data structure

- World
 - Table
 - table top
 - table leg
 - ceramic teapot
 - wooden cube
There are two kind of “nodes”:

(regular) node

- Each node records a list of pointers to child nodes and child models.
- Each connection also has the info of transformation.

model (leaf node)

- Each model contains the info for drawing the object; i.e. it has a geometry and a set of shader parameters.
There are two kinds of "nodes":

1. **(regular) node**
 - Each node records a list of pointers to child nodes and child models.
 - Each connection also has the info of transformation.

2. **model (leaf node)**
 - Each model contains the info for drawing the object; i.e. it has a geometry and a set of shader parameters.
class Geometry{
 virtual void init();
 void draw();
};

struct Material{
 vec4 ambient;
 vec4 diffuse;
 vec4 specular;
 vec4 emission;
 float shininess;
};

class Geometry{
 virtual void init();
 void draw();
};

struct Model{
 Geometry* geometry;
 Material* material;
};

struct Node{
 std::vector<Node*> childnodes;
 std::vector<mat4> childtransforms;
 std::vector<Models*> models;
 std::vector<mat4> modeltransforms;
};
class Scene {

 Container<Node*> node;
 Container<Model*> model;
 Container<Geometry*> geometry;
 Container<Material*> material;

 void init();
 void draw();
};
class Scene {

 Container<Node*> node;
 Container<Model*> model;
 Container<Geometry*> geometry;
 Container<Material*> material;

 void init();
 void draw();
};

Here, Container can be either
- std::vector<Type>
- std::map<std::string, Type>
class Scene{

 std::vector<Node*> node;
 std::vector<Model*> model;
 std::vector<Geometry*> geometry;
 std::vector<Material*> material;

 void init();
 void draw();
};

If we use std::vector, we access each node, model, geometry, material by node[0], node[1], etc
class Scene{

 std::map<std::string, Node*> node;
 std::map<std::string, Model*> model;
 std::map<std::string, Geometry*> geometry;
 std::map<std::string, Material*> material;

 void init();
 void draw();
};

If we use std::map, we access each node, model, geometry, material by
node["world"],
node["table"], etc.

We will be using map<std::string, . > for our container.
Example for setting up a scene graph

```cpp
void Scene::init(){
}
```
Example for setting up a scene graph

```cpp
void Scene::init(){
    geometry["cube"] = new Cube; // Cube and Teapot are subclasses of Geometry
    geometry["cube"] -> init();
    geometry["teapot"] = new Teapot;
    geometry["teapot"] -> init();

    material["ceramic"] -> new Material;
    material["ceramic"] -> ambient = …;
    material["ceramic"] -> diffuse = …;
    ...

    material["wood"] -> new Material;
    material["wood"] -> ambient = …;
    material["wood"] -> diffuse = …;
    ...
}
```
Example for setting up a scene graph

...
Example for setting up a scene graph

```javascript
node[“world”] = new Node;
node[“table”] = new Node;
node[“table top”] = new Node;
node[“table leg”] = new Node;

node[“world”] -> childnodes[0] = node[“table”];
node[“world”] -> childtransforms[0] = A;
```
Example for setting up a scene graph

```java
node["world"] -> childnodes[0] = node["table"];
node["world"] -> childtransforms[0] = A;

node["table"] -> childnodes[0] = node["table top"];  
node["table"] -> childtransforms[0] = B;
node["table"] -> childnodes[1] = node["table leg"];  
node["table"] -> childtransforms[1] = C;
node["table"] -> childnodes[2] = node["table leg"];  
node["table"] -> childtransforms[2] = D;
node["table"] -> childnodes[3] = node["table leg"];  
node["table"] -> childtransforms[3] = E;
node["table"] -> childnodes[4] = node["table leg"];  
```
Example for setting up a scene graph

```java

node["table top"] -> models[0] = model["ceramic teapot"]; 
node["table"] -> modeltransforms[0] = G;
node["table top"] -> models[1] = model["wooden cube"]; 
node["table"] -> modeltransforms[1] = H;

node["table leg"] -> models[0] = model["wooden cube"]; 
node["table leg"] -> modeltransforms[0] = I;

};
```
Render the scene
void Scene::draw() {
};

Render the scene
Render the scene

```cpp
void Scene::draw()
{
    std::stack<Node*> node_stack;
    std::stack<mat4> matrix_stack;
    Node* x = node["World"];  
    mat4 vm = camera’s view matrix;
} 
```
void Scene::draw(){
 std::stack<Node*> node_stack;
 std::stack<mat4> matrix_stack;
 Node* x = node["World"];
 mat4 vm = camera’s view matrix;

 Push x into the node_stack and vm into the matrix_stack.
 While node_stack is nonempty
 x = node_stack.pop(); vm = matrix_stack.pop();
 Draw all models attached to x:
 Set shader’s modelview to [vm*(matrix associated to the edge)];
 Draw the model;
 Push each child node into the node_stack
 and correspondingly [vm*(matrix associated to the edge)] into the
 matrix_stack.
 EndWhile
}