# CSE 167 (FA22) Computer Graphics: Affine Geometry

**Albert Chern** 

# Overview

We've learned about the geometry and algebra of vectors.

• Today: positions (affine points) and displacements (vectors)

Coordinate system (analogous to basis)

Affine transformations = linear transforms + translations

model matrix, view matrix

# Recall: Vectors

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

# Recall: Vectors

There are two representations of vectors:

Geometric 
$$\vec{v} \in V$$
 vector space Algebraic  $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3$ 

A basis of the vector space relates the two representations

$$\vec{\boldsymbol{\nu}} = \begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

• Transformations and change of basis

$$\begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \end{bmatrix} = \begin{bmatrix} \vec{e}_1 \ \vec{e}_2 \ \vec{e}_3 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{32} \end{bmatrix} \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \\ a_{33} \end{bmatrix}$$

$$\begin{array}{c} a_{13} \\ a_{23} \\ a_{33} \\ a_{33} \end{array} \end{bmatrix}$$

$$\begin{array}{c} A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \\ \mathbb{R}^3_{\vec{a}}$$

$$\begin{array}{c} A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \\ \mathbb{R}^3_{\vec{a}}$$

- Basic operations
- ightharpoonup Vector add vector  $\vec{u} + \vec{v}$
- scalar times vector

basis 
$$(\vec{e}_1, \vec{e}_2, \vec{e}_3)$$

$$\mathbf{11 + V}$$

$$\mathbf{\alpha V}$$

$$\mathbb{R}^{3}_{\mathbf{e}} \overset{\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}}{\mathbf{A}\mathbf{v}} \mathbb{R}^{3}_{\mathbf{a}}$$

# Limitations of vectors

- Vectors are good at describing
  - Displacements, velocities, accelerations, forces
- Vectors are awkward at describing point positions
  - Additions and scalings are meaningless for point positions
  - Linear transformation cannot represent translations (parallel shift)
- Next, we will mix in a new type of object called (affine) point

# Affine points

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

#### Points and vectors are different.

- ullet Points describe positions (denoted by p)
- Vectors describe displacements (denoted by  $\vec{v}$  )

## Base on our experience:

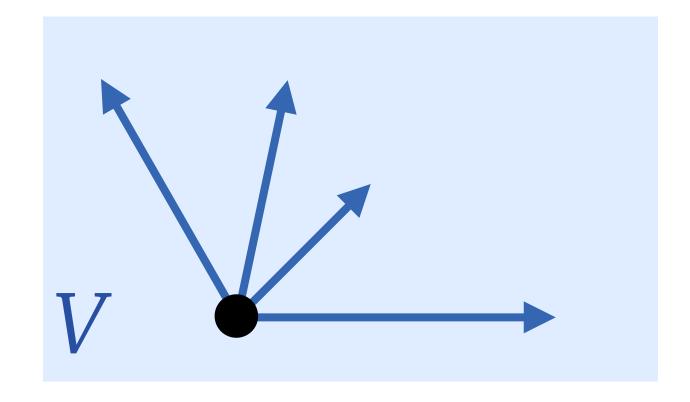
- Differences of positions are displacements  $\underline{q} \underline{p} = v$
- Position add displacement is position  $p + \vec{v} = q$
- Linear combinations of displacements are displacements

$$c_1\vec{v}_1 + c_2\vec{v}_2 = \vec{u}$$

- Scale and sum of positions don't make sense  $c_1\underline{p}_1 + c_2\underline{p}_2 = ?$
- Average of positions is fine  $0.5\underline{p}_1 + 0.5\underline{p}_2 = \underline{q}$

#### The collection of all vectors form a vector space.

$$\rightarrow \overrightarrow{\text{vec}} + \overrightarrow{\text{vec}} = \overrightarrow{\text{vec}}$$

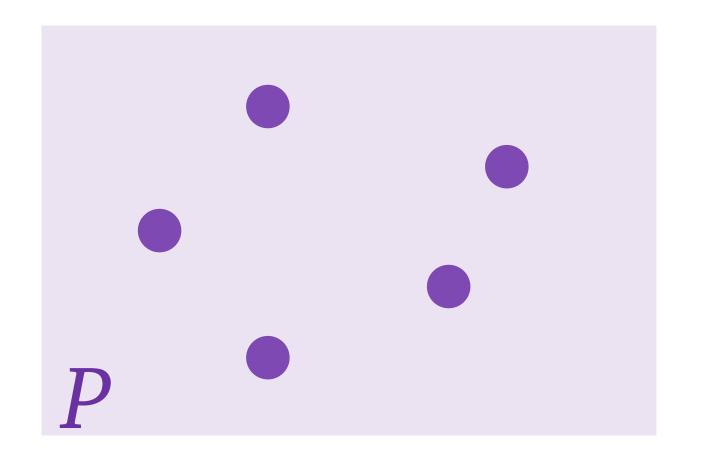


## The collection of all points form an affine space.

$$\rightarrow$$
 pt +  $\overrightarrow{\text{vec}}$  = pt

$$\rightarrow pt - pt = \overrightarrow{vec}$$

- scalar \* pt = not defined!
- $\rightarrow$  pt + pt = not defined!



What is the algebraic representation for vectors and points?

Homogeneous coordinates

## Points/positions

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

## Vectors/displacements

$$\begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

## Points/positions

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{q} \\ 1 \end{bmatrix} - \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{q} - \mathbf{p} \\ 0 \end{bmatrix}$$
pt vec

## Vectors/displacements

$$\begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

$$c_1 \begin{bmatrix} \mathbf{v}_1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} \mathbf{v}_2 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 \\ 0 \end{bmatrix}$$
vec
vec

$$\begin{bmatrix} \mathbf{q} \\ 1 \end{bmatrix} - \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{q} - \mathbf{p} \\ 0 \end{bmatrix}$$
pt vec

$$\begin{bmatrix} \mathbf{q} \\ 1 \end{bmatrix} - \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{q} - \mathbf{p} \\ 0 \end{bmatrix} \qquad c_1 \begin{bmatrix} \mathbf{v}_1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} \mathbf{v}_2 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 \\ 0 \end{bmatrix}$$
pt pt vec vec vec

$$\begin{bmatrix} \mathbf{p}_1 \\ 1 \end{bmatrix} + \begin{bmatrix} \mathbf{p}_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_1 + \mathbf{p}_2 \\ 2 \end{bmatrix}$$
pt
pt not defined

$$\begin{bmatrix} \mathbf{p}_1 \\ 1 \end{bmatrix} + \begin{bmatrix} \mathbf{p}_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_1 + \mathbf{p}_2 \\ 2 \end{bmatrix} \qquad 0.5 \begin{bmatrix} \mathbf{p}_1 \\ 1 \end{bmatrix} + 0.5 \begin{bmatrix} \mathbf{p}_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{p}_1 + \mathbf{p}_2}{2} \\ 1 \end{bmatrix}$$
pt pt not defined pt pt pt

## Points/positions

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

## Vectors/displacements

$$\begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

The 4-dimensional coordinates for 3D points and vectors are called the **homogeneous coordinates**.

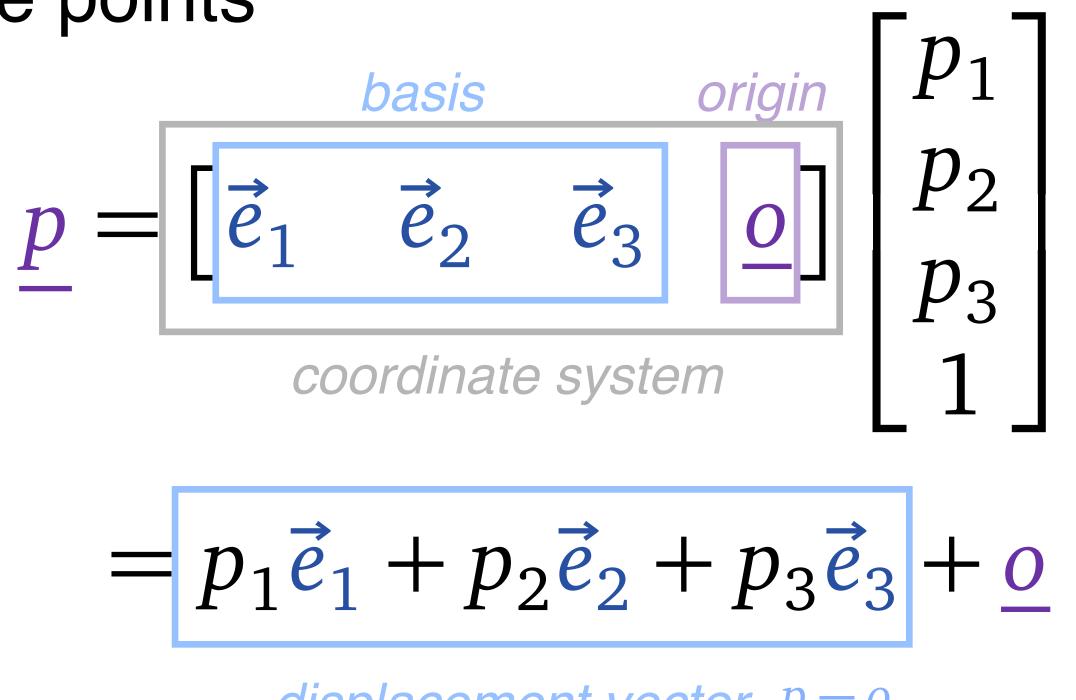
# Coordinate system

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

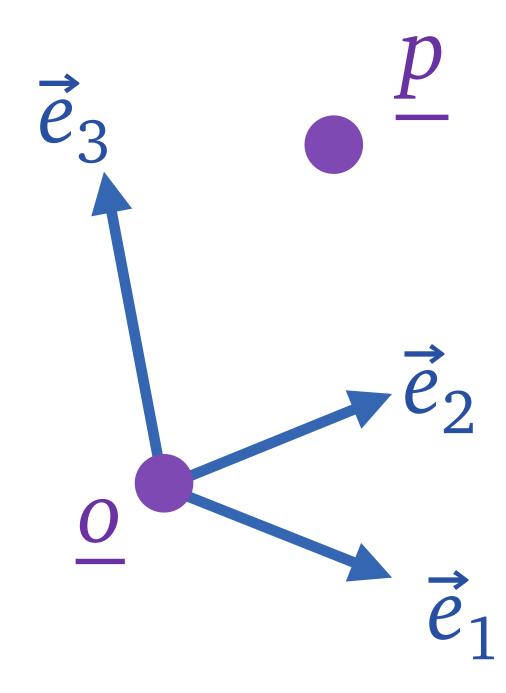
# Basis v.s. coordinate systems

• For vectors  $\vec{v} = \begin{bmatrix} \vec{e}_1 \ \vec{e}_2 \ \vec{e}_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ 

For affine points



displacement vector <u>p</u> − o



# Coordinate system

Let P be an affine space modeled on a vector space V.

A frame or an affine coordinate system is a basis  $\vec{\mathbf{e}}$  for Vtogether with a point  $o \in P$ .

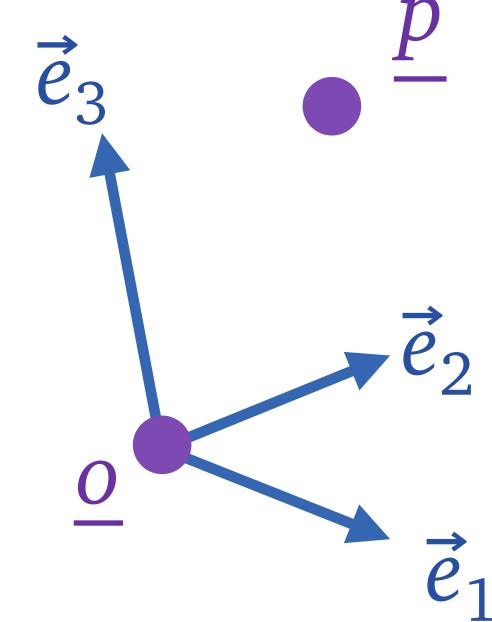
Given any  $p \in P$  we can uniquely write it as

geometric 
$$\underline{p} = p_1 \vec{e}_1 + \dots + p_n \vec{e}_n + \underline{o}$$

$$= \begin{bmatrix} \vec{\mathbf{e}}^{\mathsf{T}} & \underline{o} \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ \mathbf{1} \end{bmatrix}$$

coordinate system

array of numbers as homogeneous coordinate



# **Affine Transformations**

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

# Affine transformations

• In matrix algebra, we call  $x \mapsto Ax$  linear transformations

$$\begin{bmatrix} \mathbf{x}_{3 \times 1} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A}_{3 \times 3} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{3 \times 1} \end{bmatrix}$$

• Transformations that take the form of  $x \mapsto Ax + b$ 

$$\begin{bmatrix} \mathbf{x}_{3\times 1} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A}_{3\times 3} & \end{bmatrix} \begin{bmatrix} \mathbf{x}_{3\times 1} \end{bmatrix} + \begin{bmatrix} \mathbf{b}_{3\times 1} \end{bmatrix}$$

are called affine transformations.

## Affine transformations

• Transformations that take the form of  $x \mapsto Ax + b$ 

$$\begin{bmatrix} \mathbf{x}_{3\times 1} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A}_{3\times 3} \\ \end{bmatrix} \mathbf{a}_{3\times 1} + \begin{bmatrix} \mathbf{b}_{3\times 1} \\ \end{bmatrix}$$

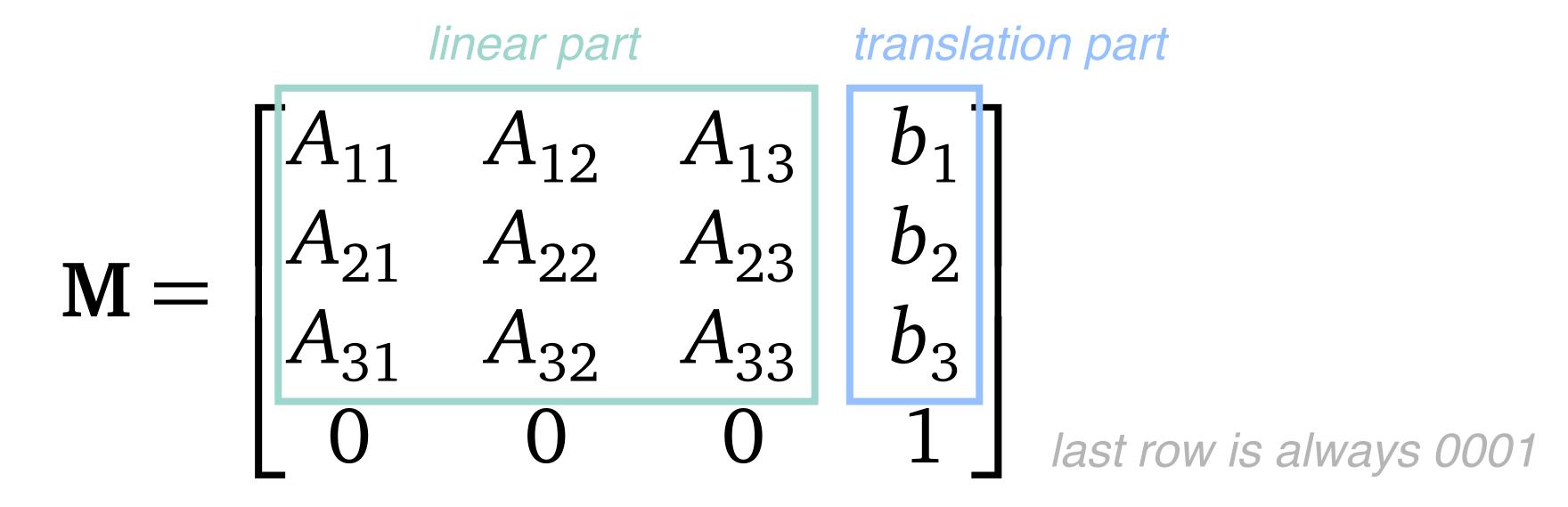
are called affine transformations.

Using the homogeneous coordinate, it's a single matrix multiplication!

$$egin{bmatrix} \mathbf{x}_{3 imes 1} \ 1 \end{bmatrix} \mapsto egin{bmatrix} \mathbf{A}_{3 imes 3} & \mathbf{b}_{3 imes 1} \ \mathbf{0}_{1 imes 3} & 1 \end{bmatrix} egin{bmatrix} \mathbf{x}_{3 imes 1} \ 1 \end{bmatrix} = egin{bmatrix} \mathbf{A}\mathbf{x} + \mathbf{b} \ 1 \end{bmatrix}$$

## Affine transformation matrix

An affine transformation matrix takes the form



# Relating two coordinate systems

• Suppose we have two coordinate systems  $\begin{bmatrix} \vec{e}_1' \ \vec{e}_2' \ \vec{e}_3' \ \underline{o}' \end{bmatrix} \begin{bmatrix} \vec{e}_1' \ \vec{e}_2' \ \vec{e}_3' \ \underline{o}' \end{bmatrix}$ 

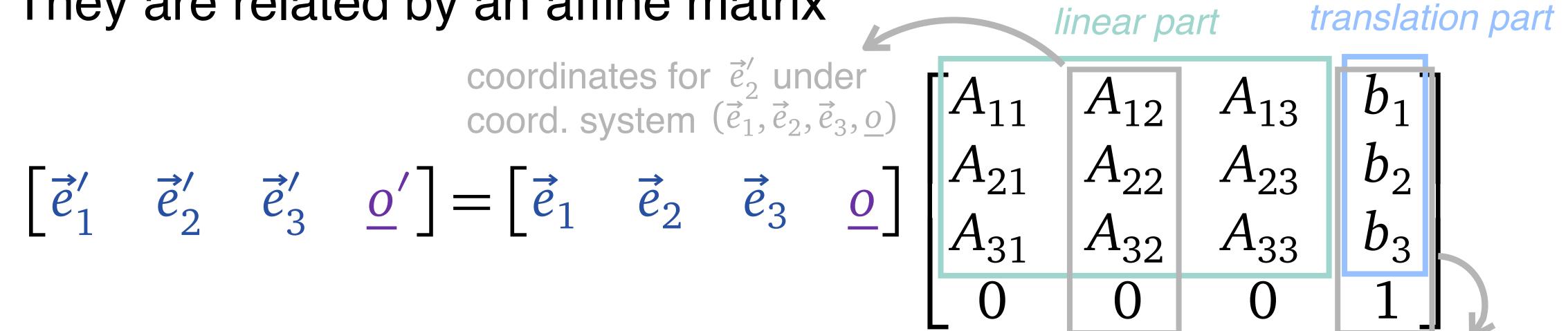
$$\begin{bmatrix} \vec{e}_1' & \vec{e}_2' & \vec{e}_3' & \underline{o}' \end{bmatrix}$$

$$\begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 & \underline{o} \end{bmatrix}$$

They are related by an affine matrix

coordinates for 
$$\vec{e}_2'$$
 under coord. system  $(\vec{e}_1, \vec{e}_2, \vec{e}_3, \underline{o})$ 

$$\begin{bmatrix} \vec{e}_1' & \vec{e}_2' & \vec{e}_3' & \underline{o}' \end{bmatrix} = \begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 & \underline{o} \end{bmatrix}$$



- coordinates for o' under The linear part relates the bases  $\vec{e}'^T = \vec{e}^T A$ coord. system  $(\vec{e}_1, \vec{e}_2, \vec{e}_3, \underline{o})$
- ► The translation part relates the origin  $o' = o + \vec{e}^T b$

# Relating two coordinate systems

$$\begin{bmatrix} \vec{e}_1' & \vec{e}_2' & \vec{e}_3' & \underline{o}' \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{bmatrix} = \begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 & \underline{o} \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ A_{21} & A_{22} & A_{23} & b_2 \\ A_{31} & A_{32} & A_{33} & b_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{bmatrix}$$

coordinates of P under the  $(\vec{e}', o')$ coordinate system

 $M\begin{bmatrix} p \\ 1 \end{bmatrix}$  is the coordinates of  $\underline{P}$  under the  $(\vec{e}, \underline{o})$ coordinate system

$$\mathbb{R}^{4}_{(\vec{\mathbf{e}},\underline{o})} \xleftarrow{\mathbb{R}^{4}_{3\times 3}} \mathbb{R}^{4}_{(\vec{\mathbf{e}}',\underline{o}')}$$

# Quick summary / examples

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

## Points/positions

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

## Vectors/displacements

$$\begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

## Linear transformation on vectors

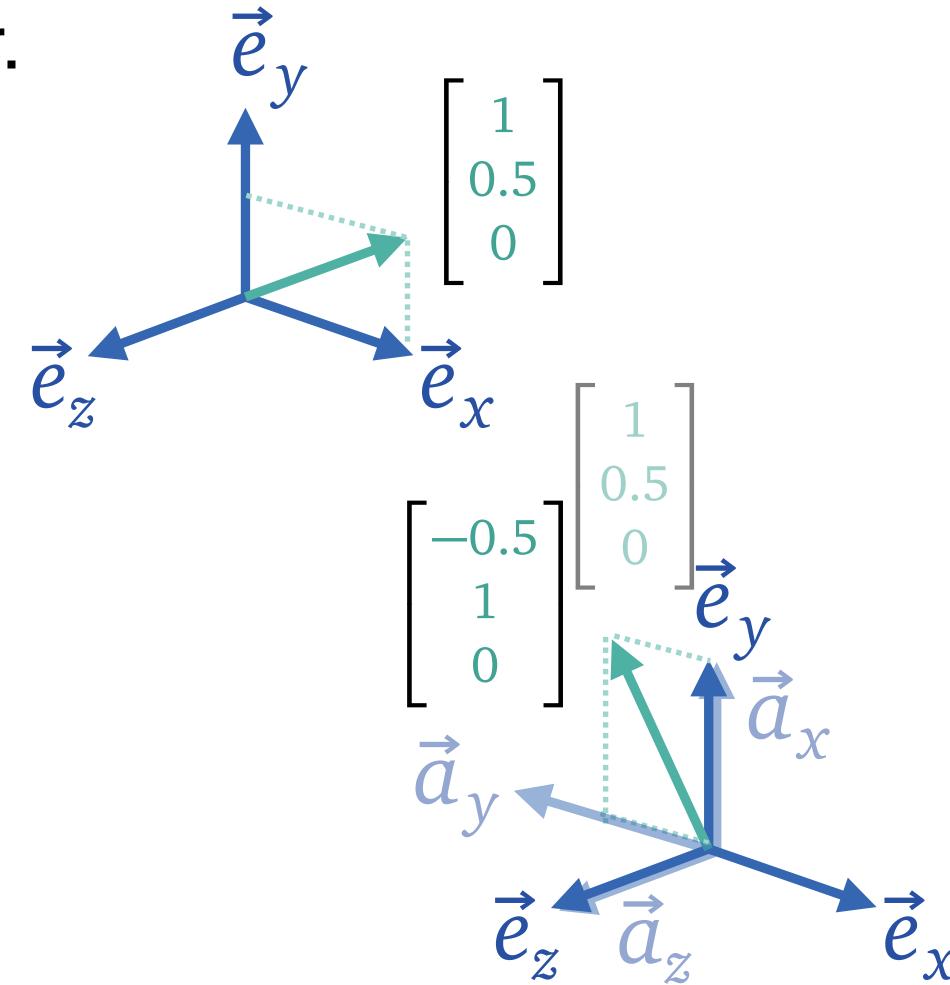
- Linear transformations are applied to vectors.
- In 3D, we don't need the 4th homogeneous coordinate.
   Just apply a 3x3 matrix to a 3D vector.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} a_{11}v_x + a_{12}v_y + a_{13}v_z \\ a_{21}v_x + a_{22}v_y + a_{23}v_z \\ a_{31}v_x + a_{32}v_y + a_{33}v_z \end{bmatrix}$$

# Linear transformation on vectors

- Linear transformations are applied to vectors.
- In 3D, we don't need the 4th homogeneous coordinate. Just apply a 3x3 matrix to a 3D vector.  $\vec{e}_{v}$

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} -v_y \\ v_x \\ v_z \end{bmatrix}$$



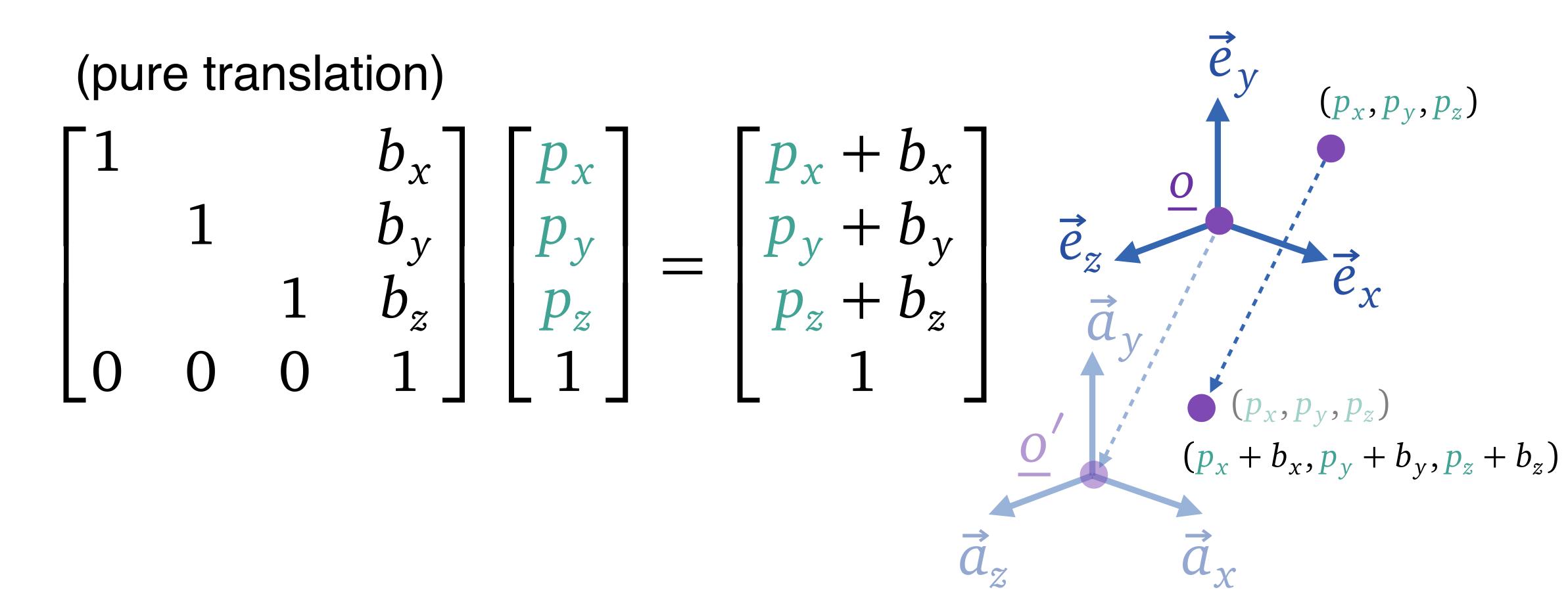
# Affine transformation on positions

- Affine transformations are applied to points.
- We need the 4th homogeneous coordinate to handle translations.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_x \\ a_{21} & a_{22} & a_{23} & b_y \\ a_{31} & a_{32} & a_{33} & b_z \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11}p_x + a_{12}p_y + a_{13}p_z + b_x \\ a_{21}p_x + a_{22}p_y + a_{23}p_z + b_y \\ a_{31}p_x + a_{32}p_y + a_{33}p_z + b_z \\ 1 \end{bmatrix}$$

# Affine transformation on positions

- Affine transformations are applied to points.
- We need the 4th homogeneous coordinate to handle translations.

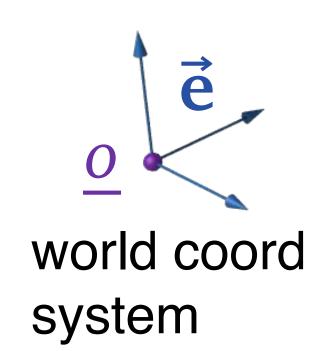


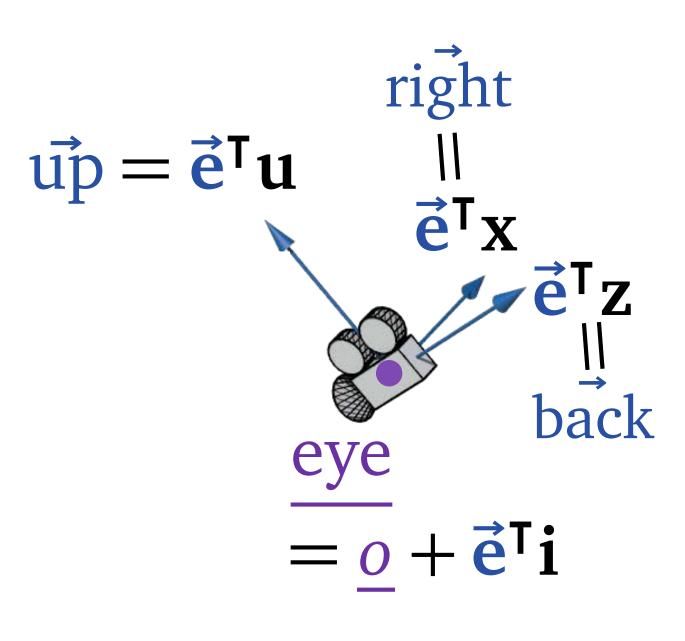
# Matrix from coord systems' relation

 Exercise: Find the affine transform matrix relating the two coordinate system

$$\begin{bmatrix} \overrightarrow{right} & \overrightarrow{up} & \overrightarrow{back} & \underline{eye} \end{bmatrix} = \begin{bmatrix} \overrightarrow{e}_1 & \overrightarrow{e}_2 & \overrightarrow{e}_3 & \underline{o} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbb{R}^4_{world} & \leftarrow & \mathbb{R}^4_{camera} \end{bmatrix}$$

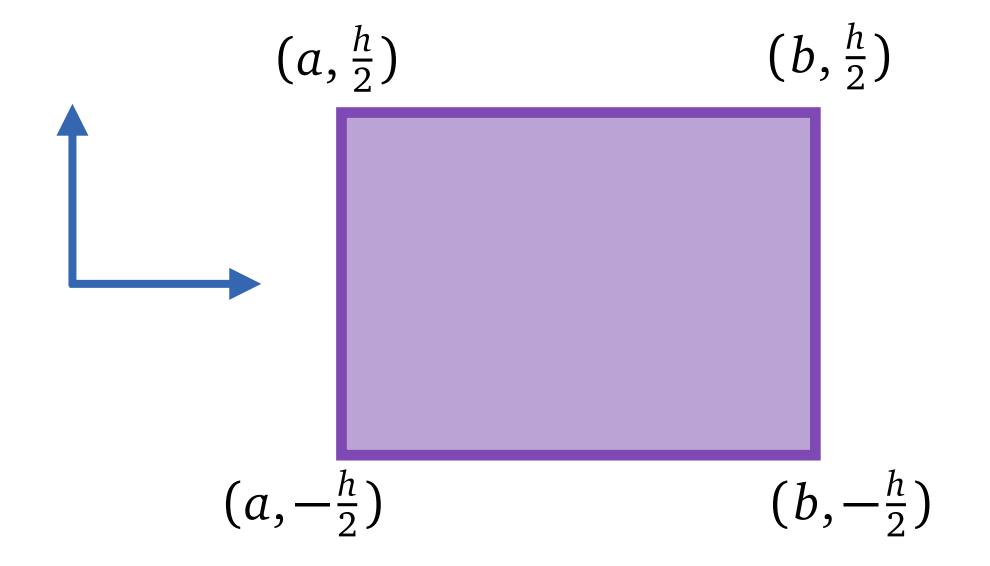
$$\mathbf{C} = \begin{bmatrix} | & | & | & | \\ \mathbf{x} & \mathbf{u} & \mathbf{z} & \mathbf{i} \\ | & | & | & | \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

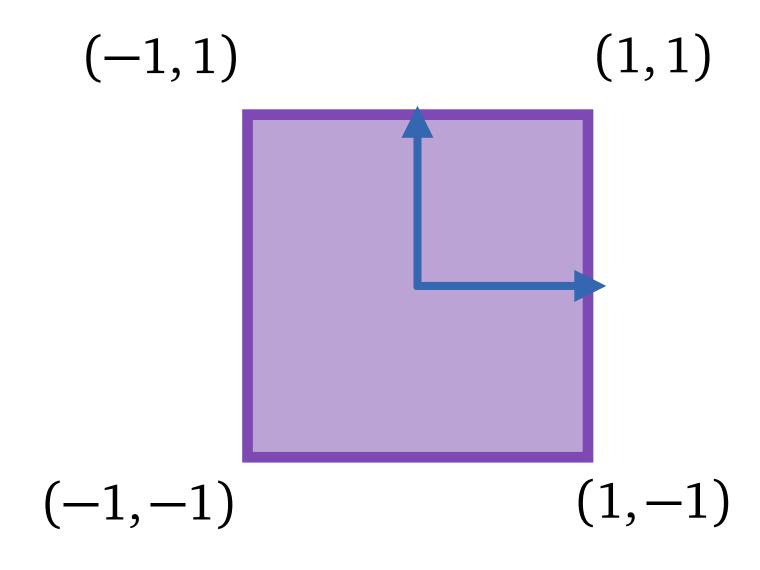




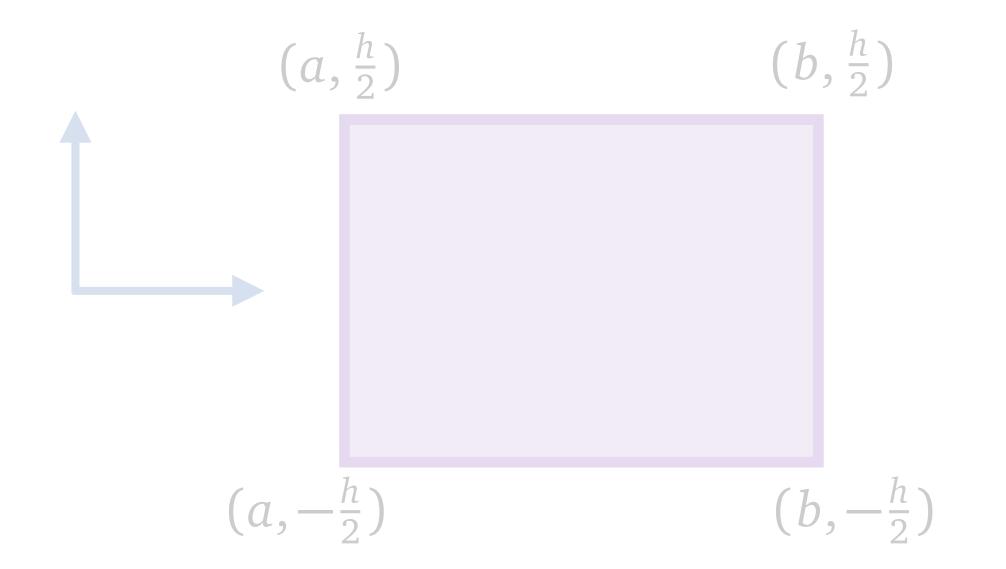
camera coord system

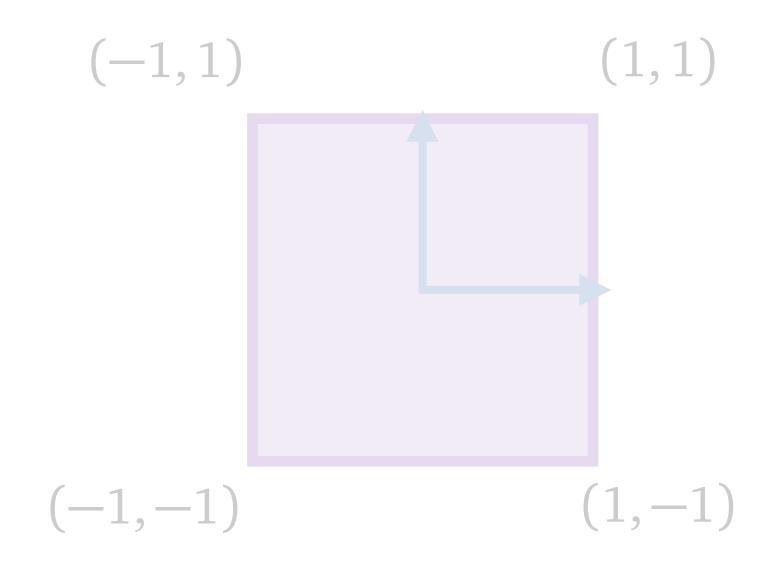
Exercise: Find the transformation that transforms the following
 2D box to a square centered at the origin



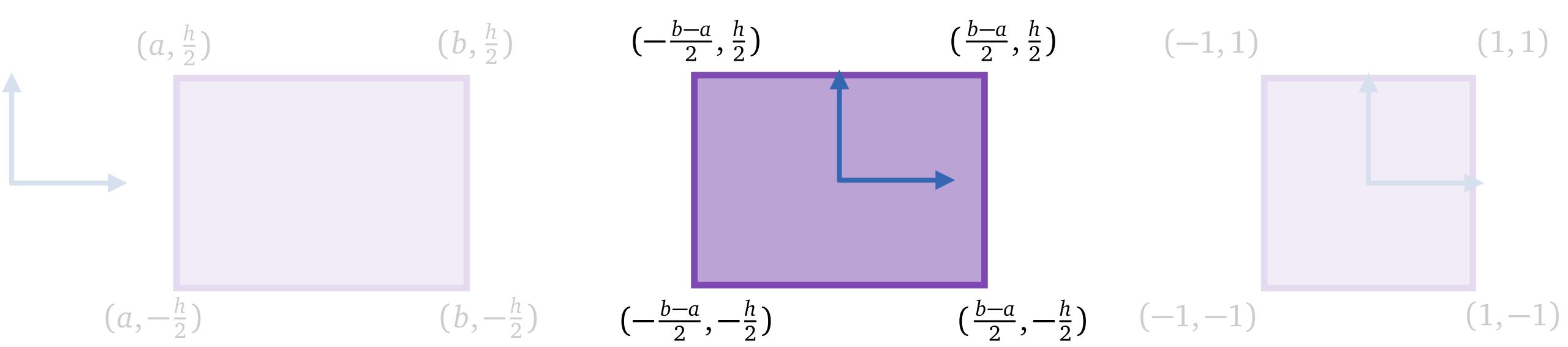


Exercise: Find the transformation that transforms the following
 2D box to a square centered at the origin





- Exercise: Find the transformation that transforms the following
   2D box to a square centered at the origin
- First translate to left by  $\frac{a+b}{2}$  so that the rectangle is centered about the origin
- Then scale horizontally by  $\frac{2}{b-a}$  and vertically by  $\frac{2}{h}$



• First translate to left by  $\frac{a+b}{2}$  so that the rectangle is centered about the origin

$$\mathbf{T} = \begin{bmatrix} 1 & -\frac{a+b}{2} \\ 1 & 0 \\ 1 \end{bmatrix}$$

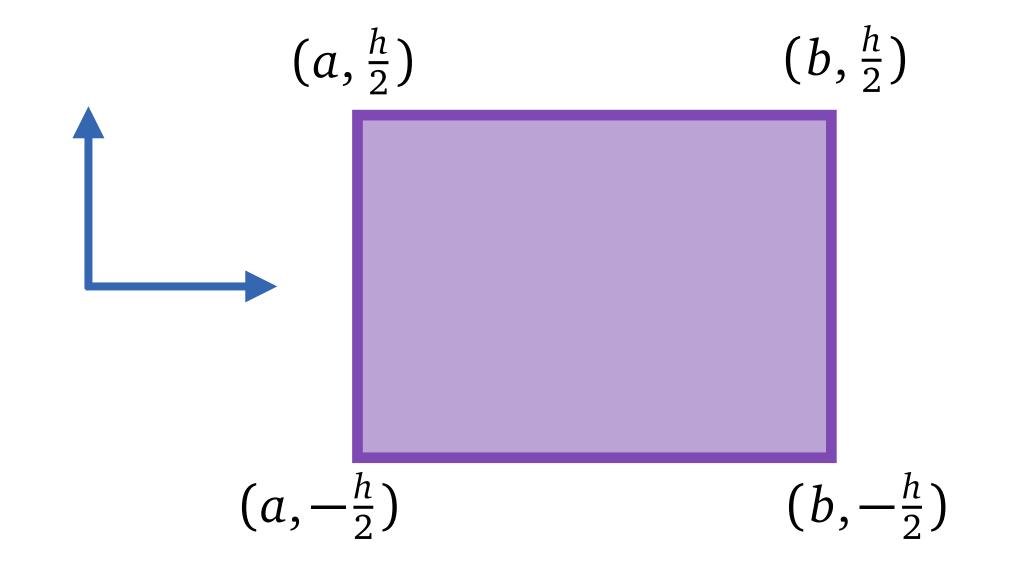
• Then scale horizontally by  $\frac{2}{b-a}$  and vertically by  $\frac{2}{h}$ 

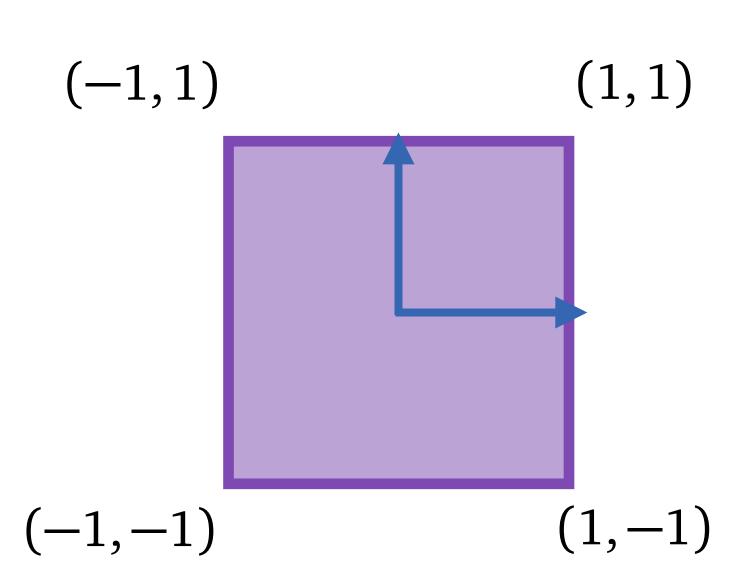
$$\mathbf{S} = \begin{bmatrix} \frac{2}{b-a} & 0\\ \frac{2}{h} & 0\\ 1 \end{bmatrix}$$

$$\mathbf{\Gamma} = \begin{bmatrix} 1 & -rac{a+b}{2} \\ & 1 & 0 \\ & & 1 \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} rac{2}{b-a} & 0 \\ & rac{2}{h} & 0 \\ & & 1 \end{bmatrix}$$

$$\mathbf{ST} = \begin{bmatrix} \frac{2}{b-a} & 0 \\ \frac{2}{h} & 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{a+b}{2} \\ 1 & 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{b-a} & -\frac{a+b}{b-a} \\ \frac{2}{h} & 0 \\ 1 \end{bmatrix}$$

$$\mathbf{ST} = \begin{bmatrix} \frac{2}{b-a} & 0 \\ \frac{2}{h} & 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{a+b}{2} \\ 1 & 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{b-a} & -\frac{a+b}{b-a} \\ \frac{2}{h} & 0 \\ 1 \end{bmatrix}$$





# Transformations in Graphics

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

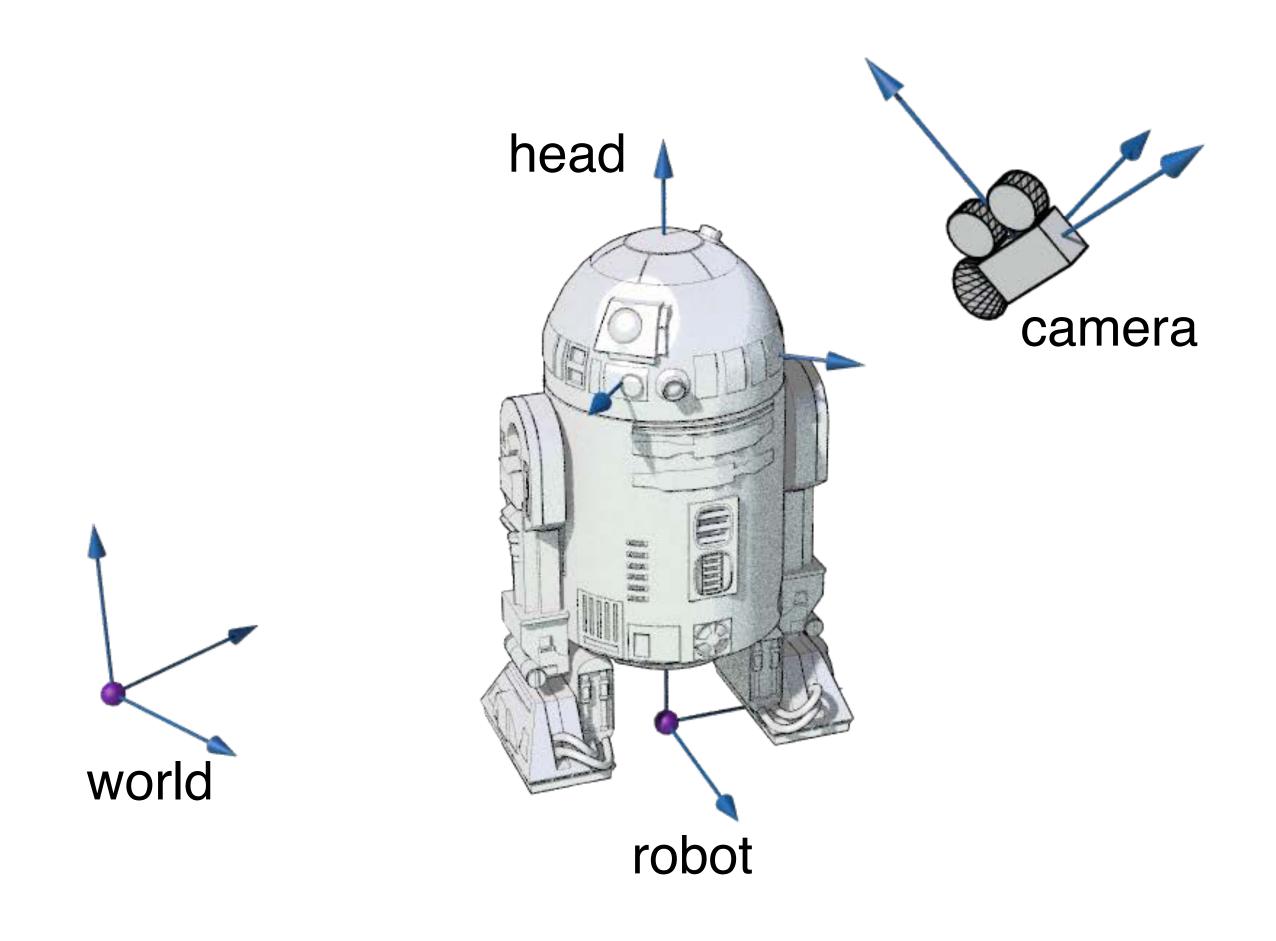
### In practice

- Positions are stored as 4D array of numbers with the last entry = 1.
- Each of the 4D array of numbers correspond to a geometric position under a frame.
- Between two different frames, we record a 4-by-4 matrix that takes the form

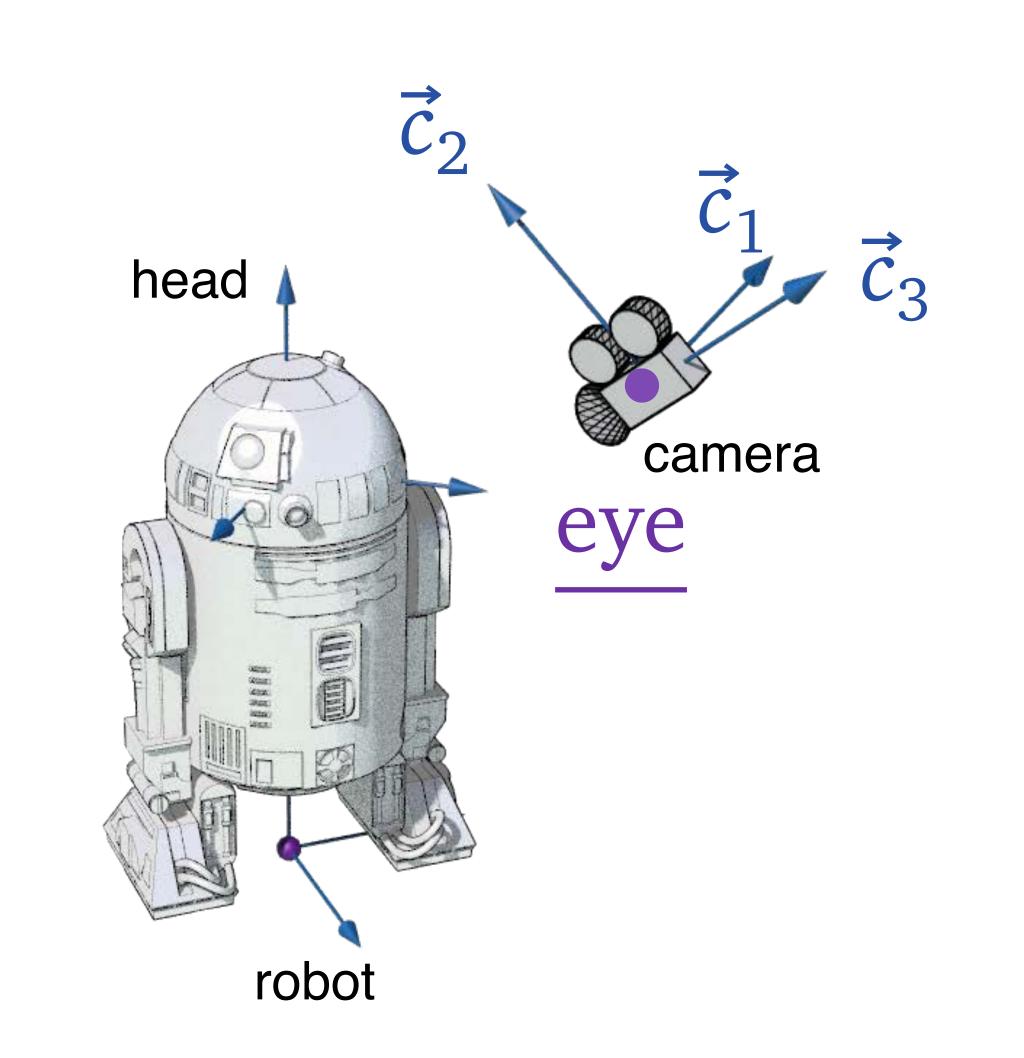
$$\mathbf{M} = \begin{bmatrix} \mathbf{A}_{3\times3} & \mathbf{b}_{3\times1} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

this is the "ratio" between two coordinate systems.

# A typical scene



### Camera's coordinate system

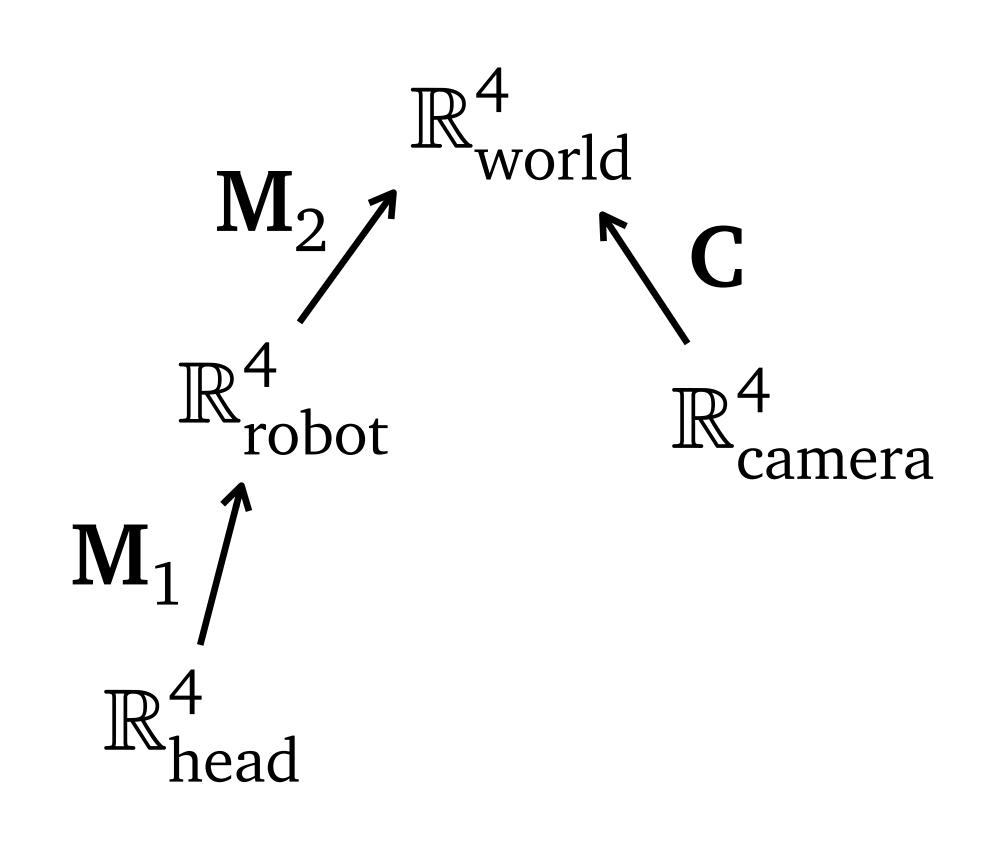


$$\vec{c}_1$$
  $\vec{c}_2$   $\vec{c}_3$  eye

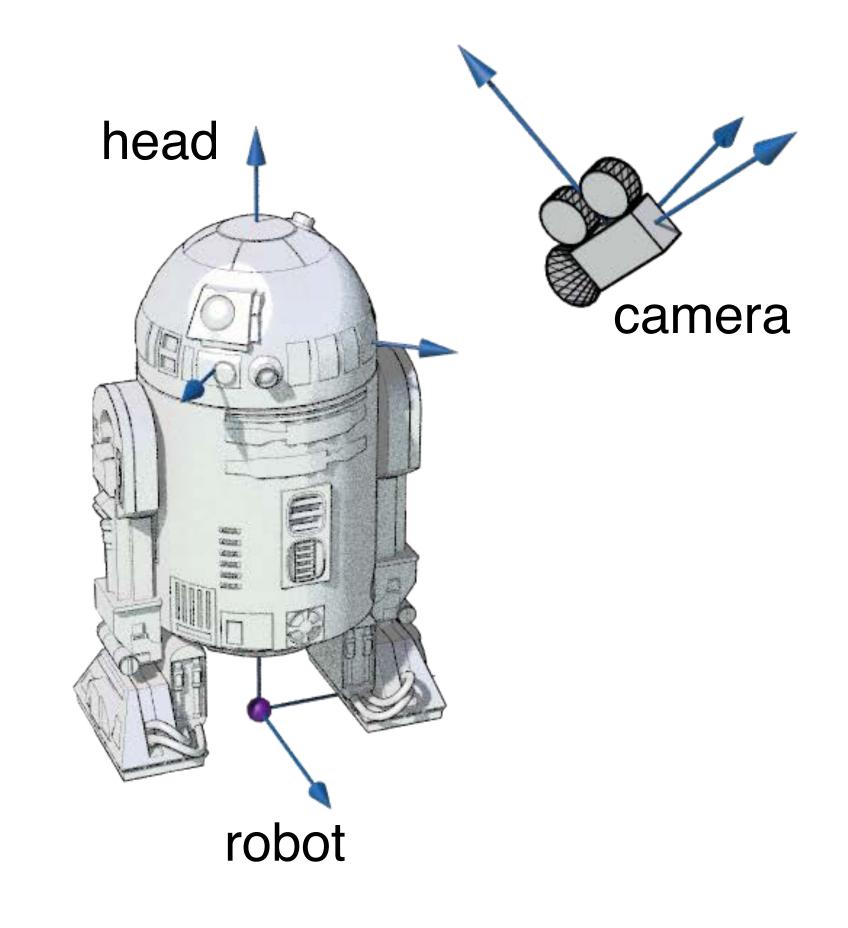
- $\vec{c}_1$ , camera's x vector, points to the right of the camera.
- $\vec{c}_2$ , camera's up vector, points to the top of the camera.
- $\vec{c}_3$ , camera's z vector, points to the back of the camera.
- eye is camera's position.



# A typical scene



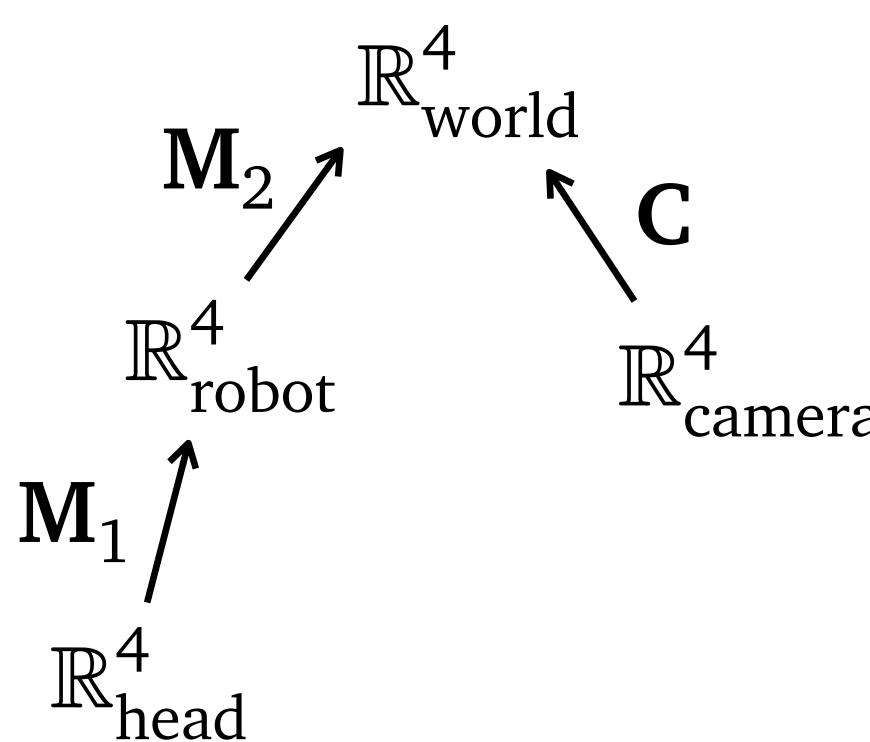




# Terminologies

- The 4x4 matrices  $\mathbf{M}_1$ ,  $\mathbf{M}_2$  (from model towards the world) are called **model matrices**.
- The model matrix C of the camera is called the camera matrix.
- The inverse of the camera matrix  $V = C^{-1}$  is called the **view matrix**.

 The matrix we apply to the 4D array of number in the "head" coordinate is VM<sub>2</sub>M<sub>1</sub> called the model-view matrix.



### Matrices are multiplied in the v-shader

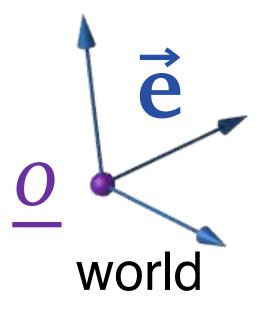
vertex shader

```
# version 330 core
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_normal;
uniform mat4 modelview;
uniform mat4 projection;
out vec4 position;
out vec3 normal;
void main(){
    gl_Position = projection * modelview * vec4( vertex_position, 1.0f);
    // forward the raw position and normal to frag shader
    position = vec4(vertex_position, 1.0f);
    normal = vertex normal;
```

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

#### Task

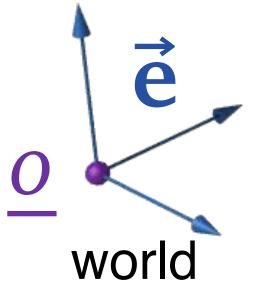
Given the eye position  $\mathbf{i} \in \mathbb{R}^3$ , target position  $\mathbf{t} \in \mathbb{R}^3$ , and up-vector  $\mathbf{u} \in \mathbb{R}^3$ , compute the 4x4 view matrix  $\mathbf{V}$ .

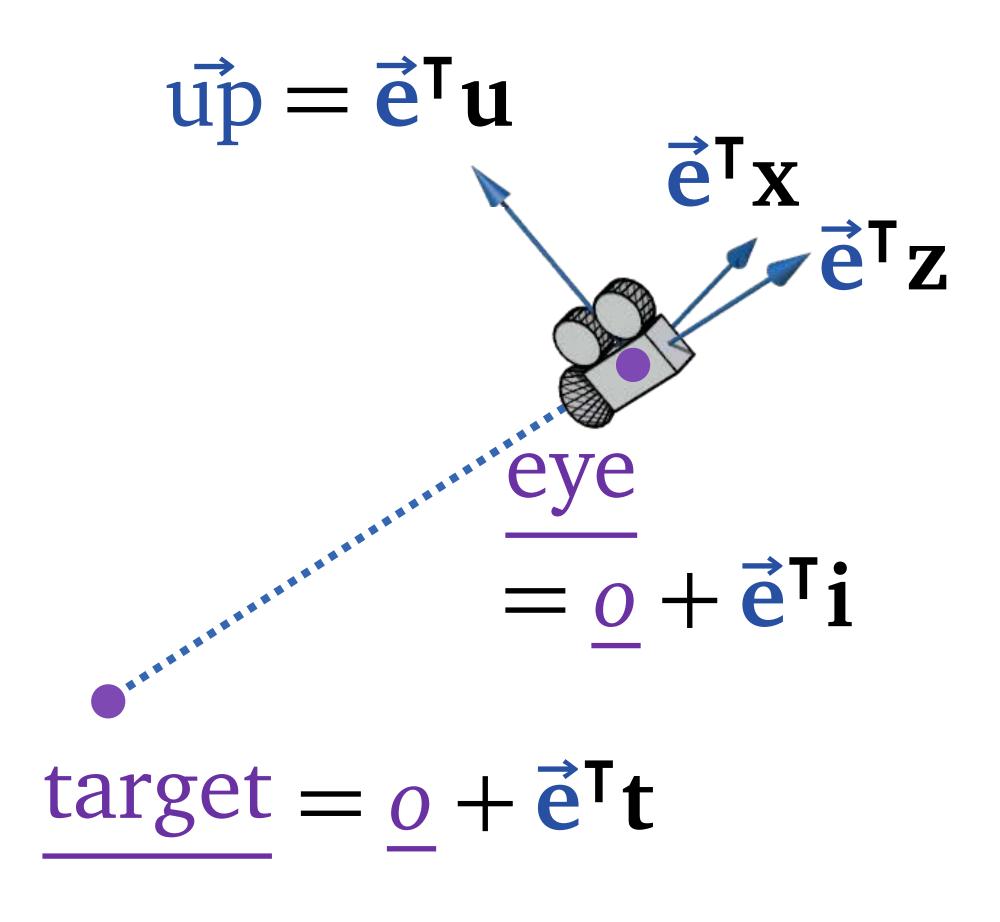




#### Task

Given the eye position  $\mathbf{i} \in \mathbb{R}^3$ , target position  $\mathbf{t} \in \mathbb{R}^3$ , and up-vector  $\mathbf{u} \in \mathbb{R}^3$ , compute the 4x4 view matrix  $\mathbf{V}$ .

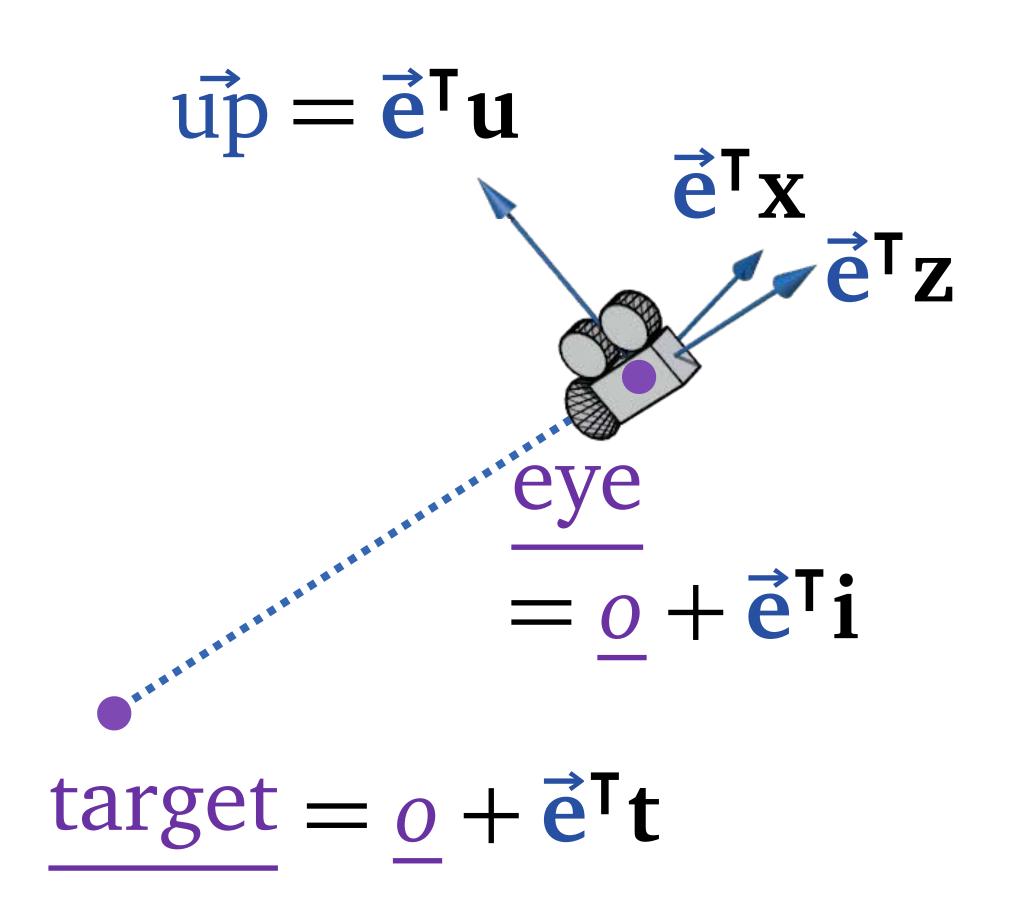




#### Step 1

Compute Z:

$$z = \frac{i - t}{|i - t|}$$



#### Step 1

Compute Z:

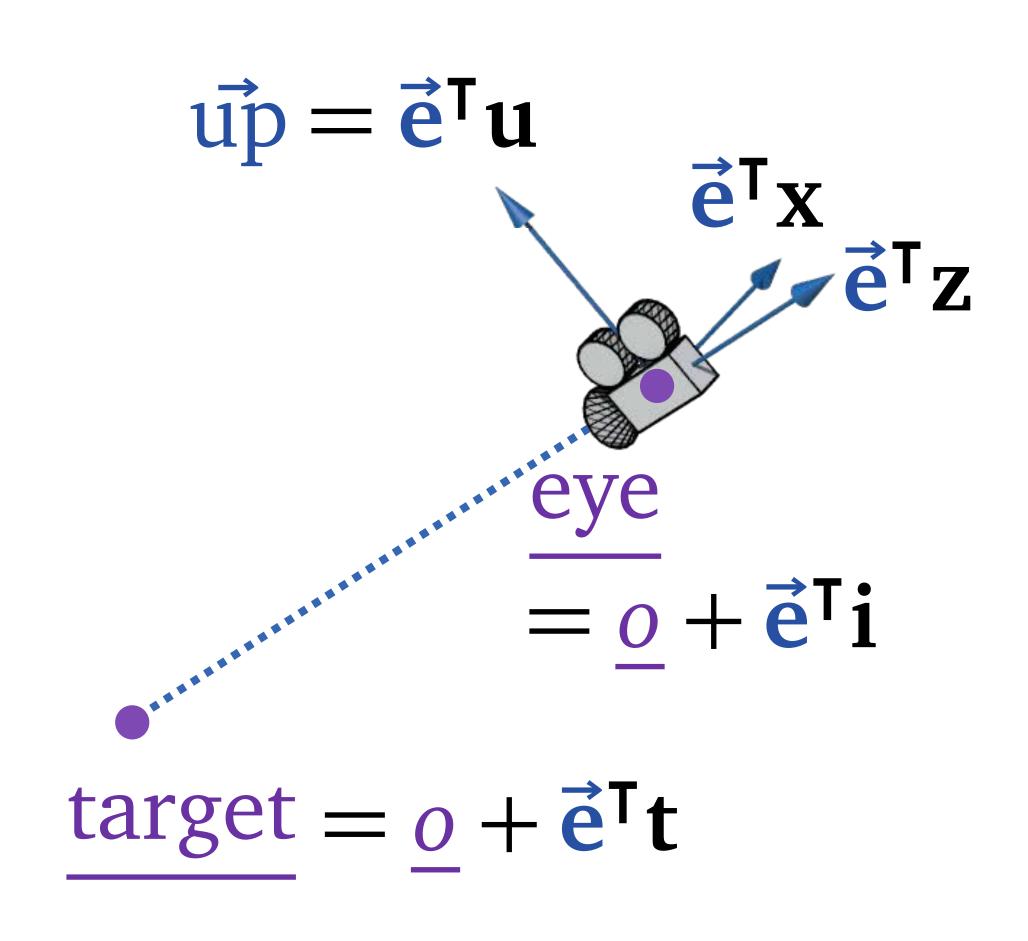
$$z = \frac{i - t}{|i - t|}$$

#### Step 2

Ensure that **u** is orthogonal to **z** 

$$u \leftarrow u - (z \cdot u)z$$

$$\mathbf{u} \leftarrow \frac{\mathbf{u}}{|\mathbf{u}|}$$



#### Step 2

Ensure that **u** is orthogonal to **z** 

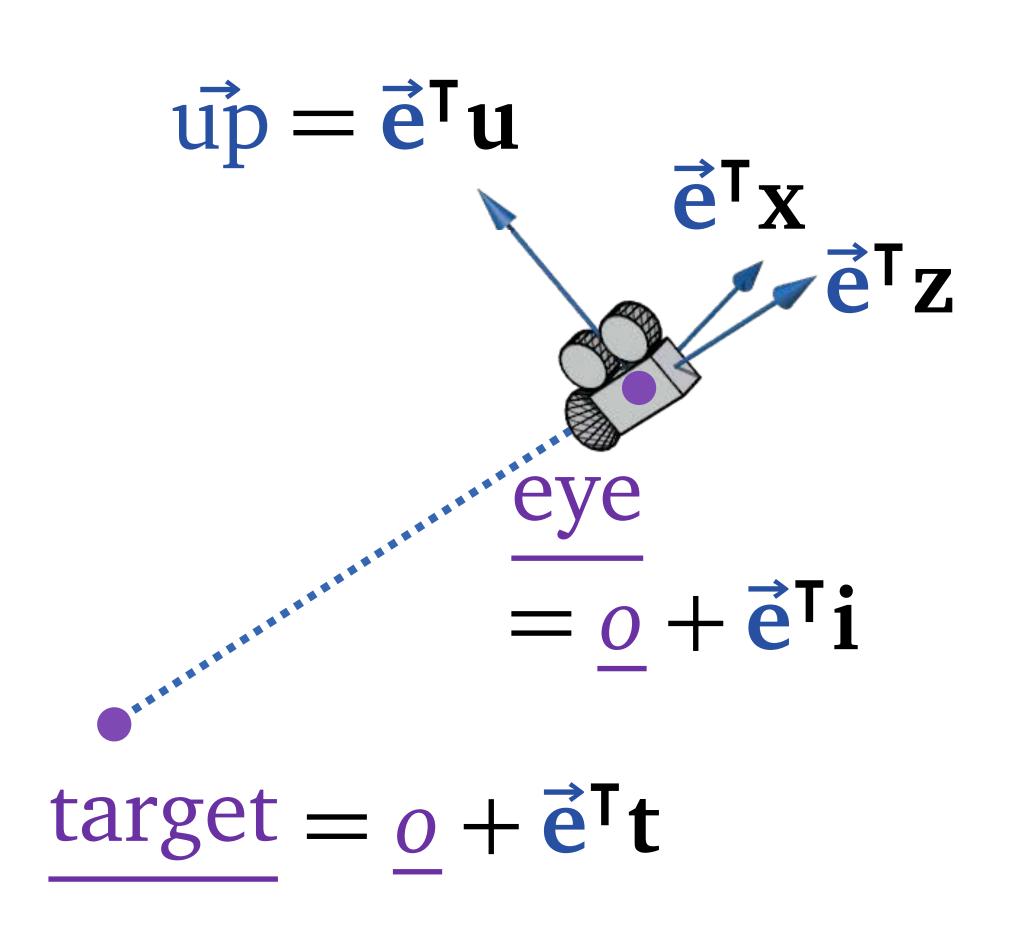
$$u \leftarrow u - (z \cdot u)z$$

$$\mathbf{u} \leftarrow \frac{\mathbf{u}}{|\mathbf{u}|}$$

#### Step 3

Compute X:

$$x = u \times z$$



#### Step 3

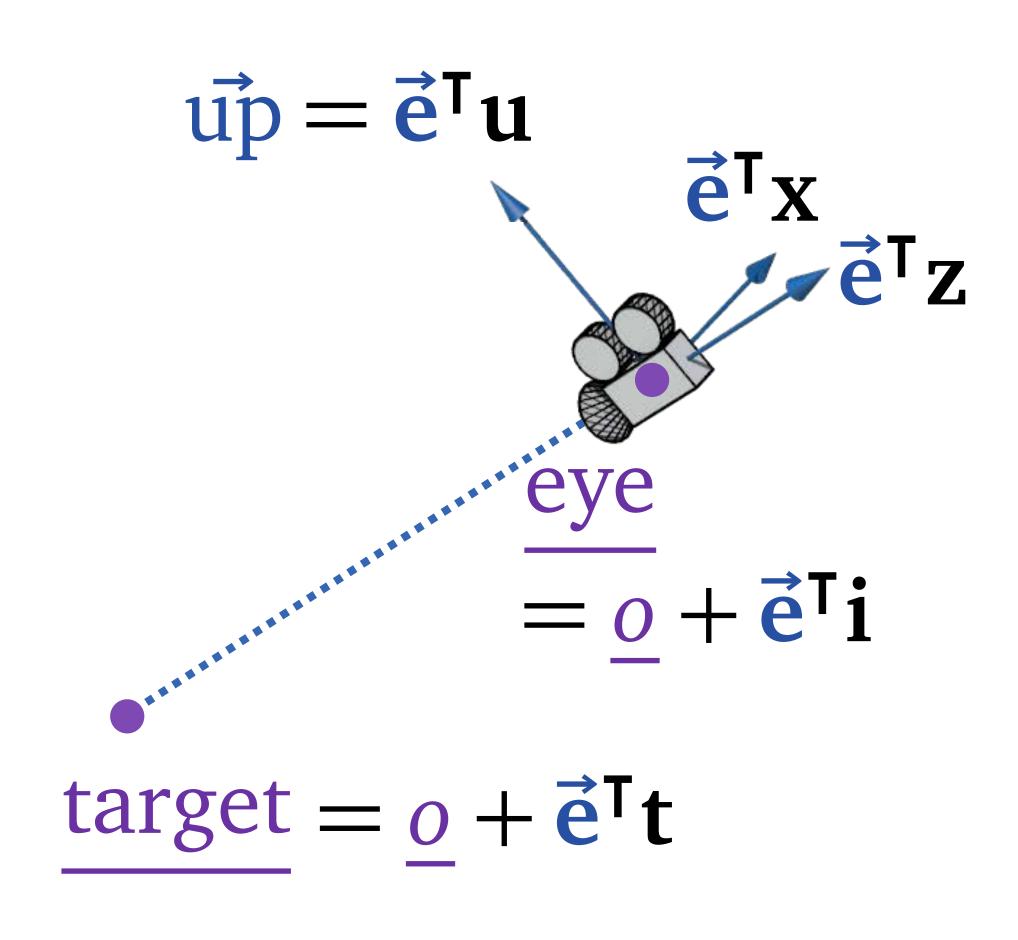
Compute X:

$$x = u \times z$$

#### Step 4

Camera matrix (model matrix for the camera)

$$\mathbf{C} = \begin{bmatrix} | & | & | & | \\ \mathbf{x} & \mathbf{u} & \mathbf{z} & \mathbf{i} \\ | & | & | & | \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

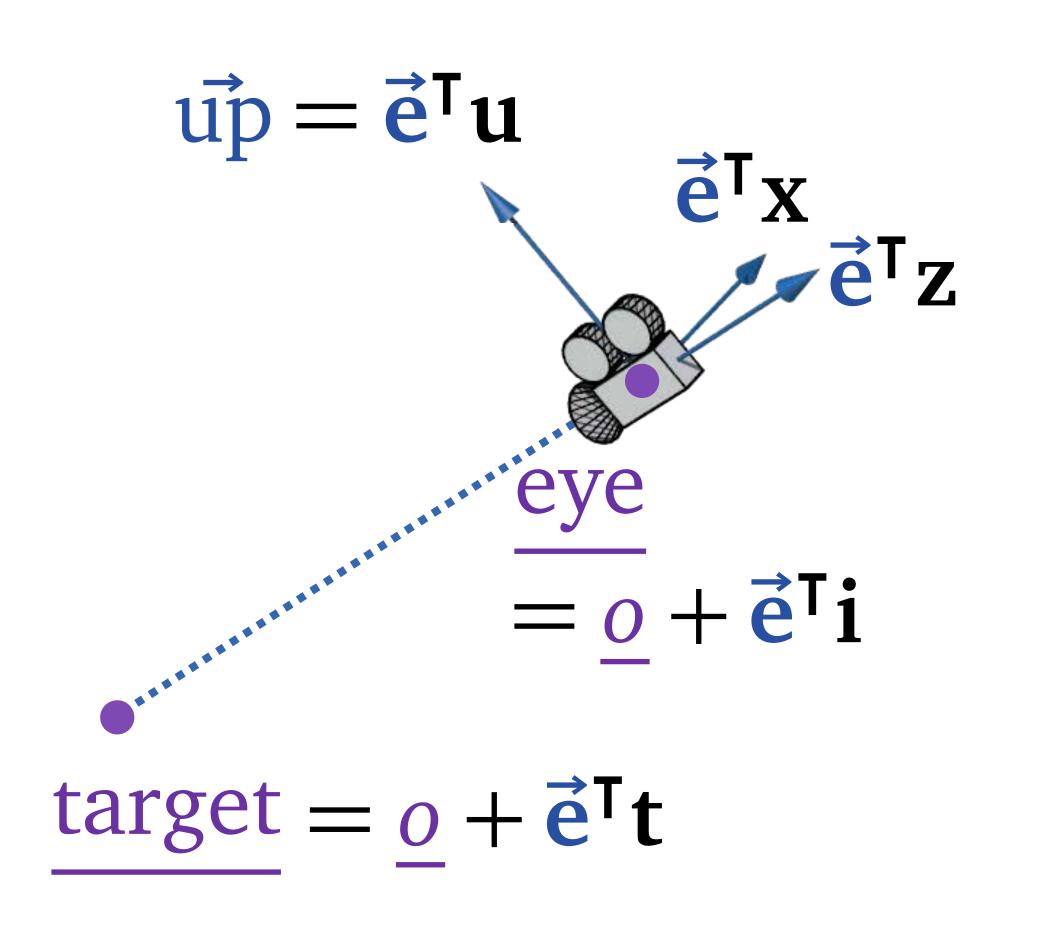


#### Step 4

Camera matrix (model matrix for the camera)

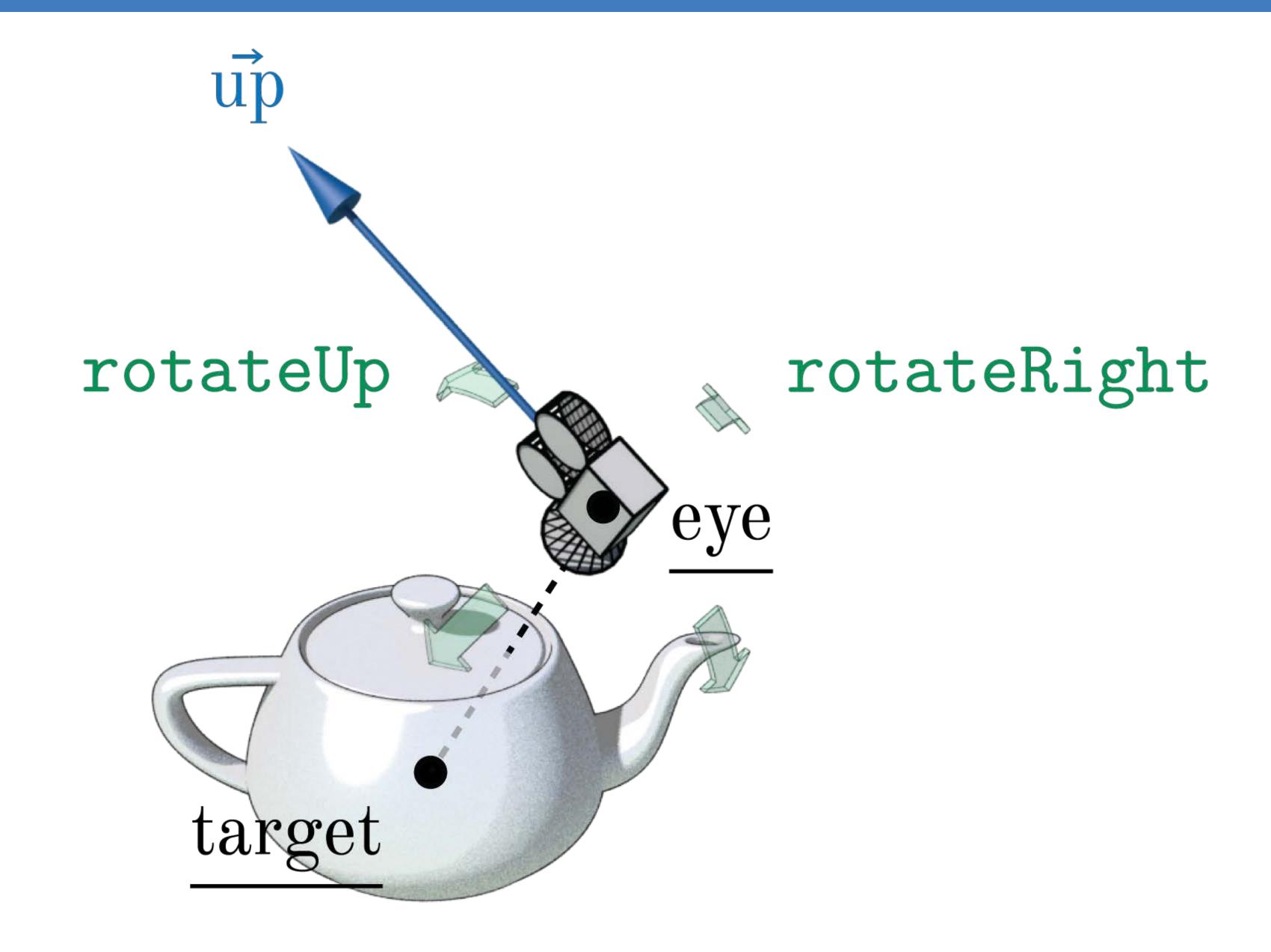
$$\mathbf{C} = \begin{bmatrix} | & | & | & | \\ \mathbf{x} & \mathbf{u} & \mathbf{z} & \mathbf{i} \\ | & | & | & | \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### Final Step



# Miscellaneous

# Camera::rotateRight, rotateUp



### Induced transformation

Induced transformation

### Induced transformation

 If all positions of a geometric object is transformed by an affine transformation

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_x \\ a_{21} & a_{22} & a_{23} & b_y \\ a_{31} & a_{32} & a_{33} & b_z \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11}p_x + a_{12}p_y + a_{13}p_z + b_x \\ a_{21}p_x + a_{22}p_y + a_{23}p_z + b_y \\ a_{31}p_x + a_{32}p_y + a_{33}p_z + b_z \\ 1 \end{bmatrix}$$

 Then all displacement vectors are transformed by the upper-left 3x3 block matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} a_{11}v_x + a_{12}v_y + a_{13}v_z \\ a_{21}v_x + a_{22}v_y + a_{23}v_z \\ a_{31}v_x + a_{32}v_y + a_{33}v_z \end{bmatrix}$$

### Induced transformation

 If all positions of a geometric object is transformed by an affine transformation

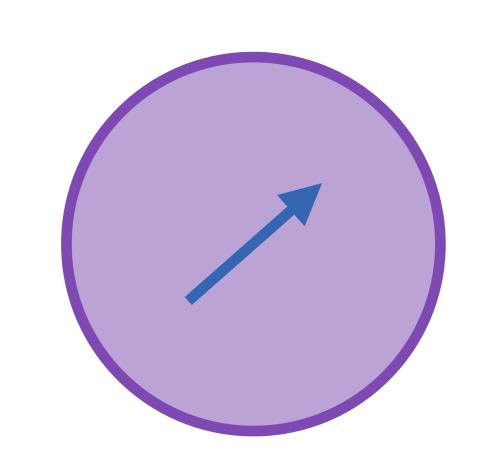
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_x \\ a_{21} & a_{22} & a_{23} & b_y \\ a_{31} & a_{32} & a_{33} & b_z \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11}p_x + a_{12}p_y + a_{13}p_z + b_x \\ a_{21}p_x + a_{22}p_y + a_{23}p_z + b_y \\ a_{31}p_x + a_{32}p_y + a_{33}p_z + b_z \\ 1 \end{bmatrix}$$

How about normal vectors?

### Induced Transformation on Vectors

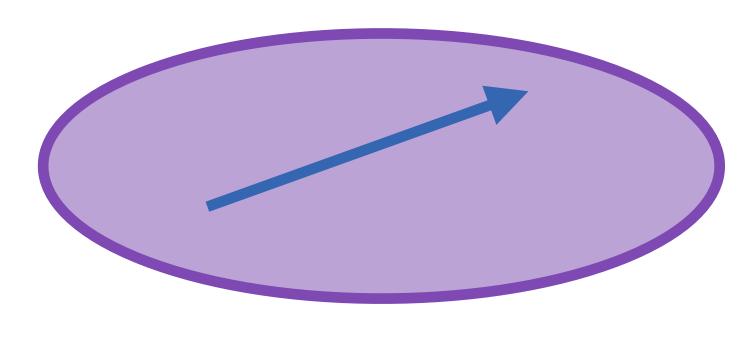
Suppose we have an affine transformation on positions

$$\begin{bmatrix} \mathbf{p} \\ \mathbf{1} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ \mathbf{1} \end{bmatrix}$$



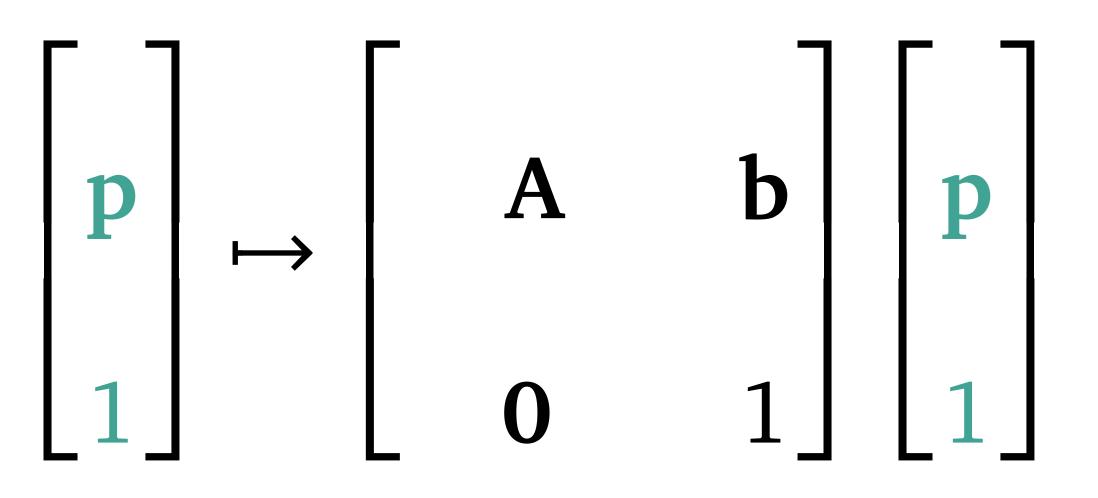
Then displacement vectors will transform by

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{u} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A} \\ \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \end{bmatrix}$$

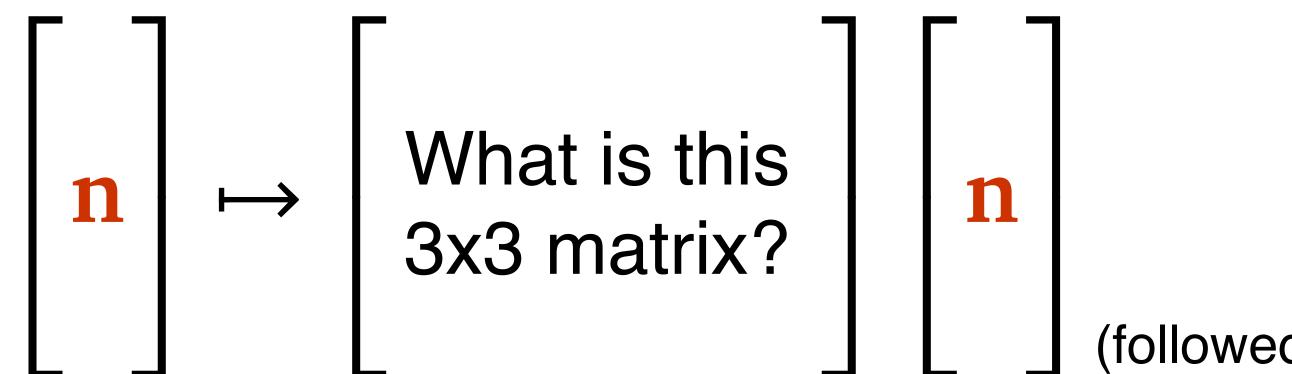


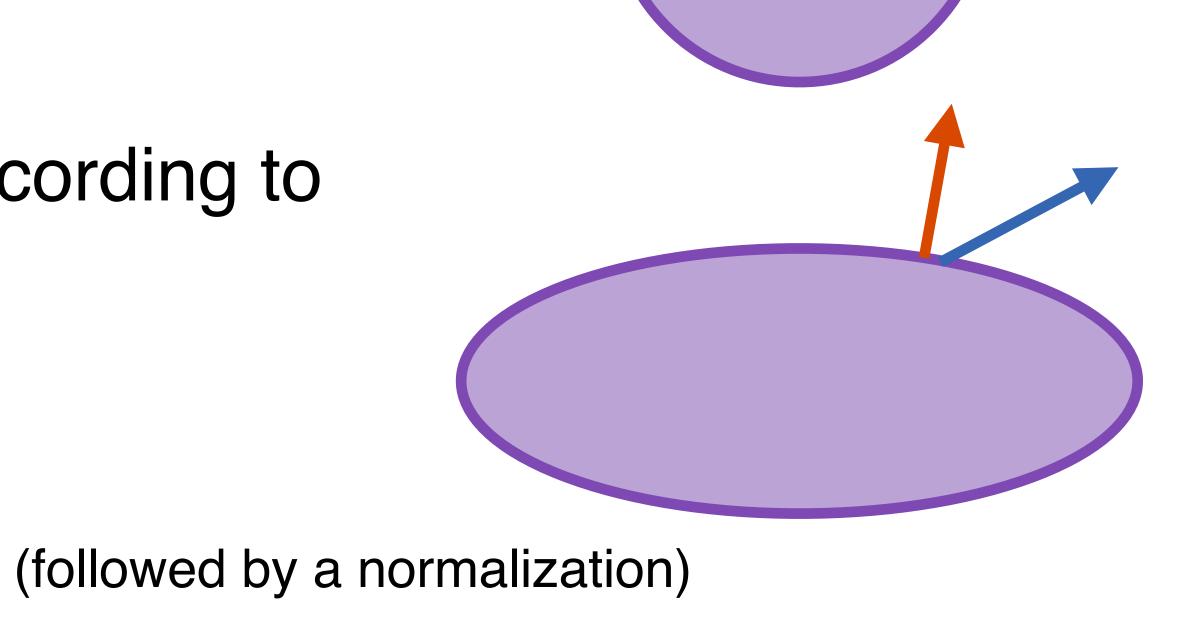
### Induced Transformation on Normals

Suppose we have an affine transformation on positions



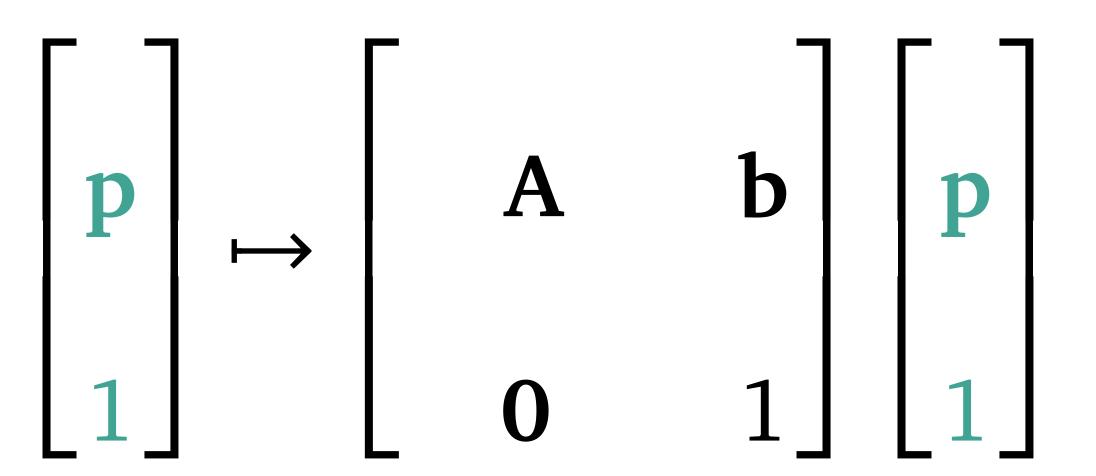
and normal vectors transform according to





### Induced Transformation on Normals

Suppose we have an affine transformation on positions



and normal vectors transform according to

