CSE 167 (FA22) Computer Graphics: Affine Geometry

Albert Chern

Overview

We've learned about the geometry and algebra of vectors.

• Today: positions (affine points) and displacements (vectors)

Coordinate system (analogous to basis)

Affine transformations = linear transforms + translations

model matrix, view matrix

Recall: Vectors

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

Recall: Vectors

There are two representations of vectors:

Geometric
$$\vec{v} \in V$$
 vector space Algebraic $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3$

A basis of the vector space relates the two representations

$$\vec{\boldsymbol{\nu}} = \begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

• Transformations and change of basis

$$\begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \end{bmatrix} = \begin{bmatrix} \vec{e}_1 \ \vec{e}_2 \ \vec{e}_3 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ a_{32} \end{bmatrix} \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \\ a_{33} \end{bmatrix}$$

$$\begin{array}{c} a_{13} \\ a_{23} \\ a_{33} \\ a_{33} \end{array} \end{bmatrix}$$

$$\begin{array}{c} A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \\ \mathbb{R}^3_{\vec{a}}$$

$$\begin{array}{c} A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \\ \mathbb{R}^3_{\vec{a}}$$

- Basic operations
- ightharpoonup Vector add vector $\vec{u} + \vec{v}$
- scalar times vector

basis
$$(\vec{e}_1, \vec{e}_2, \vec{e}_3)$$

$$\mathbf{11 + V}$$

$$\mathbf{\alpha V}$$

$$\mathbb{R}^{3}_{\mathbf{e}} \overset{\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}}{\mathbf{A}\mathbf{v}} \mathbb{R}^{3}_{\mathbf{a}}$$

Limitations of vectors

- Vectors are good at describing
 - Displacements, velocities, accelerations, forces
- Vectors are awkward at describing point positions
 - Additions and scalings are meaningless for point positions
 - Linear transformation cannot represent translations (parallel shift)
- Next, we will mix in a new type of object called (affine) point

Affine points

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

Points and vectors are different.

- ullet Points describe positions (denoted by p)
- Vectors describe displacements (denoted by \vec{v})

Base on our experience:

- Differences of positions are displacements $\underline{q} \underline{p} = v$
- Position add displacement is position $p + \vec{v} = q$
- Linear combinations of displacements are displacements

$$c_1\vec{v}_1 + c_2\vec{v}_2 = \vec{u}$$

- Scale and sum of positions don't make sense $c_1\underline{p}_1 + c_2\underline{p}_2 = ?$
- Average of positions is fine $0.5\underline{p}_1 + 0.5\underline{p}_2 = \underline{q}$

The collection of all vectors form a vector space.

$$\rightarrow \overrightarrow{\text{vec}} + \overrightarrow{\text{vec}} = \overrightarrow{\text{vec}}$$

The collection of all points form an affine space.

$$\rightarrow$$
 pt + $\overrightarrow{\text{vec}}$ = pt

$$\rightarrow pt - pt = \overrightarrow{vec}$$

- scalar * pt = not defined!
- \rightarrow pt + pt = not defined!

What is the algebraic representation for vectors and points?

Homogeneous coordinates

Points/positions

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

Vectors/displacements

$$\begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

Points/positions

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{q} \\ 1 \end{bmatrix} - \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{q} - \mathbf{p} \\ 0 \end{bmatrix}$$
pt vec

Vectors/displacements

$$\begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

$$c_1 \begin{bmatrix} \mathbf{v}_1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} \mathbf{v}_2 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 \\ 0 \end{bmatrix}$$
vec
vec

$$\begin{bmatrix} \mathbf{q} \\ 1 \end{bmatrix} - \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{q} - \mathbf{p} \\ 0 \end{bmatrix}$$
pt vec

$$\begin{bmatrix} \mathbf{q} \\ 1 \end{bmatrix} - \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{q} - \mathbf{p} \\ 0 \end{bmatrix} \qquad c_1 \begin{bmatrix} \mathbf{v}_1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} \mathbf{v}_2 \\ 0 \end{bmatrix} = \begin{bmatrix} c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 \\ 0 \end{bmatrix}$$
pt pt vec vec vec

$$\begin{bmatrix} \mathbf{p}_1 \\ 1 \end{bmatrix} + \begin{bmatrix} \mathbf{p}_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_1 + \mathbf{p}_2 \\ 2 \end{bmatrix}$$
pt
pt not defined

$$\begin{bmatrix} \mathbf{p}_1 \\ 1 \end{bmatrix} + \begin{bmatrix} \mathbf{p}_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_1 + \mathbf{p}_2 \\ 2 \end{bmatrix} \qquad 0.5 \begin{bmatrix} \mathbf{p}_1 \\ 1 \end{bmatrix} + 0.5 \begin{bmatrix} \mathbf{p}_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{p}_1 + \mathbf{p}_2}{2} \\ 1 \end{bmatrix}$$
pt pt not defined pt pt pt

Points/positions

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

Vectors/displacements

$$\begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

The 4-dimensional coordinates for 3D points and vectors are called the **homogeneous coordinates**.

Coordinate system

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

Basis v.s. coordinate systems

• For vectors $\vec{v} = \begin{bmatrix} \vec{e}_1 \ \vec{e}_2 \ \vec{e}_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$

For affine points

displacement vector <u>p</u> − o

Coordinate system

Let P be an affine space modeled on a vector space V.

A frame or an affine coordinate system is a basis $\vec{\mathbf{e}}$ for Vtogether with a point $o \in P$.

Given any $p \in P$ we can uniquely write it as

geometric
$$\underline{p} = p_1 \vec{e}_1 + \dots + p_n \vec{e}_n + \underline{o}$$

$$= \begin{bmatrix} \vec{\mathbf{e}}^{\mathsf{T}} & \underline{o} \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ \mathbf{1} \end{bmatrix}$$

coordinate system

array of numbers as homogeneous coordinate

Affine Transformations

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

Affine transformations

• In matrix algebra, we call $x \mapsto Ax$ linear transformations

$$\begin{bmatrix} \mathbf{x}_{3 \times 1} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A}_{3 \times 3} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{3 \times 1} \end{bmatrix}$$

• Transformations that take the form of $x \mapsto Ax + b$

$$\begin{bmatrix} \mathbf{x}_{3\times 1} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A}_{3\times 3} & \end{bmatrix} \begin{bmatrix} \mathbf{x}_{3\times 1} \end{bmatrix} + \begin{bmatrix} \mathbf{b}_{3\times 1} \end{bmatrix}$$

are called affine transformations.

Affine transformations

• Transformations that take the form of $x \mapsto Ax + b$

$$\begin{bmatrix} \mathbf{x}_{3\times 1} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A}_{3\times 3} \\ \end{bmatrix} \mathbf{a}_{3\times 1} + \begin{bmatrix} \mathbf{b}_{3\times 1} \\ \end{bmatrix}$$

are called affine transformations.

Using the homogeneous coordinate, it's a single matrix multiplication!

$$egin{bmatrix} \mathbf{x}_{3 imes 1} \ 1 \end{bmatrix} \mapsto egin{bmatrix} \mathbf{A}_{3 imes 3} & \mathbf{b}_{3 imes 1} \ \mathbf{0}_{1 imes 3} & 1 \end{bmatrix} egin{bmatrix} \mathbf{x}_{3 imes 1} \ 1 \end{bmatrix} = egin{bmatrix} \mathbf{A}\mathbf{x} + \mathbf{b} \ 1 \end{bmatrix}$$

Affine transformation matrix

An affine transformation matrix takes the form

Relating two coordinate systems

• Suppose we have two coordinate systems $\begin{bmatrix} \vec{e}_1' \ \vec{e}_2' \ \vec{e}_3' \ \underline{o}' \end{bmatrix} \begin{bmatrix} \vec{e}_1' \ \vec{e}_2' \ \vec{e}_3' \ \underline{o}' \end{bmatrix}$

$$\begin{bmatrix} \vec{e}_1' & \vec{e}_2' & \vec{e}_3' & \underline{o}' \end{bmatrix}$$

$$\begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 & \underline{o} \end{bmatrix}$$

They are related by an affine matrix

coordinates for
$$\vec{e}_2'$$
 under coord. system $(\vec{e}_1, \vec{e}_2, \vec{e}_3, \underline{o})$

$$\begin{bmatrix} \vec{e}_1' & \vec{e}_2' & \vec{e}_3' & \underline{o}' \end{bmatrix} = \begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 & \underline{o} \end{bmatrix}$$

- coordinates for o' under The linear part relates the bases $\vec{e}'^T = \vec{e}^T A$ coord. system $(\vec{e}_1, \vec{e}_2, \vec{e}_3, \underline{o})$
- ► The translation part relates the origin $o' = o + \vec{e}^T b$

Relating two coordinate systems

$$\begin{bmatrix} \vec{e}_1' & \vec{e}_2' & \vec{e}_3' & \underline{o}' \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{bmatrix} = \begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 & \underline{o} \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ A_{21} & A_{22} & A_{23} & b_2 \\ A_{31} & A_{32} & A_{33} & b_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{bmatrix}$$

coordinates of P under the (\vec{e}', o') coordinate system

 $M\begin{bmatrix} p \\ 1 \end{bmatrix}$ is the coordinates of \underline{P} under the (\vec{e}, \underline{o}) coordinate system

$$\mathbb{R}^{4}_{(\vec{\mathbf{e}},\underline{o})} \xleftarrow{\mathbb{R}^{4}_{3\times 3}} \mathbb{R}^{4}_{(\vec{\mathbf{e}}',\underline{o}')}$$

Quick summary / examples

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

Points/positions

$$\begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

Vectors/displacements

$$\begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}$$

Linear transformation on vectors

- Linear transformations are applied to vectors.
- In 3D, we don't need the 4th homogeneous coordinate.
 Just apply a 3x3 matrix to a 3D vector.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} a_{11}v_x + a_{12}v_y + a_{13}v_z \\ a_{21}v_x + a_{22}v_y + a_{23}v_z \\ a_{31}v_x + a_{32}v_y + a_{33}v_z \end{bmatrix}$$

Linear transformation on vectors

- Linear transformations are applied to vectors.
- In 3D, we don't need the 4th homogeneous coordinate. Just apply a 3x3 matrix to a 3D vector. \vec{e}_{v}

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} -v_y \\ v_x \\ v_z \end{bmatrix}$$

Affine transformation on positions

- Affine transformations are applied to points.
- We need the 4th homogeneous coordinate to handle translations.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_x \\ a_{21} & a_{22} & a_{23} & b_y \\ a_{31} & a_{32} & a_{33} & b_z \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11}p_x + a_{12}p_y + a_{13}p_z + b_x \\ a_{21}p_x + a_{22}p_y + a_{23}p_z + b_y \\ a_{31}p_x + a_{32}p_y + a_{33}p_z + b_z \\ 1 \end{bmatrix}$$

Affine transformation on positions

- Affine transformations are applied to points.
- We need the 4th homogeneous coordinate to handle translations.

Matrix from coord systems' relation

 Exercise: Find the affine transform matrix relating the two coordinate system

$$\begin{bmatrix} \overrightarrow{right} & \overrightarrow{up} & \overrightarrow{back} & \underline{eye} \end{bmatrix} = \begin{bmatrix} \overrightarrow{e}_1 & \overrightarrow{e}_2 & \overrightarrow{e}_3 & \underline{o} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbb{R}^4_{world} & \leftarrow & \mathbb{R}^4_{camera} \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} | & | & | & | \\ \mathbf{x} & \mathbf{u} & \mathbf{z} & \mathbf{i} \\ | & | & | & | \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

camera coord system

Exercise: Find the transformation that transforms the following
 2D box to a square centered at the origin

Exercise: Find the transformation that transforms the following
 2D box to a square centered at the origin

- Exercise: Find the transformation that transforms the following
 2D box to a square centered at the origin
- First translate to left by $\frac{a+b}{2}$ so that the rectangle is centered about the origin
- Then scale horizontally by $\frac{2}{b-a}$ and vertically by $\frac{2}{h}$

• First translate to left by $\frac{a+b}{2}$ so that the rectangle is centered about the origin

$$\mathbf{T} = \begin{bmatrix} 1 & -\frac{a+b}{2} \\ 1 & 0 \\ 1 \end{bmatrix}$$

• Then scale horizontally by $\frac{2}{b-a}$ and vertically by $\frac{2}{h}$

$$\mathbf{S} = \begin{bmatrix} \frac{2}{b-a} & 0\\ \frac{2}{h} & 0\\ 1 \end{bmatrix}$$

$$\mathbf{\Gamma} = \begin{bmatrix} 1 & -rac{a+b}{2} \\ & 1 & 0 \\ & & 1 \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} rac{2}{b-a} & 0 \\ & rac{2}{h} & 0 \\ & & 1 \end{bmatrix}$$

$$\mathbf{ST} = \begin{bmatrix} \frac{2}{b-a} & 0 \\ \frac{2}{h} & 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{a+b}{2} \\ 1 & 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{b-a} & -\frac{a+b}{b-a} \\ \frac{2}{h} & 0 \\ 1 \end{bmatrix}$$

$$\mathbf{ST} = \begin{bmatrix} \frac{2}{b-a} & 0 \\ \frac{2}{h} & 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{a+b}{2} \\ 1 & 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{b-a} & -\frac{a+b}{b-a} \\ \frac{2}{h} & 0 \\ 1 \end{bmatrix}$$

Transformations in Graphics

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

In practice

- Positions are stored as 4D array of numbers with the last entry = 1.
- Each of the 4D array of numbers correspond to a geometric position under a frame.
- Between two different frames, we record a 4-by-4 matrix that takes the form

$$\mathbf{M} = \begin{bmatrix} \mathbf{A}_{3\times3} & \mathbf{b}_{3\times1} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

this is the "ratio" between two coordinate systems.

A typical scene

Camera's coordinate system

$$\vec{c}_1$$
 \vec{c}_2 \vec{c}_3 eye

- \vec{c}_1 , camera's x vector, points to the right of the camera.
- \vec{c}_2 , camera's up vector, points to the top of the camera.
- \vec{c}_3 , camera's z vector, points to the back of the camera.
- eye is camera's position.

A typical scene

Terminologies

- The 4x4 matrices \mathbf{M}_1 , \mathbf{M}_2 (from model towards the world) are called **model matrices**.
- The model matrix C of the camera is called the camera matrix.
- The inverse of the camera matrix $V = C^{-1}$ is called the **view matrix**.

 The matrix we apply to the 4D array of number in the "head" coordinate is VM₂M₁ called the model-view matrix.

Matrices are multiplied in the v-shader

vertex shader

```
# version 330 core
layout (location = 0) in vec3 vertex_position;
layout (location = 1) in vec3 vertex_normal;
uniform mat4 modelview;
uniform mat4 projection;
out vec4 position;
out vec3 normal;
void main(){
    gl_Position = projection * modelview * vec4( vertex_position, 1.0f);
    // forward the raw position and normal to frag shader
    position = vec4(vertex_position, 1.0f);
    normal = vertex normal;
```

- Recall: vectors
- Affine points
- Coordinate systems
- Affine transformations
- Model/camera/view
- View matrix

Task

Given the eye position $\mathbf{i} \in \mathbb{R}^3$, target position $\mathbf{t} \in \mathbb{R}^3$, and up-vector $\mathbf{u} \in \mathbb{R}^3$, compute the 4x4 view matrix \mathbf{V} .

Task

Given the eye position $\mathbf{i} \in \mathbb{R}^3$, target position $\mathbf{t} \in \mathbb{R}^3$, and up-vector $\mathbf{u} \in \mathbb{R}^3$, compute the 4x4 view matrix \mathbf{V} .

Step 1

Compute Z:

$$z = \frac{i - t}{|i - t|}$$

Step 1

Compute Z:

$$z = \frac{i - t}{|i - t|}$$

Step 2

Ensure that **u** is orthogonal to **z**

$$u \leftarrow u - (z \cdot u)z$$

$$\mathbf{u} \leftarrow \frac{\mathbf{u}}{|\mathbf{u}|}$$

Step 2

Ensure that **u** is orthogonal to **z**

$$u \leftarrow u - (z \cdot u)z$$

$$\mathbf{u} \leftarrow \frac{\mathbf{u}}{|\mathbf{u}|}$$

Step 3

Compute X:

$$x = u \times z$$

Step 3

Compute X:

$$x = u \times z$$

Step 4

Camera matrix (model matrix for the camera)

$$\mathbf{C} = \begin{bmatrix} | & | & | & | \\ \mathbf{x} & \mathbf{u} & \mathbf{z} & \mathbf{i} \\ | & | & | & | \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 4

Camera matrix (model matrix for the camera)

$$\mathbf{C} = \begin{bmatrix} | & | & | & | \\ \mathbf{x} & \mathbf{u} & \mathbf{z} & \mathbf{i} \\ | & | & | & | \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Final Step

Miscellaneous

Camera::rotateRight, rotateUp

Induced transformation

Induced transformation

Induced transformation

 If all positions of a geometric object is transformed by an affine transformation

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_x \\ a_{21} & a_{22} & a_{23} & b_y \\ a_{31} & a_{32} & a_{33} & b_z \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11}p_x + a_{12}p_y + a_{13}p_z + b_x \\ a_{21}p_x + a_{22}p_y + a_{23}p_z + b_y \\ a_{31}p_x + a_{32}p_y + a_{33}p_z + b_z \\ 1 \end{bmatrix}$$

 Then all displacement vectors are transformed by the upper-left 3x3 block matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} a_{11}v_x + a_{12}v_y + a_{13}v_z \\ a_{21}v_x + a_{22}v_y + a_{23}v_z \\ a_{31}v_x + a_{32}v_y + a_{33}v_z \end{bmatrix}$$

Induced transformation

 If all positions of a geometric object is transformed by an affine transformation

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_x \\ a_{21} & a_{22} & a_{23} & b_y \\ a_{31} & a_{32} & a_{33} & b_z \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11}p_x + a_{12}p_y + a_{13}p_z + b_x \\ a_{21}p_x + a_{22}p_y + a_{23}p_z + b_y \\ a_{31}p_x + a_{32}p_y + a_{33}p_z + b_z \\ 1 \end{bmatrix}$$

How about normal vectors?

Induced Transformation on Vectors

Suppose we have an affine transformation on positions

$$\begin{bmatrix} \mathbf{p} \\ \mathbf{1} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ \mathbf{1} \end{bmatrix}$$

Then displacement vectors will transform by

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{u} \end{bmatrix} \mapsto \begin{bmatrix} \mathbf{A} \\ \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \end{bmatrix}$$

Induced Transformation on Normals

Suppose we have an affine transformation on positions

and normal vectors transform according to

Induced Transformation on Normals

Suppose we have an affine transformation on positions

and normal vectors transform according to

