CSE 167 (FA21)
Computer Graphics:
Colors
Albert Chern
Color Science
Color

- Phenomenological description
- What causes color?
- How can we measure color?
- How can we describe color?
- How can we control color?
Discovering color (pigment)

- Artists studied color for millennia
- They knew that mixing 3 primary color creates a full range of hues
Discovering color (light)

• Isaac Newton experimented with prism
• White light contains all the “rainbow color”
• Colored light combines into white
• C. Huygens (1678), T. Young (1800): light are waves with wavelength around 380–760nm
• Young, Helmholtz, Maxwell: 3 primary color of light
Additive and subtractive color

Additive

Subtractive
Descriptions of color

RGB
- Controls the light bulbs in each pixel

CMYK
- Controls the ink in a printer
Descriptions of color

Hue, Saturation, Lightness/Brightness/Value (HSL, HSB, HSV)

- More intuitive
- Useful in design
• The above description of color is based on what we perceive.

• What is the objective and mathematical description of color?

• We need to distinguish physical color & perceived color.
Crash course on the L^2 pairing

Definition. The L^2 pairing between two functions

\[f : [a, b] \rightarrow \mathbb{R} \]

\[g : [a, b] \rightarrow \mathbb{R} \]

on an interval \([a, b]\) is the integral

\[
\int_a^b f(x)g(x) \, dx
\]

- You can think of it as the inner product between functions.
- Here, we will view f, g playing different roles.
Crash course on the L^2 pairing

\[\int_a^b f(x)g(x) \, dx \]

- Here, we will view f, g playing different roles.
 - $f(x)$ is assumed to be a **continuous function**.
 - $g(x)$ can be a **distribution** (derivative of a possibly discontinuous function).
Crash course on the L^2 pairing

- $g(x)$ can be a **distribution** (derivative of a possibly discontinuous function).
 - Continuous functions are distribution
 - Integrable functions are distribution
 - Generalized functions such as the δ-functions are distribution

Definition. The δ-function $\delta_c(x)$ concentrated at $c \in [a, b]$ is the derivative of the step function jumping at c:

$$
\delta_c(x) = \frac{d}{dx} H_c(x)
$$

$$
H_c(x) = \begin{cases}
0, & x < c \\
1, & x \geq c
\end{cases}
$$
Definition. The δ-function $\delta_c(x)$ concentrated at $c \in [a, b]$ is the derivative of the step function jumping at c:

\[
\delta_c(x) = \frac{d}{dx} H_c(x)
\]

\[
H_c(x) = \begin{cases}
0, & x < c \\
1, & x \geq c
\end{cases}
\]

- Infinite impulse: $\delta_c(x) = \begin{cases}
\infty, & x = c \\
0, & x \neq c
\end{cases}$
- Translation $\delta_c(x) = \delta_0(x - c)$
- L^2-pairing $\int_a^b f(x)\delta_c(x) \, dx = f(c)$
Definition. A colored light is a nonnegative distribution over the spectral interval [380nm, 750nm] representing the radiance power for each wavelength.

- This is called the spectral power distribution.
- Single-spectral light is a δ-function.
Definition. A colored light is a nonnegative distribution over the spectral interval [380nm, 750nm] representing the radiance power for each wavelength.

- This is called the spectral power distribution.
- Single-spectral light is a δ-function.
- Blackbody radiation
Physical colored light

Definition. A colored light is a nonnegative distribution over the spectral interval [380nm, 750nm] representing the radiance power for each wavelength.

- This is called the *spectral power distribution*.
- Single-spectral light is a δ-function.
- Blackbody radiation
- Rayleigh scattering
Physical colored light

Definition. Two colored lights $P_1(\lambda), P_2(\lambda)$ have the same chromatic color if they differ only by a scale

$$P_1(\lambda) = \alpha P_2(\lambda)$$

- The **chromoticity** lives in a projective space (infinite dimensional).
Vision

- Cone and rod photoreceptors in the retina turn light into neural signals.
- Rod is 100 times more sensitive to the cones, but slow response time. Rod is responsible for night vision (scotopic vision).
- Under sufficient illumination we use cone cells (photopic vision).
- It can take 10–30 minutes to switch between scotopic/photopic vision.
Color vision

- Under sufficient illumination we use cone cells (photopic vision).
- 90% of you have 3 types of cone cells with different sensitivity depending on the spectrum (long, middle, short).
- The sensitivity are continuous functions of the wavelength:

\[
\bar{\ell}(\lambda) \quad \bar{m}(\lambda) \quad \bar{s}(\lambda)
\]
Color vision

- The sensitivity are continuous functions of the wavelength:
 \[\bar{\ell}(\lambda) \quad \bar{m}(\lambda) \quad \bar{s}(\lambda) \]

- When you watch a colored light \(P(\lambda) \), the strength of the neural signals from the 3 cones are the \(L^2 \)-pairings:
 \[
 L = \int_{380}^{750} \bar{\ell}(\lambda)P(\lambda) \, d\lambda \quad M = \int_{380}^{750} \bar{m}(\lambda)P(\lambda) \, d\lambda \quad S = \int_{380}^{750} \bar{s}(\lambda)P(\lambda) \, d\lambda
 \]
Definition. Two colored lights $P_1(\lambda), P_2(\lambda)$ appear the same if the LMS values match

$$(L_1, M_1, S_1) = (L_2, M_2, S_2)$$

Definition. Two perceived colors $(L_1, M_1, S_1), (L_2, M_2, S_2)$ have the same chromatic color if $L_1 : M_1 : S_1 = L_2 : M_2 : S_2$

- The perceived chromaticities live on a 2-dimensional projective space.
- The colored light may be a combination of 3 monotone lights (RGB screen), but still appear the same as a natural colored light.
LMS color space

- Not all points in the 3D LMS space correspond to a color.
 - L,M,S are always nonnegative.
 - The source light is always a nonnegative distribution.
 - There is no light that would stimulate only the M cone cell but not the L cone cell.
 - All colored lights are mapped into the convex hull of the cone spanned by the spectral locus.
• Visualize the chromatic color on a 2D slice
• Visualize the chromatic color on a 2D slice

- Every artificial light that combines 3 lights must lie in the interior of a triangle.
- It is impossible to reproduce all colors by using 3 light bulbs.
LMS color space

- Visualize the chromatic color on a 2D slice

- Every artificial light that combines 3 lights must lie in the interior of a triangle.
- It is impossible to reproduce all colors by using 3 light bulbs.
- The standard RGB
Grassmann Law

- **Grassmann Law**

Given any triangle as the basis, say RGB, there exists functions $\overline{r}(\lambda), \overline{g}(\lambda), \overline{b}(\lambda)$ such that any physical light $P(\lambda)$ appear to have the same color as the point

$$rR + gG + bB$$

with the coefficients computed by the pairing

$$r = \int \overline{r}(\lambda)P(\lambda) \, d\lambda \quad g = \int \overline{g}(\lambda)P(\lambda) \, d\lambda \quad b = \int \overline{b}(\lambda)P(\lambda) \, d\lambda$$
Grassmann Law

\[rR + gG + bB \]

\[r = \int \bar{r}(\lambda)P(\lambda) d\lambda \quad g = \int \bar{g}(\lambda)P(\lambda) d\lambda \]

\[b = \int \bar{b}(\lambda)P(\lambda) d\lambda \]

- To determine \(\bar{r}, \bar{g}, \bar{b} \), take RGB as 3 known light bulbs, and take \(P(\lambda) = \delta_{\lambda_0}(\lambda) \)

- Tune the coefficients \(r, g, b \) in \(rR + gG + bB \) so that the synthetic light looks the same as \(P(\lambda) = \delta_{\lambda_0}(\lambda) \)

- Then we obtain \(\bar{r}(\lambda_0) = r \), \(\bar{g}(\lambda_0) = g \), \(\bar{b}(\lambda_0) = b \).

- We call \(\bar{r}, \bar{g}, \bar{b} \) the matching function.
Color matching experiment

\[T(\lambda) = rR + gG + bB \]

\[T(480) = -0.04R + 0.04G + 0.14B \]
Color matching experiment

\[T(\lambda) = rR + gG + bB \]

\[T(480) = -0.04R + 0.04G + 0.14B \]
CIE 1931 XYZ color space

- In 1931, CIE (International Commission on Illumination) proposed another basis based on 3 imaginary primaries X, Y, Z.
 - Mixture of XYZ gives all color
 - The corresponding matching functions $\bar{x}, \bar{y}, \bar{z}$ are linear transforms of $\bar{r}, \bar{g}, \bar{b}$
 - $\bar{x}, \bar{y}, \bar{z}$ are nonnegative (equivalent to the first item above)
 - $\bar{x}, \bar{y}, \bar{z}$ have equal areas under their curves.
 - The y-coefficient $\int \bar{y}(\lambda)P(\lambda)\,d\lambda$ is defined to be the **luminance**.
CIE 1931 XYZ color space
Color gamut

• Color gamut: The range of chromaticities that can be produced by mixing primaries.

• Real device gamut are limited, can’t produce all chromaticities.

• Gamut mapping: Methods to approximate out-of-gamut chromaticities
 ▶ Typically involves desaturating source chromaticities until they fall within the gamut boundaries.
Color gamut

Various hardwares

Various specs
Color gamut

Wide gamut and
Hide dynamical range
Conversion between different bases

- XYZ, RGB are 3D vectors with respect to different bases
- Relation between them is recorded by a 3x3 matrix

\[
\begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix} = \begin{bmatrix}
0.4360747 & 0.3850649 & 0.1430804 \\
0.2225045 & 0.7168786 & 0.0606169 \\
0.0139322 & 0.0971045 & 0.7141733 \\
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
R \\
G \\
B \\
\end{bmatrix} = \begin{bmatrix}
3.1338561 & -1.6168667 & -0.4906146 \\
-0.9787684 & 1.9161415 & 0.0334540 \\
0.0719453 & -0.2289914 & 1.4052427 \\
\end{bmatrix} \begin{bmatrix}
X \\
Y \\
Z \\
\end{bmatrix}
\]
Conversion between different bases

- Different versions of RGB’s are given in the form of different matrix relating to XYZ

<table>
<thead>
<tr>
<th>RGB Working Space</th>
<th>Reference White</th>
<th>RGB to XYZ [M]</th>
<th>XYZ to RGB [M]⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe RGB (1998)</td>
<td>D50</td>
<td>0.6097559 0.2052401 0.1492240 1.9624274 0.6105343 -0.3413404</td>
<td>0.3111242 0.6256560 0.0632197 -0.9787684 1.9161145 0.0334540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0194811 0.0608902 0.7448387 0.0286869 -0.1406752 1.3487655</td>
<td></td>
</tr>
<tr>
<td>AppleRGB</td>
<td>D50</td>
<td>0.4755678 0.3396722 0.1489800 2.8510695 -1.3605261 -0.4708281</td>
<td>0.2551812 0.6725693 0.0722496 -1.0927680 2.0348871 0.0227598</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0184697 0.1133771 0.6933632 0.1027403 -0.2964984 1.4510659</td>
<td></td>
</tr>
<tr>
<td>Bruce RGB</td>
<td>D50</td>
<td>0.4941816 0.3204834 0.1495550 2.6502856 -1.2014485 -0.4289936</td>
<td>0.2521531 0.6844869 0.0633600 -0.9787684 1.9161415 0.0334540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0157886 0.0629304 0.7464909 0.0264570 -0.1361227 1.3458342</td>
<td></td>
</tr>
<tr>
<td>CIE RGB</td>
<td>D50</td>
<td>0.4868870 0.3062984 0.1710347 2.3638081 -0.8676030 -0.4988161</td>
<td>0.1746583 0.8247541 0.0005877 -0.5005940 1.3962369 0.1047562</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.0012563 0.0169832 0.8094831 0.0141712 -0.0306400 1.2323842</td>
<td></td>
</tr>
<tr>
<td>NTSC RGB</td>
<td>D50</td>
<td>0.6343706 0.1852204 0.1446290 1.8464881 -0.5521299 -0.2766458</td>
<td>0.3109496 0.5915984 0.0974520 -0.9826630 2.0044755 -0.0690396</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.0011817 0.0555518 0.7708399 0.0736477 -0.1453020 1.3018376</td>
<td></td>
</tr>
</tbody>
</table>
Device calibration

Camera calibration:
- Original scene
- Camera RGBs
- Linearization
- RGB-XYZ transform
- Estimated XYZs

Display characterization:
- Gamma correction
- XYZ-RGB transform
- Estimated XYZs

Visual match to original scene

© 2020 JAMES A. FERWERDA. ALL RIGHTS RESERVED.
Transparency
Next time

Transparency