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Identifying optimal structural designs given loads and constraints is a pri-

mary challenge in topology optimization and shape optimization. We pro-

pose a novel approach to this problem by finding a minimal tensegrity

structure—a network of cables and struts in equilibrium with a given loading

force. Through the application of geometric measure theory and compressive

sensing techniques, we show that this seemingly difficult graph-theoretic

problem can be reduced to a numerically tractable continuous optimization

problem. With a light-weight iterative algorithm involving only Fast Fourier

Transforms and local algebraic computations, we can generate sparse sup-

porting structures featuring detailed branches, arches, and reinforcement

structures that respect the prescribed loading forces and obstacles.
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1 INTRODUCTION
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Fig. 1. Given loading forces f𝑖
at some nodes p𝑖 in the pres-
ence of obstacles, find a mini-
mal graph of struts and cables
that form a structure capable
of supporting the forces while
avoiding obstacles.

Designing the geometry for a sparse

support structure is an important task

in topology optimization and struc-

tural design, yet it remains a compu-

tationally challenging problem. Typ-

ically, the problem is formulated as

a large-scale parameter optimization

problem over an elastostatic solver or

as a combinatorial problem [Rozvany

2009]. In this paper, we approach the

subject matter by considering a geo-

metric graph optimization problem:

Find a minimal network of curves connecting a given set
of ends while avoiding a given set of obstacles, so that it
represents a minimal supporting structure for a given set
of loading forces given at the ends.

We refer to this problem as the minimal stress reconstruction
problem. Using geometric measure theory, we demonstrate that this

problem can be formulated as a simple continuous optimization

problem. We also show that approximate solutions to this problem
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Fig. 2. A bridge with a hybrid suspension–tied-arch support structure de-
signed by a simple geometric optimization algorithm derived from geometric
measure theory. Given a user prescribed force distribution to support and
obstacles to avoid (top left), the algorithm efficiently finds a sparse geomet-
ric measure (a varifold) representing a sparse stress distribution balancing
the force (bottom right), performing at 25 iterations per second without
GPU acceleration. The blue and red colors visualize the sign of the trace of
the stress tensor, indicating tension and compression respectively.

exhibit intricate emergent geometric structures and patterns such as

branches, trusses, and arches (Fig. 2). Despite the simplicity of the

mathematical model, the phenomenological richness of its results

suggests numerous potential applications in topology optimization,

architecture and tensegrity structure design, as well as theoretical

connections to the study of branched optimal transport [Xia 2010;

Bonafini et al. 2018; Pegon et al. 2019] and cytoskeletal networks

[Stamenović et al. 1996; Ingber 2003].

This paper focuses on the minimal stress reconstruction problem

in the plane with arbitrary user-prescribed obstacles and weights.

The optimization algorithm is a simple iterative scheme involving

only fast Fourier transforms and local calculations.

2 RELATED WORK
Topology Optimization. Topology optimization (TO) aims to find

topology and shape for a structure using a given volume of material

which also minimizes a physical energy (typically stress-strain en-

ergy). The diverse range of methods used for TO constitute a wide

and deep body of literature [Bendsoe and Sigmund 2003; Rozvany

2009; Sigmund and Maute 2013; Deaton and Grandhi 2014], and in-

clude greedy heuristic methods, levelset optimization methods, and

genetic algorithms [Rajeev and Krishnamoorthy 1997]. TO typically

manages the material volume using explicit constrains on the total

density. Our method instead directly minimizes the support of our

stress tensor, and thus describes a different class of optimization

problems. Compared to traditional TO, our model is simpler and

depends on fewer parameters.
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Our method is closely related to a variant of the topology opti-

mization called the minimal stress problem, in which one minimizes

the 𝐿1 norm of the stress field subject to a divergence constraint

[Strang and Kohn 1983; Bendsoe and Sigmund 2003, § 3.3.3]. How-

ever, unlike the classical topology optimization which produces

sparse structures, a 𝐿1-minimal stress distribution is generally a

dense continuum. In this continuum the pair of principal directions

of the stress matrix trail out the grid lines of the Michell structure.
These minimal Michell continua are also computed on curved sur-

faces for architectural [Kilian et al. 2017] and mechanical [Gil-Ureta

et al. 2019] applications. Our method generalizes the 𝐿1 minimiza-

tion to a non-convex continuous optimization that is able to produce

sparse graph structure instead of a dense continuum.

Tensegrity. Tensegrity, which is short for “tensile integrity” [Fuller
1962], is a mechanical paradigm characterized by cables and struts

supporting a structure in equilibrium. It has previously been posed

as a mixed integer program [Ehara and Kanno 2010], semidefinite

programs [So and Ye 2006, 2007; Wang and Xu 2019] and linear

programs [Kushner et al. 2021], with rich connections to the geo-

metric realization of graphs. Tensegrity also has applications to

architecture [Gomez-Jauregui 2004], cell biology [Stamenović et al.

1996; Ingber 2003], robotics [Paul et al. 2006; Graells Rovira and

Mirats Tur 2009], and space structures [Tibert and Pellegrino 2003].

Our algorithm’s output can be interpreted as a tensegrity structure

whose topology has been optimized using an Eulerian method.

Varifold Methods. Varifolds are a generalization of manifolds

from geometric measure theory which have appeared in some com-

puter scientific contexts in the past. Buet et al. [2017] use “discrete

varifolds” to approximate the mean curvature of input geometry.

Charon and Trouvé [2013] employ varifolds to handle registration

for potentially nonorientable shapes. Our method uses a varifold

formulation to find potentially nonorientable and nonmanifold sur-

faces matching a certain force distribution.

Computational Geometric Measure Theory. A recent method uses

geometric measure theoretic formulations to find area-minimizing

surfaces over 3D domains [Wang and Chern 2021]; extensions to

this work used deep learning to increase resolution and generalize

the method to arbitrary oriented manifolds with boundary [Palmer

et al. 2022]. Critically, unlike these methods, our method is able to

handle nonorientable submanifolds with branch points.

3 THEORY
Given𝑉0 = {p0, . . . p𝑚} ⊂ R2 and f0, . . . f𝑚 ∈ R2, the minimal stress

reconstruction problem asks for an R2-embedded undirected graph

(𝑉 , 𝐸), 𝑉 ⊃ 𝑉0, and tensions (_𝑖 𝑗 )𝑖 𝑗∈𝐸 ∈ R such that∑
𝑗∈Nbr(𝑖 ) _𝑖 𝑗

p𝑗−p𝑖
|p𝑗−p𝑖 | + f𝑖 = 0 for every vertex 𝑖 ∈ 𝑉 . (1)

Here, f𝑖 is considered to be 0 on𝑉 \𝑉0. This is the condition that the

graph forms a structure in equilibrium which exerts the prescribed

forces on vertices in𝑉0. We also seek to find the graph with minimal

edge length among all graphs satisfying these properties, where

edge length is denoted ℓ𝑖 𝑗 = |p𝑖 − p𝑗 |:

minimize

∑
𝑖 𝑗∈𝐸 ℓ𝑖 𝑗 subject to (1). (2)

Overview. We approach this graph optimization problem (2) by

its continuous relaxation, derived in Section 3.1. In the end of this

relaxation, we optimize over the continuous space of stress distri-

butions on R2, instead of directly optimizing among the graph’s

combinatorics. The nodal forces are described as a force distribu-

tion f : R2 → R2, and the edge-wise tensions are described by a

symmetric matrix field as the stress distribution
1 𝜎 : R2 → R2×2

sym
.

The tension on an edge 𝑖 𝑗 ∈ 𝐸 in (1) corresponds to stress being the

rank-1 matrix _𝑖 𝑗 (
p𝑗−p𝑖
|p𝑗−p𝑖 | ) (

p𝑗−p𝑖
|p𝑗−p𝑖 | )

⊺
scaled by a Dirac-𝛿 distribu-

tion along the edge. The force balancing condition (1) translates to

the statics equation

div𝜎 = f, (3)

while the length objective (2) relaxes to

minimize

𝜎 : R2→R2×2
sym

∫
R2
( |_1 (𝜎) |𝑝 + |_2 (𝜎) |𝑝 )𝑞/𝑝 𝑑𝐴 subject to (3), (4)

where _1 (𝜎), _2 (𝜎) are the eigenvalues (principal stresses) of 𝜎 , and
0 < 𝑝, 𝑞 < 1. In the limit of 𝑝, 𝑞 → 0, we have (∑2

𝑖=1 |_𝑖 (𝜎) |𝑝 )1/𝑝 →
rank(𝜎), and the integral approaches the size

2
of the region where

rank(𝜎) is nonzero, recovering (2). In the other limit where 𝑝 = 𝑞 =

1, (4) recovers the variational problem of [Strang and Kohn 1983]

for 𝐿1-minimal stress distributions.

In the rest of this section, we derive (4) from (2) and analyze the

involved mathematical operators. We first describe a planar graph

as a distribution over the plane, invoking the notion of a varifold.
Next, we represent the varifold algebraically by a symmetric matrix

field using the Veronese map. After this process, the notion of stress

tensor field in (4) naturally emerges. Finally, the 𝑝, 𝑞-norms of (4)

are justified using compressive sensing techniques.

3.1 Derivation

G(1,R2 )

R2

𝜌

In the language of geomet-

ric measure theory, any pla-

nar weighted graph is a 1-

dimensional weighted varifold
in the plane, which is a signed

measure over the Grassman-

nian bundle R2 × G(1,R2)
[Allard 1972, § 1–3]. Here,

the Grassmannian manifold

G(1,R2) is the collection of 1-

dimensional subspaces in R2,
which is the space of all un-

signed planar directions. Note that G(1,R2) ≃ S1. Intuitively, a
measure over the space R2 × G(1,R2) of position and orienta-

tion indicates the occupancy of the graph. We denote the mea-

sure (i.e. weighted varifold) corresponding to our weighted graph

𝜌 ∈ M(R2 × G(1,R2)). The total length of the edges in the planar

1
In Section 3.1, the type of the force and stress distributions will be vector-valued

measure and symmetric-matrix-valued measure respectively for allowing Dirac 𝛿

concentrated distributions.

2
Here the size can be measured in length if the support of 𝜎 is one dimensional and

measure zero. In that case, 𝑑𝐴 can be substituted by the 1D Hausdorff measure. The

substitution is unnecessary in practice in the grid discretization as it only amounts to a

global scaling constant depending on the grid size.
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embedding of this graph is given by the 1-dimensional volume of

the support of this measure, i.e.,∑
𝑖 𝑗∈𝐸 ℓ𝑖 𝑗 =

∫
R2×G(1,R2 ) supp(𝜌) 𝑑H

1 . (5)

Here supp(𝜌) is considered as an indicator function, and 𝑑H𝑘
de-

notes the 𝑘-dimensional Hausdorff measure. The problem can now

be viewed as searching a measure over the nonlinear manifold

R2 × G(1,R2). Next, we work with the varifold linear algebraically

by invoking the Veronese mapV : G(1,R2) ↩→ R2×2
Sym

= R2 ⊗sym R2,
which takes an element in G(1,R2) represented by unit tangent vec-
tor e\ = (cos\, sin\ )⊺ ∈ R2 to the symmetric matrix e\ e

⊺
\
∈ R2×2

Sym
.

That is,V maps each orientation to a rank-1 symmetric matrix by

the outer product. This Veronese map induces a pushforward map

for measures. In particular, we have a linear map from weighted

varifolds to symmetric-matrix-valued measures over the plane:

V#
: M(R2 × G(1,R2)) → Γ(𝑇R2 ⊗sym 𝑇R2 ⊗∧

2𝑇 ∗R2), (6)

which takes each point measure 𝛿 (x,\ ) ∈ M(R2 × G(1,R2)) (as
a basis element in the space of measures) to V#𝛿 (x,\ ) B e\ e

⊺
\
𝛿x.

Physically,V#𝜌 represents the stress distribution of the weighted

varifold 𝜌 . On the space of symmetric matrix measures, we have the

divergence operator

div : Γ(𝑇R2 ⊗sym 𝑇R2 ⊗∧
2𝑇 ∗R2) → Γ(𝑇R2 ⊗∧

2𝑇 ∗R2) (7a)

given by contracting the differential and the tensor along one index:

div(𝜎𝑖 𝑗e𝑖e𝑗𝑑𝐴) B (𝜕𝑖𝜎𝑖 𝑗 )e𝑗𝑑𝐴. (7b)

This is the same as the standard tensor divergence frequently used

in elasticity. The divergence of the symmetric tensor represents

the net traction force from the stress. In other words, the stress

equilibrium condition

divV#𝜌 = f (8)

is the varifold equivalent of (1). Here, f B
∑𝑚
𝑖=0 f𝑖𝛿p𝑖 ∈ Γ(𝑇R2 ⊗

∧2𝑇 ∗R2) represents the force distribution as a vector-valued mea-

sure. Using the above representation, we find (2) equivalent to the

optimization problem

minimize

𝜌∈M(R2×G(1,R2 ) )

∫
R2×G(1,R2 ) supp(𝜌) 𝑑H

1

subject to div(V#𝜌) = f .
(9)

We recognize this as an instance of the sparse basis pursuit problem,

which aims to find a sparse linear combination of atoms in a dic-
tionary which satisfy underdetermined linear constraints [Chen

et al. 2001]. Here, the atom set consists of the point measures

±𝛿 (x,\ ) ∈ M(R2 × G(1,R2)), and the objective on the support

of our measure encourages sparsity with respect to this basis.

By performing a change of variables 𝜎 = V#𝜌 via the linear map

(6), Problem (9) is equivalent to finding a symmetric stress tensor

field 𝜎 ∈ Γ(𝑇R2 ⊗sym 𝑇R2 ⊗ ∧2𝑇 ∗R2) satisfying div𝜎 = f which
uses a sparse combination of atoms ±V#𝛿 (x,\ ) .

In compressive sensing, a standard approach converts such prob-

lems to norm minimization subject to linear constraints [Donoho

and Elad 2003]. Namely, define a linearly homogeneous function
3

(referred to as a “norm”) ∥ · ∥ whose unit ball has sharp corners

containing the atom set (Fig. 3). Under linear-constrained norm

minimization, these sharp corners generally lead to sparse solutions,

as it is likely that the constraint affine plane will be tangential to

the norm levelsets at these corners, which consist of few atoms.

atoms

optimal solution

unit ball

constraint
plane

Fig. 3. When the unit ball has
sharp corners containing the
atom set, constrained norm
minimization leads to sparse
solutions.

One can design such a unit ball by,

for example, taking the convex hull of

the atom set; this choice corresponds

to the 𝐿1 convex relaxation and coin-

cides with the minimal stress problem

of [Strang and Kohn 1983]. However,

as we demonstrate in Section 5.1.5,

this convex relaxation is too crude

to produce sparse stress distribution

in a general setting. Even sparser re-

sults can be obtained by using sharper

star shapes, sacrificing convexity. Our

method adopts the (nonconvex) (𝑝, 𝑞)-
spectral norm with 0 < 𝑝 < 1, 0 <

𝑞 < 1. With the singular value decomposition 𝜎 = (𝑈 Σ𝑉 ⊺) 𝑑𝐴,
the spectral 𝑝-norm4

is the 𝑝-norm applied to the singular values

(|𝜎 |𝑝 B (tr Σ𝑝 )
1

𝑝
). Then, our (𝑝, 𝑞)-spectral norm is

∥𝜎 ∥𝑝,𝑞 B
(∫
R2
|𝜎 |𝑞𝑝 𝑑𝐴

) 1

𝑞
. (10)

Finally, our optimization problem takes the form (cf. (4))

minimize

𝜎∈Γ (⊗2
sym

𝑇R2⊗∧2𝑇 ∗R2 )
∥𝜎 ∥𝑝,𝑞

subject to div𝜎 = f .
(11)

3.2 Divergence and the Killing Operator
Here, we analyze the divergence operator (7) for symmetric tensor

measures, as it is the linear operator central to our optimization

problem (11). The divergence operator is a linear operator from the

space of symmetric tensor measures to the space of vector measures.

Its adjoint is minus the Killing operator K [Berger and Ebin 1969;

de Goes et al. 2014]

K : Γ(𝑇 ∗R2) → Γ(𝑇 ∗R2 ⊗sym 𝑇 ∗R2), (12a)

K(𝛼𝑖𝑑𝑥𝑖 ) B (𝜕𝑖𝛼 𝑗 + 𝜕𝑗𝛼𝑖 )𝑑𝑥𝑖𝑑𝑥 𝑗 , (12b)

completing the canonical duality diagram:

Γ(𝑇R2 ⊗sym 𝑇R2 ⊗ ∧2𝑇 ∗R2) div //

dual

Γ(𝑇R2 ⊗ ∧2𝑇 ∗R2)
dual

Γ(𝑇 ∗R2 ⊗sym 𝑇 ∗R2) Γ(𝑇 ∗R2) .div
∗=−Koo

(13)

The dual pairing between an element 𝜎 ∈ Γ(𝑇R2 ⊗sym 𝑇R2 ⊗
∧2𝑇 ∗R2) and an element 𝜏 ∈ Γ(𝑇 ∗R2 ⊗sym 𝑇 ∗R2) is given by 1/2 of
the integrated Frobenius pairing of their matrix representations

⎷𝜏 |𝜎⌄ = ⎷𝜏𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 |𝜎𝑘ℓe𝑘eℓ𝑑𝐴⌄ = 1

2

∫
R2

∑
𝑖 𝑗 𝜏𝑖 𝑗𝜎

𝑖 𝑗𝑑𝐴, (14)

3
On a real vector space𝑉 , a linear homogeneous function ∥ · ∥ : 𝑉 → R≥0 satisfies
∥_®𝑣 ∥ = |_ | ∥ ®𝑣 ∥ for all ®𝑣 ∈ 𝑉 and _ ∈ R. That is, it is a norm except that it does not

need to satisfy the triangle inequality.

4 |𝜎 |𝑝 is also known as the Schatten 𝑝-norm.

3
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and the dual pairing between f ∈ Γ(𝑇R2 ⊗ ∧2𝑇 ∗R2) and 𝛼 ∈
Γ(𝑇 ∗R2) is given by

⎷𝛼 |f⌄ = ⎷𝛼𝑖𝑑𝑥𝑖 |𝑓 𝑗e𝑗𝑑𝐴⌄ =
∫
R2

∑
𝑖 𝛼𝑖 𝑓

𝑖𝑑𝐴. (15)

Using this establishment of the duality relation, we can describe

the solvability of the linear constraint in (11)

div𝜎 = f . (16)

The linear constraint (16) admits a solution 𝜎 if and only if f ∈
im(div) = ker(K)⊥ where (·)⊥ denotes the annihilator space. Note

that the kernel of the operator K is the collection of the one-forms

corresponding to Killing vector fields (via ♭R2 ), which generate

isometric flows on the domain. On R2, these Killing vector fields

are the generators for rigid body transformations. In particular,

ker(K) = span{𝑑𝑥, 𝑑𝑦, 𝑥𝑑𝑦 − 𝑦𝑑𝑥}, where (𝑥,𝑦) = (𝑥1, 𝑥2). There-
fore, we have the following characterization for the valid f for (16).

Theorem 1. Eq. (16) admits a solution𝜎 if and only if the prescribed
force distribution f = 𝑓𝑖e𝑖𝑑𝐴 satisfies the conditions of vanishing net
force and vanishing total torque

∫
R2

𝑓1 𝑑𝐴 = 0∫
R2

𝑓2 𝑑𝐴 = 0∫
R2
(𝑥 𝑓2 − 𝑦𝑓1)𝑑𝐴 = 0.

(17)

In our problem, we assume that the prescribed force distribution f
satisfies the physically intuitive necessary and sufficient conditions

(17). Even if we are handed a force distribution f that violates (17),
it is straightforward to project it to fulfill the conditions by adding

a suitable rigid motion vector field.

3.3 Representing Tensors and Differential Operators
We can represent symmetric tensors as arrays of their matrix ele-

ments. For instance, in the 2 × 2 case, a tensor with elements 𝜎𝑖 𝑗

can be represented as a vector (𝜎11, 𝜎22, 𝜎12)⊺ ∈ R3. In Figure 4, we

use this R3 representation to depict the unit ball under our spectral

𝑝-norm as well as the image of G(1,R2) under the Veronese mapV .

By representing a symmetric matrix using these coordinates, the

dual pairing (14) becomes

⎷𝜏 |𝜎⌄ =
∫
R2
[ 𝜏11 𝜏22 𝜏12 ]

[
1/2

1/2
1

] [ 𝜎11
𝜎22
𝜎12

]
𝑑𝐴, (18)

and the differential operators div and K can be written as matrices

of differential operators:

div =

[
𝜕𝑥 𝜕𝑦

𝜕𝑦 𝜕𝑥

]
, K =

[
2𝜕𝑥

2𝜕𝑦
𝜕𝑦 𝜕𝑥

]
. (19)

3.4 Obstacles
An extension to our optimization problem (11) allows us to construct

varifolds which avoid “obstacles” placed in the domain. Let 𝑤 :

R2 → R>0 be a function over the base space R2 which takes the

value 1 on obstacle-free areas of the domain, and takes the value

𝐵 ≫ 1 on areas filled with obstacle. Then the objective

minimize

𝜎

∫
R2

𝑤 |𝜎 |𝑞𝑝𝑑𝐴 subject to div𝜎 = f (20)

encourages solutions to avoid obstacles. Given large enough 𝐵, so-

lutions tend to pass around the obstacle-filled regions.

[
1 0

0 0

]

[
0 0

0 1

]

[
0 1

1 0

]
imV

Fig. 4. The | · |𝑝 unit ball (grey), and the image of the Veronese map (red)
in the 3-dimensional space of symmetric 2 × 2 matrices. Solutions tend
towards the sharp rims of this unit ball.

4 ALGORITHM
In this section, we describe an optimization algorithm equivalent

to applying the Linearized Augmented Lagrangian Method [Yang

and Yuan 2013] to our problem. This algorithm is best described

as a Backward Euler discretization of a continuous gradient flow

that optimizes the objective. The backward Euler steps are further

translated into a sequence of variational problems using the method

of incremental potential [Martin et al. 2011; Bouaziz et al. 2014; Li

et al. 2020].

The aforementioned constrained optimization problem (20) takes

the minimax form

min𝜎 max_

∫
R2

𝑤 |𝜎 |𝑞𝑝𝑑𝐴 +
∫
R2
⟨_ | div𝜎 − f⟩ (21)

where the type of the Lagrange multiplier _ is Γ(𝑇 ∗R2). The optimal

solution can be found by following the coupled gradient descent

and ascent flows with respect to 𝜎 and _. These continuous gradient

flows are {
𝐺1

𝜕𝜎
𝜕𝑡 = −𝑤 𝜕 |𝜎 |𝑞𝑝

𝜕𝜎 + K_
𝐺2

𝜕_
𝜕𝑡 = div𝜎 − f

(22)

where 𝐺1,𝐺2 are linear operators describing metrics for the space

Γ(𝑇R2 ⊗sym 𝑇R2 ⊗ ∧2𝑇 ∗R2) of primal variables 𝜎 and the space

Γ(𝑇 ∗R2) of Lagrange multipliers _, respectively. These metrics will

be chosen suitably later during our derivation.

We discretize the flow (22) temporally using the backward Euler

method. Replace the time derivatives
𝜕 ( ·)
𝜕𝑡 by

( ·) (𝑛+1)−(·) (𝑛)
𝛥𝑡

with

a step size 𝛥𝑡 , evaluate the right-hand sides of (22) at time step

(·) (𝑛+1) , and approximate _ (𝑛+1) on the right-hand side by _ (𝑛+1) ≈
_ (𝑛) + 𝛥_ (𝑛) using 𝛥_ (𝑛) = _ (𝑛) − _ (𝑛−1) from the previous step

to avoid a joint root finding system. The equations become:

𝐺1

𝜎 (𝑛+1)−𝜎 (𝑛)
𝛥𝑡

= −𝑤
(
𝜕 |𝜎 |𝑞𝑝
𝜕𝜎

) (𝑛+1)
+ K

(
_ (𝑛) + 𝛥_ (𝑛)

)
, (23a)

𝐺2𝛥_
(𝑛+1) = 𝛥𝑡

(
div𝜎 (𝑛+1) − f

)
, (23b)

_ (𝑛+1) = _ (𝑛) + 𝛥_ (𝑛+1) . (23c)

Let

𝑧 (𝑛+1) B 𝜎 (𝑛) + 𝛥𝑡𝐺−1
1
K(_ (𝑛) + 𝛥_ (𝑛) ), (24)

which simplifies (23a) into

1

𝛥𝑡
𝐺1

(
𝜎 (𝑛+1) − 𝑧 (𝑛+1)

)
+𝑤

(
𝜕 |𝜎 |𝑞𝑝
𝜕𝜎

) (𝑛+1)
= 0. (25)

4
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Solving (25) is equivalent to solving the optimization problem

𝜎 (𝑛+1) = argmin

𝜎

1

2𝛥𝑡
∥𝜎 − 𝑧 (𝑛+1) ∥2

𝐺1

+
∫
R2

𝑤 |𝜎 |𝑞𝑝𝑑𝐴. (26)

We choose 𝐺1 as the 𝐿
2
Frobenius metric ∥𝜎 ∥2

𝐺1

B
∫
R2

∑
𝑖 𝑗 𝜎

2

𝑖 𝑗
𝑑𝐴.

Effectively, 𝐺1 is the identity map on the tensor coefficients; in

particular, we can omit 𝐺1 in (23a) and (24). With this choice of 𝐿2

Frobenius metric, the sub-optimization problem (26) has an explicit

solution given as a local shrinkage step on singular values [Yang

and Yuan 2013]: Let𝑈 Σ𝑉 ⊺ be the singular value decomposition for

𝑧 (𝑛+1) ; then the solution to (26) is

𝜎 (𝑛+1) = 𝑈 max

(
Σ −𝑤𝛥𝑡𝑝𝑞Σ

(𝑝−1) (𝑞−1)
𝑝 , 0

)
𝑉 ⊺ . (27)

Finally, to complete (23) we choose the metric 𝐺2. Observe that

combining (24) and (23b) yields an expression that involves adding

to 𝜎 (𝑛) by a term 𝛥𝑡2K𝐺−1
2

div𝜎 (𝑛) . Note that K and div are un-

bounded operators since they differential operators, preventing one

from using larger time steps 𝛥𝑡 . To better precondition this update,

𝐺2 should be chosen to “cancel out” the derivatives K and div. A

good choice is 𝐺2 = −` div ◦K = ` div div∗ for any scale factor

` > 0. With this choice (K𝐺−1
2

div) becomes a bounded linear

operator.

We obtain our final algorithm:

Algorithm 1 Minimax flow with backward Euler method

1: 𝑧 (𝑛+1) ← 𝜎 (𝑛) + 𝛥𝑡K(_ (𝑛) + 𝛥_ (𝑛) )
2: 𝜎 (𝑛+1) ← Eq. (27)

3: 𝛥_ (𝑛+1) ← 𝛥𝑡
` (− divK)

−1 (div𝜎 (𝑛+1) − f)
4: _ (𝑛+1) ← _ (𝑛) + 𝛥_ (𝑛+1)

Our algorithm matches the Linearized Augmented Lagrangian

Method for our optimization problem [Yang and Yuan 2013].

Spectral method for K and div. To invert and apply differential

operators like div and K to tensors, we can take the Fast Fourier

Transform (FFT) to these tensors defined on a rectangular domain

of size 𝐿1 × 𝐿2 with periodic boundary condition. FFT converts each

partial derivative 𝜕𝑖 to i 2𝜋𝑘𝑖
𝐿𝑖

, where 𝑘𝑖 is the integer index in the

Fourier domain in the 𝑖-th direction. All div and K operations (19)

as well as (− divK)−1 can thus be performed in the Fourier domain

as frequency-wise small complex matrix multiplications. Namely,

applying the Fourier transform to the matrix representations in (19)

gives the complex matrices

d̃iv = i 2𝜋
𝐿𝑖

[
𝑘𝑥 𝑘𝑦

𝑘𝑦 𝑘𝑥

]
, ˜K = i 2𝜋

𝐿𝑖

[
2𝑘𝑥

2𝑘𝑦
𝑘𝑦 𝑘𝑥

]
. (28)

Frequency-wise multiplication of these matrices gives a discrete

representation of the operators div and K that can be used to im-

plement Alg. 1. Explicitly, we follow the procedure listed in Alg. 2.

An artifact of this procedure is the introduction of periodic bound-

ary conditions on our domain; however, these can be nullified by

placing boundary obstacles using our method.

Algorithm 2 (Explicit) Minimax flow with backward Euler method

1: Initialize grids f , 𝜎 (0) , and _ (0) to 0s

2:
˜f, �̃� (0) , ˜_ (0) ← FFT(f), FFT(𝜎), FFT(_)

3: 𝑧 (𝑛+1) ← �̃� (𝑛) + 𝛥𝑡 ˜K( ˜_ (𝑛) + 𝛥 ˜_ (𝑛) ) ⊲ using (28)

4: 𝜎 (𝑛) ← IFFT(�̃� (𝑛) )
5: 𝜎 (𝑛+1) ← Eq. (27) ⊲ requires pointwise SVD

6: �̃� (𝑛+1) ← FFT(𝜎 (𝑛+1) )
7: 𝛥 ˜_ (𝑛+1) ← 𝛥𝑡

` (−d̃iv ˜K)−1 (d̃iv�̃� (𝑛+1) − ˜f) ⊲ using (28)

8:
˜_ (𝑛+1) ← ˜_ (𝑛) + 𝛥 ˜_ (𝑛+1)

9: return to 3

iteration = 50 iteration = 100 iteration = 500

Fig. 5. A cable emerges as the result of running our algorithm for 500
iterations on f defined on two points, pointing radially outward.

5 RESULTS
We implement

5
our algorithm in VEX in Houdini FX 18.5. All results

were computed using a grid with resolution 256 × 256, a constant
large time step 𝛥𝑡 = ` = 30, a fixed exponent 𝑝 = 𝑞 = 1/2 (except
for an ablation study), and 500 iterations. The computation were

performed on a 2019 MacBook Air using a 1.6 GHz Dual-Core Intel

Core i5. Each iteration takes about 40mswith the FFT being themain

bottleneck.
6
That is, each example is obtained within 20 seconds.

0.0

tension compressionThe visualization of the results shows the

trace of the stress tensor 𝜎 at each grid cell.

When 𝜎 at a cell is rank 1 (i.e. it is in the

image of the Veronese map), this trace shows the value of the only

nonzero eigenvalue of 𝜎 . Blue strands represent tension, and can be

interpreted as cables; red strands represent compression, interpreted

as struts.

5.1 Numerical Tests, Validation, and Ablation
5.1.1 Single cable. Consider a simple setup where the force distri-

bution is given by two impulses on two points, and the force vector

points radially away from each other (Fig. 5). The optimal support

structure mediating this force distribution is the line segment join-

ing the two points, representing a cable pulled by the forces. Fig. 5

shows the result of our algorithm over a few iterations, demonstrat-

ing that our method successfully reproduces a sharp line segment

connecting the given points.

5.1.2 Force sheets. Instead of prescribing forces concentrated on

point sets, we test our algorithm for force distributed over one-

dimensional sets. Fig. 9 shows the result of our algorithm when the

force is evenly distributed over two sheets facing each other. Despite

5
The implementation is included in the supplementary material.

6
This performance is without any GPU acceleration.

5
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Fig. 6. Sparse support structures found by our algorithm. Left: The force
is set to evenly distribute over two sheets; this is the same result shown in
Fig. 9 but the color axis is rescaled to display detailed support structures.
Right: The same force distribution but with an additional disk obstacle
between the force sheets; the algorithm avoids the obstacle and constructs
“tied arch bridges” to maintain the stress-free condition.

the denseness of the force distribution, our method is able to find a

sparse network of cables and struts supporting the given load. After

a tone mapping, Fig. 6 (left) reveals the emergent detailed branches

and reinforcement structure.

Fig. 7. Our algorithm
finds a sparse support
structure for a pair
of point forces with
an obstacle (shaded re-
gion) blocking in be-
tween the points (cf.
Fig. 1).

5.1.3 Obstacle. Fig. 7 shows the setup of

Section 5.1.1 with an additional obstacle

placed in between the points, similar to the

illustration Fig. 1. The obstacle is prescribed

through a large weight𝑤 = 1000 in the obsta-

cle and𝑤 = 1 elsewhere. The algorithm finds

a realistic structure avoiding the obstacle.

We also test the algorithm for a more

challenging obstacle configuration. In Fig. 6

(right), we place a large obstacle in between

the force sheets of Fig. 9. The algorithm au-

tomatically finds a shockingly sophisticated

system of cables and struts to wrap around

the obstacle, held together by emergent “tied

arch bridges” reaching beyond the convex

hull of the support of the force.

5.1.4 Convergence. Fig. 12 shows a typical convergence plot of the
loss function for our algorithm. Note that there is no procedure in the

optimization such as line-search that would shrink the optimization

step size 𝛥𝑡 . With a fixed step size, the plot reflects an asymptotic

stability of the flow (22). As expected from our loss function which

encourages low rank tensors, Fig. 10 shows that the optimized stress

is rank 1 or 0 except for a sparse set of branching points.

5.1.5 (𝑝, 𝑞) dependency. Fig. 11 shows the force sheet setup for

several combinations of parameters 𝑝 and 𝑞 in our (𝑝, 𝑞)-spectral
norm. Small 𝑞 enforces global sparsity, while small 𝑝 enforces local

low-rank quality. In the case when 𝑝 = 𝑞 = 1, our objective reduces

to 𝐿1–nuclear norm minimization, and our solutions do not achieve

the same sparsity. For all other experiments, we choose 𝑝 = 𝑞 = 1/2.

5.2 Miscellaneous Examples
5.2.1 Bridge Designs. We test that our algorithm is able to generate

reasonable results for common engineering problems. Fig. 13 shows

our algorithm’s output for a force distribution on a horizontal “road”

applying uniform downward force, with two point support forces

a distance below the road. A rectangular obstacle is placed a small

distance below the road, to allow for vehicles or pedestrians to pass

under the resulting structure. Our algorithm identifies an arch of

struts with attached cables, similar to a real-world bridge design.

A similar setup is tested in Fig. 14, with a longer road, a thinner

obstacle, and upward point forces a further distance below the road.

Under these conditions, our algorithm generates a more organic

bridge structure. This result is also presented in Fig. 2. 8 shows a

manual bridge design that uses this result as blueprint.

Fig. 15 demonstrates another setup with two roads stacked ver-

tically. Our algorithm generates a hybrid arch-suspension bridge

with one tall arch.

5.2.2 Cantilever Beam. The cantilever beam is a common test case

in topology optimization research. In Fig. 16, we design a similar

setup by placing a weight force at the end of a beam, and balanc-

ing forces on the other end representing points where the beam

attaches to a wall. Our algorithm develops a series of curved cables

and struts which support the weight at the end of the beam. These re-

sults appear similar to outputs from standard topology optimization

routines.

6 CONCLUSION AND DISCUSSION

Fig. 8. A bridge design inspired by the
result of Fig. 14.

We develop an optimization al-

gorithm which employs geo-

metric-measure-theoretic tech-

niques to find a sparse network

of (potentially non-manifold)

curves connecting a prescribed

force distribution over a given

domain. We have shown that

our algorithm handles complex

force distributions with obsta-

cles in the domain using a series of Fast Fourier Transform and

shrinkage steps. With the Fast Fourier Transform in our algorithm

being the most costly step, we obtain each result less than half a

minute. Moreover, the algorithm is able to produce strikingly non-

trivial stress networks potentially useful in computer-aided designs.

For example, Fig. 8 demonstrates a bridge model designed using the

result of our algorithm.

Though each solution obtained from our algorithm provides a

physically plausible design, the method still demands rigorous theo-

retical guarantees. We have not proven convergence properties for

our non-convex optimization problem. It is likely that concrete state-

ments about convergence can be made by analyzing our Sobolev

gradient flow. Moreover, we have not shown themechanical stability

of our results in addition to the equilibrium condition.

We also note that our (𝑝, 𝑞)-spectral norm minimization formu-

lation is only a non-convex continuous relaxation of the original

combinatorial graph minimization problem. This can lead to subop-

timal solutions in comparison to known minimal graphs (Fig. 17). It

would be interesting to draw relation between our minimal stress re-

construction problem to the Steiner tree problem and the branched

optimal transport problem [Xia 2010; Bonafini et al. 2018; Pegon

et al. 2019].

6
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iteration = 50 iteration = 100 iteration = 500

Fig. 9. The result of running our algorithm for 500 iterations on f evenly
distributed on two sheets, pointing horizontally away from the center line.
See also Fig. 6, left.

iteration = 50 iteration = 100 iteration = 500

Fig. 10. The determinant of the stress tensor in Fig. 9. Vanishing determinant
det(𝜎 ) = 0 indicates that 𝜎 is rank 1 or 0.

The scope of this paper is limited to 2 dimensions with a Euclidean

metric. Extending the theory to respect arbitrary Riemannian met-

rics requires replacing the derivatives in (7b) and (12b) by covariant

derivatives, compromising the diagonalizability by Fourier Trans-

form. Additionally, a 3-dimensional version of our algorithm has

yet to be experimented thoroughly. Higher dimensions introduce

visualization and storage challenges. These challenges can likely be

resolved using techniques of [Liu et al. 2018] or [Palmer et al. 2022].

Finally, our treatment’s use of low-rank stress tensors as vari-

folds opens new avenues in geometric measure theory. We hope

that this physical interpretation leads to further developments in

computational applications of geometric measure theory.
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