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1 INTRODUCTION
Solving Partial Differential Equations (PDEs) on surfaces is a crucial
component in geometry processing with many applications ranging
from texture generation to calculating distance on a curved surface.
Among the many methods to solving PDEs on surfaces, a method
which uses a triangular mesh along with exterior calculus called
Discrete Exterior Calculus (DEC) [Hirani 2003] (and similarly Finite
Element Exterior Calculus [Arnold 2018]) that is particularly elegant
due to its coordinate-free nature and inherent differential operators.
However, a limitation of DEC – and any mesh-based PDE solver –
is that the method relies on a decent mesh quality.

From our experiments (see Fig. 1), when the triangulation of a
mesh is poor, the solution to the surface PDE differs significantly
from the reference solution computed on a higher quality mesh.
Directly tackling the problem of poor mesh quality (i.e. extrinsic or
intrinsic remeshing) is non-trivial [Sharp et al. 2021].

Figure 1: Heat flow simulated with DEC on a high quality
mesh (left) and on a poor mesh (right). Wireframe renders of
the mesh are shown next to each simulation.

There exists another method, the Closest Point Method (CPM),
proposed by Ruuth and Merriman [2008] and recently brought into
attention in computer graphics [King et al. 2023], that is able to
bypass the need of a mesh to solve PDEs on surfaces. In this method,
one solves a reformulation of the PDE on the neighborhood of the
surface instead of directly on the surface. A closest point map is
used for extending surface functions to the neighborhood. The
main benefit of employing this implicit approach is that a regular
Cartesian grid can be used, enabling high order methods without
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needing to worry about mesh quality. However, this closest point
reformulation has been explored for a limited class of differential
expressions involving scalar functions and occasionally vector fields.
Fundamental objects in coordinate-free calculus such as differential
forms and their exterior calculus operations have not been studied
in the closest point framework.

In this work, we propose a novel method that unifies the strengths
of DEC with the CPM, called Closest Point Exterior Calculus (CP-
EC). We provide a general framework for reformulating a surface
exterior calculus expression to its equivalent expression in the
3D neighborhood using the closest point map. Furthermore, the
supported exterior calculus operators include the wedge and the
interior products, which are operators that have been challenging
to discretize on a triangle mesh. Our CP-EC apparatus allows one
to robustly represent a more complete set of operators in exterior
calculus while also having the flexibility to work with curved surface
independent of the mesh quality.

2 BACKGROUND
Exterior calculus is the calculus for differential forms. The funda-
mental operators are the wedge product (∧), the interior product (𝑖®𝑣 )
with respect to a vector ®𝑣 , the exterior derivative 𝑑 , and the Hodge
star (★) [Wang et al. 2023]. While these operators have abstract
definitions based on axiomatic rules on general manifolds, in a 3D
Cartesian space, they become familiar vector calculus operators. Ta-
ble 1 summarizes this correspondence using the subscript notation:
𝑓(𝑘 ) converts a 1D or 3D array of numbers 𝑓 into a 𝑘-form. Table 2
expresses the exterior calculus operators in terms of vector calculus
using this correspondence.

One main advantage of exterior calculus over vector calculus is
that most of the operators commute with pullbacks. A smooth map
𝜑 : 𝑀 → 𝑁 between two manifolds𝑀 and 𝑁 induces a canonical

pullback 𝜑∗ : Ω𝑘 (𝑁 ) linear−−−−−→ Ω𝑘 (𝑀) on the spaces of 𝑘-forms that
represents the change of variables for integral evaluations∫

𝜑 (𝑆 ) 𝛼 C
∫
𝑆
𝜑∗𝛼, ∀𝛼 ∈ Ω𝑘 (𝑁 ), 𝑘-dim surface 𝑆 ⊂ 𝑀. (1)

The pullback operator distributes over wedge products 𝜑∗ (𝛼 ∧ 𝛽) =
𝜑∗𝛼 ∧ 𝜑∗𝛽 , commutes with interior products 𝜑∗𝑖𝑑𝜑 ( ®𝑢 )𝛼 = 𝑖 ®𝑢𝜑

∗𝛼 ,
and commutes with the exterior derivative 𝜑∗ (𝑑𝛼) = 𝑑 (𝜑∗𝛼). Note
that we do not have similar identities for vector calculus operators
(·,×,∇) under general changes of variables.

3 THEORY
We develop the theory for closest point exterior calculus by exploit-
ing the commutativity properties between pullbacks and exterior
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Symbol Definition Meaning

𝑓(0) 𝑓 0-form (scalar field)

u(1) ⟦vvec⟧ [ 𝑢1 𝑢2 𝑢3 ]
[
𝑣1
𝑣2
𝑣3

]
1-form (field of linear func-
tions on vectors)

u(2) ⟦vvec,wvec⟧ det
[
𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3

]
2-form (skew-symmetric
bilinear form of vectors)

𝑓(3) ⟦uvec, vvec,wvec⟧ 𝑓 det
[
𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3

]
3-form (scalar times the vol-
ume form)

Table 1: Differential forms in the 3D Cartesian space.

Output
type

Wedge
product (∧)

Interior
product (𝑖 ®𝑢 ),
(®𝑢 B uvec)

Exterior
derivative (𝑑)

Hodge
star (★)

0-form 𝑓(0) ∧ 𝑔(0)
= (𝑓 𝑔) (0)

𝑖 ®𝑢w(1)
= (u · w) (0)

N/A ★𝑓(3) = 𝑓(0)

1-form 𝑓(0) ∧ u(1)
= 𝑓 u(1)

𝑖 ®𝑢w(2)
= (w × u) (1)

𝑑𝑓(0) = (∇𝑓 ) (1) ★u(2) = u(1)

2-form u(1) ∧ v(1)
= (u × v) (2)

𝑖 ®𝑢 𝑓(3)
= 𝑓 u(2)

𝑑u(1) = (∇ × u) (2) ★u(1) = u(2)

3-form u(1) ∧ v(2)
= (u · v) (3)

N/A 𝑑u(2) = (∇ · u) (3) ★𝑓(0) = 𝑓(3)

Table 2: Exterior calculus operators in 3D.

calculus operators. The theory essentially characterizes an isomor-
phism between the calculus on a surface and the calculus in a 3D
neighborhood.

Let 𝑆 be a surface embedded in R3 by the inclusion map 𝑗 : 𝑆 ↩→
𝑁 ⊂ R3, where 𝑁 ⊂ R3 is a neighborhood of 𝑗 (𝑆). The closest point
function 𝑐𝑝 : 𝑁 → 𝑆 takes a point in this neighborhood and returns
the closest point on the surface. Conversely, the pullback operator

𝑗∗ : Ω𝑘 (𝑁 ) linear−−−−−→ Ω𝑘 (𝑆) extracts the tangential part of a 3D 𝑘-

form field at the surface, while 𝑐𝑝∗ : Ω𝑘 (𝑆) linear−−−−−→ Ω𝑘 (𝑁 ) extends
a surface 𝑘-form to the neighborhood 𝑁 . Note that for a scalar
function 𝑓(0) on 𝑆 , 𝑐𝑝∗ 𝑓(0) = 𝑓 ◦ 𝑐𝑝 is the constant-along-normal
extension in the classical CPM. The endomorphism ( 𝑗 ◦ 𝑐𝑝)∗ =

𝑐𝑝∗ 𝑗∗ : Ω𝑘 (𝑁 ) linear−−−−−→ Ω𝑘 (𝑁 ) replaces a neighborhood 𝑘-form by
its extension from its value at the surface 𝑗 (𝑆).

In practice, 𝑁 is represented by a regular grid. The pullback 𝑗∗

is an interpolator, allowing us to query ( 𝑗∗𝛼) (𝑝) at an arbitrary
off-grid surface point 𝑝 using the grid data 𝛼 ∈ Ω𝑘 (𝑁 ). We use the
cubic Lagrange interpolation as in the classical CPM. The pullback
𝑐𝑝∗ of the closest point map in ( 𝑗 ◦ 𝑐𝑝)∗ = 𝑐𝑝∗ 𝑗∗ amounts to a post-
multiplication by a 3× 3 matrix related to the Jacobian F = 𝑑 ( 𝑗 ◦𝑐𝑝):

𝑐𝑝∗ 𝑗∗ 𝑓(0) = (𝑓 ◦ 𝑐𝑝 ◦ 𝑗) (0) (2a)
𝑐𝑝∗ 𝑗∗u(1) = (F⊺u ◦ 𝑐𝑝 ◦ 𝑗) (1) (2b)
𝑐𝑝∗ 𝑗∗u(2) = (cof (F)⊺u ◦ 𝑐𝑝 ◦ 𝑗) (2) (2c)
𝑐𝑝∗ 𝑗∗ 𝑓(3) = (det(F) 𝑓 ◦ 𝑐𝑝 ◦ 𝑗) (3) = 0. (2d)

Here, cof (F) denotes the cofactor matrix of F, and det(F) = 0 since
𝑐𝑝 maps from 3D to 2D. Note that each of the composition evaluator
(·) ◦ 𝑐𝑝 ◦ 𝑗 is identical to the extension operator for 0-forms in the
classical CPM. The generalization of 𝑐𝑝∗ 𝑗∗ to 𝑘-forms is significant,

since many of the operators in exterior calculus work well with
each other through this pullback. In particular, 𝑐𝑝∗ allows us to
emulate the operators on 𝑆 (denoted with a superscript 𝑆) using the
operators on R3 (denoted with a superscript R3) which we already
have exact arithmetic expressions (Table 2):

CP-wedge product: 𝑐𝑝∗ (𝛼 ∧𝑆 𝛽) = (𝑐𝑝∗𝛼) ∧R
3
(𝑐𝑝∗𝛽), (3a)

CP-interior product: 𝑐𝑝∗ (𝑖𝑆Fu𝛼) = 𝑖R
3

u 𝑐𝑝∗𝛼, (3b)

CP-exterior derivative: 𝑐𝑝∗ (𝑑𝑆𝛼) = 𝑑R
3
𝑐𝑝∗𝛼, (3c)

CP-Hodge star: 𝑐𝑝∗ (★𝑆𝛼)
��
𝑗 (𝑆 ) = 𝑖 ®𝑛 ★R

3
(𝑐𝑝∗𝛼)

��
𝑗 (𝑆 ) . (3d)

Note that the CP-Hodge star is only applicable directly at the surface
(due to the metric dependency of ★) while other CP-EC operators
work on the surface and in the neighborhood of the surface.

These new operators (3) acting on the subspace im(𝑐𝑝∗) =

im(𝑐𝑝∗ 𝑗∗) ⊂ Ω• (𝑁 ) of differential form spaces, assisted with the
subspace projection 𝑐𝑝∗ 𝑗∗ given by (2), allows one to translate differ-
ential equations and expressions on surfaces to a CPM framework.

4 DISCUSSION
In the past, each CPM requires individual analysis for converting a
surface PDE to the 3D neighborhood. With this work we formulate
an effective language which rapidly translates multivariable calculus
PDE problems formulated on surfaces into closest point problems.
This is made possible by formalizing the CPM using the concept of
pullbacks and utilizing the commutativity of pullbacks with exterior
calculus operators. The CP-EC also improves exterior-calculus-
based methods as the wedge product and interior product were
difficult to discretize on a triangle mesh, and other exterior calculus
operators relied on the quality of the mesh.

We hope that this poster work will inspire exciting computa-
tional methods for surface PDEs, as implicit representations become
popular in recent years. We also hope that our unifying framework
allows more concise numerical analysis in the future: Convergence
properties can be analyzed for each fundamental operators, instead
for each individual PDE problems independently. Ultimately, CP-EC
forms a language that categorially maps a surface PDE problem
into the closest point world, allowing a deeper understanding of the
correspondence between an implicit and an explicit representations.
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