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Categorization as Probability Density Estimation

F. GREGORY AsHny AND LioLA A. ALFONSO-REESE

University of California at Santa Barbara

A category can be represented as a probability density function
{pdf), that is, as a set of exemplars aloeng with the probability or
likelihood that each is selected as a stimulus, This article examines the
relation between categorization and pdf estimation. We first discuss the
differences between classifiers that know the true category pdfs and
classifiers that must estimate these functions from trial-by-trial feed-
back. Consistency is shown to be the key statistical property that
guarantees two such classifiers will reasonably agree. Parametric and
nonparametric pdf estimators are interpreted from the perspective of the
categorization process. |Lis shown that the prototype model and several
decision-bound models of categorization are parametric, whereas most
exemplar models are nonpararnetric. The exemplar models are shown to
be equivalent to a classifier that uses the minimum variance unbiased
estimator of the category baserates and a nonparametric pdf estimator
that is one of the most commonly used estimators of professional
statisticians {i.e., the kernel estimator}. It is also shown that in most
applications, the exemplar models predict essentially optimal perfor-
mance. Finally, the implications of these results are discussed and an
alternative approach to the study of categorization is suggested.
€ 1935 Academic Press, Inc.

In a categorization task, the experimenter identifies two
ot more sets of objects or events called categories. The mem-
bers of a category are called exemplars. On each trial, a
stimulus is chosen by randomly selecting an exemplar from
one of the categorics. The subject’s problem is to name the
category to which the stimulus belongs.

The set of exemplars comprising the relevani categories
will vary in one or more attributes. Most cutrently popular
categorization theories assume that the psychological effects
of each stimulus can be described by a vector containing the
perceived magnitude of every attribule that varies. In other
words, each stimulus can be represented as a point in a
multidimensional psychological space. According to this
model, a calegory can be represented as a probability
distribution, that is, as a set of points along with the
probability or likelihood that each is selected as a stimulus.

To solve the calegorization problem, many theories
assume the subject computes a set ol values that measure
the strength of association between the stimulus and each of
the relevant categorics, For example, in prototype theory,
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the strength of association is the similarity between the
stimulus and the category prototype. In exemplar theory,
the strength of association is the sum of similarities between
the stimulus and all encoded exemplars of the category. This
article shows that in the currently popular categorization
models, these values are proportional to estimates of the
category probability density functions (pdls).

As a result, categorization models can be described and
compared by using the statistical language of probability den-
sity estimation. An immediate advantage of such an approach
is that the many results described in the extensive pdf estima-
tion literature can be used to provide new insights into
categorization performance. Also, by viewing categorization
as pdf estimation, psychologists benefit from important dis-
tinctions made in the statistical literature that are not currently
emphasized in the categorization literature. For example, one
important distinction between pdf estimators is whether they
are paranieiric or nonparametric. Incategorization this distine-
tion corresponds (o whether subjects make strong assump-
tions (corresponding to parametric models) or almost no
assumptions {corresponding to nonparametric models) about
category structure. :

This article proceeds as follows: First, the basic structure
of categorization models is described in terms of their
representalion, category access, and response selection
assumptions. Next, we elaborate on the notion of
categorization as probability density estimation. We discuss
the differences between classifiers that know the true
category pdfs and classifiers that must estimate these
functions from the trial-by-trial feedback provided by the
experimenter. 1t is shown that consistency is the key statisti-
cal property that guarantees two such classifiers will
reasonably agree. The third section defines parametric and
nonparametric pdf estimation and relates these statistical
terms to the categorization process. The fourth section dis-
cisses parametric categorization models. In particular, it is
shown that the protolype model and several decision-bound
models are parametric. The fifth section shows that most
popular cxemplar models of catcgorization are non-
parametric. In particular, we show that they are equivalent
to a classifier that uses the minimum variance unbiased
estimator ol the category bascrates and a nonparametric pdf
estimator that is one of the most widely used estimators of
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professional statisticians. We also show that i most
applications these models predict essentially optimal perfor-
mance. Finally, the last section discusses implications of
these results and suggests an alternative approach to
studying human categorization performance.

CATEGORIZATION MODELS

Virtually all categorization models make assumptions
about (i) the representation of stimuli, exemplars, and
categories; (ii) the information that is accessed from the
category representations and the computations that are per-
formed on this information; and (iii) response selection, that
is, how a response is selected after the requisite information
has been collected and computed.

Almost all currently popular categorization models
assume a numeric representation. In particular, they assume
that stimuli and exemplars may be represented as points {or
a probability distribution of points), in a multidimensional
psychological space. Therefore, this article assumes that
such a numeric representation is possible. Let the vector
x'={x,, x5, .., x,,,] denote the coordinates of stimulus Xin
the m-dimensional psychological space (where the prime
denotes vector or matrix transpose). In most models the
vector x is a constant, but in the decision-bound model x is
a random vector. The vector x and the other notation used
in this article are defined in Table 1.

The category access assumptions (ie., assumptions of
type i1} delineate the various categorization theorics, We
focus on three different types of models: prototype, exem-
plar, and decision-bound models. Prototype models assume
the category representation is dominated by the prototype,
which is usually defined as the most typical, or repre-
sentative, category member (Posner & Keele, 1968, 1970,
Reed, 1972; Rosch, 1973, 1977). On each trial, the subject is
assumed (0 access the prototypes of all competing
categories. Next, the similarity is computed between each
prototype and the stimulus (or more technically, the percept
elicited by the stimulus).

Exemplar models assume that every exemplar of all
relevant categories is accessed. Next, for each category, the
similarity between the stimulus and each exemplar is
computed, and finally, all these similarities are summed
(Brooks, 1978; Estes, 1986, 1994; Hintzman, 1986; Medin &
Schaffer, 1978; Nosofsky, 1986). Decision-bound models
assume the subject constructs a decision bound that parti-
tions the perceptual space into response regions, one for
each relevant category. On each trial, the subject determines
the region in which the stimulus representation falls and
then emits the associated response (Ashby, 1992a; Ashby &
Gott, 1988; Ashby & Lee, 1991, 1992; Ashby & Townsend,
1986; Maddox & Ashby, 1993).

Response selection models are either dererministic or
probabilistic. Deterministic models assume that, if on
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TABLE 1

Notation Used in This Article in Order of Appearance

Symbol Description

X coordinates of stimulus X in psychological space

Xps Vi coordinates of stimulus X and ¥, respectively, along
dimension k

X stimulus

m number of dimensions of psychological space

A, B categories

g(x) discriminant function

I response criterion

P(A), P(B) a priori probability that stimulus is from categories A and

B, respectively
probability density functions of categories 4 and B,
respectively

Falx), f(x)

Lix) likelthood ratio

Sy Sxp strength of relationship between stimulus X and categories
A and B, respectively

M(x) matching probability

B4, 05 response biases toward categories 4 and 8, respectively

N total number of stitnuli in an experiment (i.e., total sample
size)

NN number of stimuli in categories A and B, respectively

B, Lyi(x),

My(x), f;(x) estimators of various functions

8¢ parameters

By, En parameter estimators

hy kernel width on dimension &

K(x) kernel function

ol xy marginal kernel function on dimension &

YiXs covariance matrices for categories 4 and B, respectively

¢ variance

I identity matrix

F:4 probability of encoding a new exemplar

P(RLIX) probability of responding 4 on trials when stimulus X is
presented

Hxy similarity between stimulus X and stored exemplar Y

Y stored exemplar

Sk component similarity function

Fi value of similarity function along dimension & when
X F Vg

o similarity function exponent

dyy distance between stimulus X and stored exemplar Y

Wy attention weight for dimension &

C nonnegative scaling parameter measuring overali
discriminability

¥ Minkowski distance function exponent

P context model and array model parameter indicating

kernel function value for x #0

B, Hp category mean vectors
L normalized eigenvectors
Y coordinate of stored exemplar ¥, along dimension &

different trials the perceptual information is the same and the
same information is accessed from memory, then the subject
always selects the same response. Deterministic response
selection rules are of one basic type. Consider a task with
categories 4 and B. Let g(x) be some function of the
stimulus representation with the property that a stimulus
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with coordinates x is more likely to be a member of category
A when g(x) is negative and a member of category B when
g(x) is positive. For example, in a prototype model g(x)
might equal the difference in similarities between the
stimulus and the two category prototypes. The deterministic
decision rule! is to

Respond A4 if g{x)<d; Respond Bifg(x)=>4, (1)
where J is the response criterion. In some models & is a
random variable (sce, e.g, Maddox & Ashby, 1993),

The optimal classifier—that is, the device that maximizes
categorization accuracy—uses a rule like Eq. (1}. Let P(J)
be the a priori probability that the stimulus is {rom category
J and let /5(x) be the likelihood? of stimulus X given that it
is member of category J {so f;(x)} is the category J pdf.
Then it is well known that the most accurate of all decision

strategies is the rule (see, e.g., Ashby, 1992b; Green & Swets,
1966)

Respond A if L{x) =M>5; Respond B if L(x) <4,

Ss(x)
(2)

where é = P(B)/P(A4). The Eq. (2) rule is sometimes written
as

Respond 4 if g(x)= —log L{x) < —log §;
Respond Bif g(x) > —log d.

The function L{x) is known as the likelthood ratio. Because
the rule is based on the true category pdfs and the true
baserates, we call it the true likelihood ratio rule.
Probabilistic response selection models assume the
subject always guesses, although usually in a sophisticated
fashion. Sophisticated guessing, as defined by Broadbent
(1967), is a strategy in which the subject guesses more likely
responses with greater probability than less likely responses.
In other words, if the evidence supports the hypothesis that
the stimulus belongs 1o category 4, then a determinisiic
model predicts that the subject will respond A4 with
probability 1, whereas a probabilistic model predicts that
response A will be given with probability less than 1 {but
greater than 0.5). Probabilistic response selection models
are also of one basic type. Let 8y, be a measure of
the relationship between stimulus X and category 4 with
the property that larger values of §,, indicate a closer

! Throughout this article we assume the subject guesses if g(x} = 4. If the
category pifs are continuous, then Pl g(x}=4]=0.

2 More precisely, f,{x) is the likelihood that the percept x was elicited by
an exemplar from category J. Thus, when we refer to the category pdf, we
mean the distribution of all percepts elicited by exemplars from that
category.
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relationship. Then almost all probabilistic response selec-
tion models assume the subject uses the rule

: 21: ﬁA SXA

Respond A with probability M(x) BS,.faSer (3)
where £ is the response bias toward category J (with §,=0).
Without loss of generality, one can assume that fz=1—§ .
In many categorization models the response biases are set {0
.= Bz=1 Equation (3) has many names. [t was originally
proposed by Shepard (1957) and Luce (1963), so it is often
called the Luce—Shepard choice model. But it is also called the
similarity-choice model, the biased-choice model, or the
relative goodness rule, A spectal case of Eq. (3) that 1s of par-
ticular interest occurs when the subject’s response probability
matches the objective posterier probability associated with
gach relevant category. In this case, Eq. (3) reduces to

Respond A4 with probability M(x)

_ P(A|x) _ P(A) f4(x)
P(A|x)+P(B|x) P(4)[f.(x)+ P(B)fs(x)

{4)

Wecall Eq. (4) the true probability matching rule { Estes, 1976,
Hermstein, 1961, 1970). The true probability matching rule
is closely related to the true likelihood ratio rule because

PN LX)
MY = B0 700 + P(B) (%) L{x)+6

CATEGORIZATION AS DENSITY ESTIMATION

In a typical categorization task, a subject attempting to
use either the true likelihood ratio rule [ Eq. (2} ] or the true
probability matching rule [ Eq. (4)] would not know the
true baserates [i.e., P(J)] or probability density functions
for each category (since these are not usually provided by
the experimenter). Instead, the subject would be forced to
estimate the baserates and density functions from the trial-
by-trial feedback provided by the experimenter. Let ¥, be
the number of category J exemplars presented so far in the
experiment and define ¥=N,+ Nz Then the minimum
variance unbiased estimator of P(J) is P(J)=N,/N. Let §
be an estimator of the critetion & = P(B)/P(4) and let £ (x)
and M ,(x) be estimators of L(x) and M(x), respectively,
that are each based on a total sample of N exemplars.’

3 Most of the popular methods of estimation assume random sampling
from some invariant population (ie., so that statistical independence
holds). If these assumptions are viclated, the methods will usually fail. For
example, if the exemplars are blocked by category during the training
sessions, it may be impossible for the subject to estimate accurately the
category baserates to be expected during experimental testing. As a conse-
quence, throughout this article we assume stimulus presentation satisfies
the wsual sampling assumptions.



CATEGORIZATION AS DENSITY ESTIMATION

Given that a subject cannot know the true likelihood
ratio, the best a subject can do is to use the rule

Respond 4 if £,(x)>3J; Respond Bif L(x)<d. (5)
We call this the estimated likelihood ratio rufe. Similarly, a

subject trying to probability match can, at best, use the
estintated probability matching rule

Respond A with probability M ,{x);

Respond B with probability 1 — M (x). ©®)

The categorization accuracy of a subject using the
estimated likelihood ratio rule or the estimated probability
matching rule will depend on how well they estimate
4, L(x), and M(x). In this article, we consider models in
which estimators of L{x) and M(x) are constructed from
estimators of the category pdfs. Let /,(x) be an estimator of
f;(x) that is based on the N, exemplars from category J.
Then this article considers models® in which L, (x)=

F4(x)ff5(x) and

M () = - DA alx)
MU B(A) fa(x) 4 P(BY fu(x)

Note that if the subject estimates the category baserates by
using the minimum variance unbiased estimator, then
M (x) becomes

NAfA(X)
N fa(x)+ Ny fo(x}

Under these conditions, the performance of a subject
depends on his or her ability to estimate accurately the
category baserates and pdfs. Estimation of the category
baserates is straightforward, but estimation of the category
pdfs is a difficult problem (see, eg., Myung, 1994). The
statistical literature contains many different pdf estimators.
Some of these will provide reasonably good estimates of the
category pdf, but others will not. A subject who uses the
estimated likelihood ratio rule, along with the best possible
pdf estimator, will still not respond optimally. Even so, we
can expect reasonably good agreement between such a sub-
ject and the optimal classifier. On the other hand, a subject
who uses a suboptimal rule, or one who uses the estimated
likelihood ratio rule along with a poor pdf estimator, should
agree poorly with the optimal classifier. Therefore, an
important criterion for evaluating the efficacy of a pdf
estimator is whether it leads to reasonable agreement
between the estimated and true likelihood ratio rules.
What does it mean to say that a subject is in reasonable
agreement with the optimal classifier? A faitly strong

MN(X):

* There is no guarantee that this estimation strategy will produce the best
estimators.
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definition is that, with large enough sample sizes, the subject
and the optimal classifier agree on every decision with
probability 1. This idea is formalized in our first definition.

DermitioN 1. The true likelihood ratio rule [Eq. (2}]
and the estimated likelihood ratio rule [Eq. (5)] are in
reasonable agreement if

lim PILy(x)>8| Lix)>6]=1,

where N is the sample size.

Definition 1 establishes reasonable agreement as an
asympiotic property of categorization performance. As
such, it is possible that a subject could reasonably agree
with the true likelihood ratio rule, yet perform badly on
early training trials. For example, suppose Subjects 1 and 2
both participate in the same categorization experiment and
that Subject 1 is in reasonable agreement with the true
likelihood ratic rule. Even in this case, it is possible that
Subject 2 will significantly outperform Subject 1 during
most of the training period. However, if Subject 2 always
performs at least as well as Subject 1, then it must be true
that Subject 2 is also in reasonable agreement with the true
likelihood ratio rule.

With the probability matching rule, the strong form of
agreement established in Definition [ is not possible. This is
because the likelihood ratio rule used by the optimal
classifier selects a response on every trial, whereas the
probability matching rule does not; it only specifies the
probability of emitting a particular response. Thus, two sub-
jects given the true category pdfs who are both probability
matching could disagree on many trials. As a consequernce,
we say that a subject using the estimated probability
matching rule of Eq. (6) reasonably agrees with the true
probability matching rule if, for large sample sizes, the two
predict identical response probabilities. This idea is
expressed formally in Definition 2.

DefiNtmioN 2. The  true probability matching rule
[Eq.(4)] and the estimated probability matching rule
[Eq. (6)] are in reasonable agreement if
for all

lim P[|M(x}—M(x)|<e]l=1, >0,
N— o

where N is the sample size.

This second form of agreement is weaker than the first
form because if two rules give the same response on every
tria] (i.e., Definition 1), they necessarily predict the same
response probabilities (i.c., Definition 2), but the converse
is not true. Two rules could predict the same response
probabilities but give different responses on many trials.

Given a definition of reasonable agreement, the next step
is to ask what statistical properties the estimators , f,(x),



220

and fu(x) must satisfy before reasonable agreement is
guaranteed. Ideally, we seek the weakest possible property
that guarantees reasonable agreement. There are a number
of possibilities. Among the strongest is the combination of
minimum variance and unbiasedness. Among the weakest is
consistency. An estimator, d , is consistent if it converges to
the true parameter value, §, as the sample size approaches
infinity. Consistency is & weak property because even biased
estimators can be consistent. In fact, a sufficient condition
for consistency is that the bias and variance converge
to zero as the sample size approaches infinity. A formal
definition of consistency is as follows:

DerviTion 3. A sequence of estimators {4y} of a
parameter  is consistent if and only if, for every e >0,

Nlim PG, -0<e)=1.

A sequence of estimators { / ~(X)} of a pdf f(x) is consistent
if it is consistent at every value of x.

The two major results in this section show that
consistency is a sufficient condition to ensure reasonable
agreement both between the estimated and true likelihood
ratio rules and between the estimated and true probability
matching rules. The proofs of these theorems depend
heavily on the following result:

LemMma 1. If 8, and &), are consistent estimators of the
parameters 8 and &, respectively, then

{a) ByEy is a consistent estimator of OF,
(b) G5+, is a consistent estimator of 8 + £,

(¢) 6y/Ev is a consistent estimator of O/, if
P(éy=0)<1land & #0.

Progf. All proofs are given in the Appendix.

Armed with these tools, we are now in a position to state
and prove our first result.

THEOREM 1. Consider a categorization experiment with
two categories, A and B. Suppose b is a consistent estimator
of the criterion &, and Fax) and Fu(x) are consistent
estimators of the category pdfs [ (X} and f(X), respectively.
Then the estimated and true likelihood ratio rules [ Egs. (5)
and {2}] are in reasonable agreement ( Definition 1).

Thus, consistency is enough to guarantee reasonable
agreement. Theorem 2 shows that consistency is also
sufficient for reasonable agreement between the estimated
and true probability matching rules.

THEGREM 2. Consider a categorization experiment with
two categories, A and B. Suppose P(A) and P(B) are con-
sistent estimators of the category baserates, P(A) and P(B),
respectively, and f (x) and f3(x) are consistent estimators of
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the category pdfs f(x) and fg(x), respectively. Then the
estimated and true probability matching rules [ Egs. {6) and
(4)] are in reasonable agreement ( Definition 2).

Theorems 1 and 2 are important because they establish
consistency as the key statistical property that guarantees
reasonable agreement with an optimal classifier that is using
either the true likelihood ratio rule or the true probability
matching rule. In particular, this means that a subject who
wishes to respond in an approximately optimal fashion
need not estimate the category baserates or pdfs with mini-
mum variance unbiased estimators, or even with unbiased
estimators. Instead, only the weak property of consistency is
required.®

PARAMETRIC VERSUS NONPARAMETRIC
DENSITY ESTIMATION

In the statistical literature, an important distinction
among pdf estimators is whether they are parametric
or monparametric. Parametric estimators make strong
assumptions about the distribution of the observed data,
whereas nonparametric estimators make weak assumptions.
For example, a parametric estimator might assume that the
distribution of the observed data is normal. If so, then the
problem of pdf estimation is reduced to the problem of
estimating the parameters of the normal distribution (ie.,
means, variances, and correlations). In contrast, a non-
parametric estimator might assume only that the true pdf is
continuous.

Parametric and nonparametric estimators form two ends
of a continuum. It clearly is possible to construct estimators
that lie between the two extremes of assuming normality
and assuming only that the true pdf is continuous. For
example, an estimator might assume that the true pdf is in
the exponential family, which includes the normal, bino-
mial, Rayleigh, and exponential distributions, among many
others. Alternatively, the estimator might assume the true
pdf is unimodal and continuous. As we will see, however,
the currently popular categorization models are all equiv-
alent to a pdf estimation process in which the estimator is
firmly anchored at one end of the continuum or the other.

Nonparametric pdf estimation is a difficult statistical
problem. No minimum variance unbiased estimators are
known. In fact, no unbiased estimators are known. As a

¥ While preparing this article for publication, we discovered a technical
report written in 1951 by Fix and Hodges, which anticipates some of the
ideas in this section, In particular, aithough they used other language, Fix
and Hodges proposed a definition of reasonable agreement that is similar
to our own. They also identified consistency as the key statistical propersty
of the pdf estimators that guarantees reasonable agreement. However, their
development did not allow for unequal category baserates, they had no dis-
cussion of the probability matching rules, and they did not prove any of the
theorems presented in this article, The Fix and Hodges (1951) technical
report has only recently been discovered by the statistical community
(Silverman & Jones, 1989).
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consequence, many different nonparametric estimators have
been proposed (see, e.g., Scott, 1992; Silverman, 1986). The
most widely known nonparametric estimator is the relative
frequency histogram, but many other nonparametric
estimators are known to be more accurate {according to a
number of different accuracy criteria; see, e.g., Scott, 1992;
Silverman, 1986). For example, the kernel estimator
(Parzen, 1962) can be viewed as a generalization of the
histogram in which the fixed bins are replaced by non-
stationary smooth weighting functions or kernels. In
general, kernel estimators lead to substantially smaller
mean integrated squared errors than relative frequency
histograms (see, e.g., Scott, 1992, Fig. 6.4). Because of its
attractive statistical properties and its simplicity, kernel
estimators are popular with professional statisticians. In the
words of Silverman (1986), “Apart from the histogram, the
kerne! estimator is probably the most commonly used
estimator™ (p, 17). He goes on to add that “the kernel
method is a good choice for many practical purposes; it is
simple and Intuitively appealing, and its mathematical
properties are quite well understood” (p. 95). A formal
definition of the kernel estimator is as follows:

DerFmviTioN 4. Suppose a random sample of size N has
been drawn from some population of m-dimensional vectors
with pdf f(x). Denote the ith of these sample vectors by

The kernel estimator of f(x) has the form

n 1 X
f =5 ¥ Kx—=x,).

i=1

where

(a) [K(x)dx=1, and
(b} [x,K(x)dx=0,foralll<k<m.

A

fi{x) is a product kernel estimator of f(x) if the kernel
K{x —x;) equals

Kix—x)=1] hikx" (x"h—kx") (7)

k=1

The constant /4, is called the kernel width on dimension i.
Also, h; depends in some way on the sample size N,

Because of condition {a), K(x) is a probability density
function if it is non-negative everywhere. Although kernels
are not required to be non-negative, many of the most
popular kernels are pdfs. For example, a popular choice 1s
to let K(x) be the multivariate normal density function. If
the kernel is a pdf, then condition (b) is equivalent to
assuming the kernel mean is zero on every dimension.
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In addition, the k,(x,) kernel of the product kernel
estimator then corresponds to a marginal density function
and the product rule of Eq. (7) is equivalent to assuming
statistical independence. The kernel K(x) is a product of the
marginal kernels [Le., the &,{x,)}] because under statistical
independence, the joint density equals the product of the
marginal densities. If a norma! kernel is chosen, the kernel
with %; becomes the standard deviation on dimension i. In
most applications, a constant 4, is chosen for all dimensions
(Le, hy=--- =h,,)

In the categorization literature, the parametric versus
nonparametric dichotomy corresponds to whether a subject
makes strong or weak assumptions, respectively, about the
distribution of category exemplars. For example, a subject
who assumes category members are normally distributed
need only estimate the mean and variance of the exemplars
to derive an estimated pdf of that category. Alternatively, a
subject who makes no family distribution assumptions of a
category might compute a histogram of the exemplars to
estimate the pdf of that category.

We are now in a position to re-examine the popular
categorization models. In each case, we are interested
primarily in two questions. The first is whether the model
assumes subjects use parametric or nonparametric category
pdf estimators. The second problem is to identify the condi-
tions under which the pdf estimator assumed by the model
is consistent. These are the experimental conditions under
which the model predicts performance that is essentially
optimal. Suboptimal performance by motivated, practiced
subjects under these same conditions would therefore be
extremely problematic for this class of models.

A number of recent articles have established equivalence
relations between the true likelihood ratio rule (ie., the
optimal classifier) and many different categorization models
(Ashby & Maddox, 1993; Myung, 1994; Nosofsky, 1990). In
general, however, these results are asymptotic in the sense
that they assume the subject has had an infimite amount of
experience with the categories. Thus, they ignore the statisti-
cal problems facing a subject who has only limited experience
with the categories (although, see, Myung, 1994). As a conse-
quence, none of these articles draws a connection between
categorization and trial-by-trial probability density function
estimation. In contrast, most of the results in this article hold
exactly for any sample size. The results on consistency are
asymptotic, but unlike the asymptotic results of earlier
papers, our results place strict requirements on the perfor-
mance of the subject as he or she approaches that asymptote.

We begin our survey by examining parametric models
and conclude with nonparametric models.

PARAMETRIC CATEGORIZATION MODELS

Parametric pdf estimators assume the unknown pdf
belongs to a specific family of probability distributions.
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Before examining specific parametric categorization
models, we examine the conditions under which parametric
estimators of the pdf are consistent. These conditions are
specified in the next theorem. Since this result is well known
in the statistical literature, we state it without proof.

Treorem 3. Let f(x) be a parametric estimator of the
pdf f(x), where the parameters of f(x) are ® and the estimator
of 8 is 0. Then f(x) is consistent if:

(a) the family of distributions assumed for f(x) is the one
to which f(x) belongs, and

(b} 0 is a consistent estimator of 0.

With most well known parameters {e.g, means, varian-
ces, covariances), consistent estimators are easy to find.
Therefore, Theorem 3 indicates that the major obstacle to
optimal performance by a parametric classifier is the
problem of choosing the correct family of probability dis-
tributions. In categorization, this problem becomes one of
assuming the correct category structure. ¥ the natural
categories that an organism must learn have no common
structure, then parametric classification makes little sense. If
natural categories have many different structures, then a
parametric classifier that encounters a new category would
often assume an incorrect structure. In this case, we would
expect the resulting pdf estimate not to be consistent and
suboptimal performance to result. In a world where natural
categories have many different structures, nonparametric
classification makes more sense.

There is a scenario, however, in which parametric
classification is preferred, even if natural categories have no
common structure. Most nonparametric pdf estimators
require extensive memory and computation (e.g., see Defini-
tion 4). With large categories the memory and computa-
tional requirements may exceed the capacity of the subject.
If so, a simpler alternative is required. One possibility is that
the subject estimates only a few moments of the category
distributions. For example, the subject may estimate the
mean exemplar value on each dimension, the variances,
the correlations between dimensions, and the category
baserates. Even with these estimates, however, to use either
the estimated likelihood ratio rule or the estimated
probability matching rule, the subject must assume a
distributional family. If the subject’s experience with natural
categories suggesis no solution to this problem, some other
criterion for choosing a family of distributions is required.
Myung (1994) argued that the best solution to this problem
1s to assume the category distributions are multivariate nor-
mal. Given estimates of the means, variances, correlations,
and baserates, the multivariate normal is the maximum
entropy inference {assuming the stimulus dimensions are
not known to be restricted to some proper subset of the real
line). To infer any other family of distributions requires
assumptions beyond those needed to infer the multivariate
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normal. In other words, the multivariate normal distribu-
tion is the appropriate noncommittal choice in such
situations.

If most natural categories possess a common structure,
then parametric classification becomes more desirable than
nonparametric classification. For example, it is far easier to
estimate an unknown mean and variance than an unknown
pdf. Ashby (1992a) argued that many natural categories
might be well described by the multivariate normal distribu-
tion. First, natural categories tend to have a very large, if
not unlimited, number of exemplars. Second, the dimen-
sions of natural categories are often continuous-valued.
Third, many natural categories appear to overlap with one
another. For example, the category bound between goats
and sheep is indistinct (e.g., Schaller, 1979), Finally, many
natural categories appear to be symmetrically distributed
about some single prototypical member, or at least, subjects
often enter categorization tasks with this expectation (c.g.,
Flannagan, Fried, & Holyoak, 1986; Fried & Holyoak,
1984). The muliivariate normal distribution has each of
these properties.

As we will now show, many of the currently popular
categorization models are equivalent to a parametric
classifier that assumes multivariate normal distributions,
The next result shows this is true of prototype models.

THEOREM 4. Consider a categorization task with
categories A and B. The prototype mode! (Reed, 1972) is
equivalent to a parametric classifier that uses the true
likelihood ratio rule and assumes

(a)

(b)

{c) the category covariance matrices are egual (ie.,
2, =Xg=2), and

{(d) one of the eigenvectors of L is orthogonal to the
minimum distance bound.

the category baserates are equal [ ie., P(A)= P(B}],

the category distributions are multivariate normal,

The prototype model predicts that subjects will use the
minimum distance bound (e.g., Ashby, 1992a). This is the
set of all points equidistant from the two category means. Of
course, the subject could construct such a bound only if
the population means are known exactly. This is why the
prototype model is equivalent to a classifier that uses
the zrue likelihood ratio rule. The most widely known
conditions under which minimum distance classification is
optimal are that £, =X = =¢’I, where [ is the identity
matrix. When Z =a?J, the eigenvectors of X can be chosen
to have any direction (so long as they are all mutually
orthogonal). Thus, one of the eigenvectors of X could be
chosen to be orthogonal to the minimum distance bound, so
the condition that X = ¢*7 is a special case of the conditions
detailed in Theorem 4. On the other hand, it is easy to find
examples in which the conditions of Theorem 4 are satisfied
but X # ¢°I. An example is shown in Fig. 1.
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FIG. 1. Contours of equal likelihood and the optimal decision bound
from a categorization task with categories 4 and B. In this experiment, the
optimal classifier uses the minimum distance bound even though, within
each category, the variances differ across dimensions and the correlation is
nonzero.

Theorem 4 staies conditions that are sufficient for
minimum distance classification to be optimal, but these
conditions are not necessary. For example, minimum
distance classification is optimal with certain non-normal
category distributions.

We turn next to two popular decision-bound models. The
general linear classifier assumes only that the subject uses
some linear decision bound and the general quadratic
classifier assumes only that the subject uses some quadratic
decision bound.

THEOREM 5. Consider a categorization task with
categories A and B. The general Hinear classifier { Ashby,
1992a; Maddox & Ashby, 1993) is equivalent to a parametric
classifier that uses the estimated likelihood ratio rule and
assumes the category distributions are multivariate normal
with equal covariance matrices (Le., X =2 p=X). It is also
equivalent to a prototype model in which the subject estimates
the prototype coordinates.

Theorem 5 implies that there are two alternative inter-
pretations of the general linear classifier. Both assume the
subject estimates parameters of the category pdfs. The first
interpretation assumes the subject estimates means, varian-
ces, correlations, and category baserates and then uses the
estimated likelihood ratio rule, under the assumptions of
normality and equal category covariance structures. In the
second interpretation, the subject estimates only the
category means and then uses the minimum distance rule of
prototype theory.

THEOREM 6. Consider a categorization task with
categories A and B; The general quadratic classifier ( Ashby,
1992a; Maddox & Ashby, 1993) is equivalent to a parametric
classifier that uses the estimated likelihood ratio rule and
assumes the category distributions are multivariate normal.

Thus, the prototype model, the general linear classifier,
and the general guadratic classifier are all closely related.
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They are all equivalent to parametric classifiers that assume
the category distributions are multivaniate normal. The
prototype model and the general linear classifier are most
closely related. Under one interpretation, they differ only in
whether they assume the subject knows the true coordinates
of the category prototypes or must estimate the prototype
coordinates from the available data.

NONPARAMETRIC CATEGORIZATION MODELS

Nonparametric classifiers make only weak assumptions
about category structure. In general, they do not assume a
specific family of probability distributions, although they
may assume that the category pdfs are continuous. The first
major result of this section shows that a large class of exem-
plar models are equivalent to a nonparametric classifier that
estimates the category pdfs with the widely used kernel
estimator.

Although many different exemplar models have been
proposed, they all assume that categorization judgments are
based on some sort of global match between the representa-
tion of the presented stimulus and the memory representa-
tions of every exemplar of each relevant category (see, e.g.,
Brooks, 1978, Estes, 1986, 1994; Hintzman, 1986; Medin &
Schaffer, 1978; Nosofsky, 1986). In fact, most of the models
agree on many details of this global matching process. It is
therefore possible to define a general exemplar model that
contains many of the currently popular exemplar models as
special cases.

DermnvTion 5. Consider a categorization task with two
categories, 4 and B. The general exemplar model makes the
following assumptions:

(1) Each new exemplar encountered in the experiment
is encoded into memory with probability z.

(ii) The probability of responding 4 on trials when
stimulus X is presented is

B4 ZYEA Hyy

P(R, = )
(Rl ) ﬁAZYeA’?XY"‘ﬁBZYeB’?,\'Y

(8)

where # 4y is the similarity between stimulus X and stored

exemplar ¥ and £, is the response bias toward category J.
{iii)

of k:

# xy satisfies the following conditions for all values

(@) Hxr=ITF-1 %, (Product rule),
(b) kaxk> nxkyks f()l' a“ yk # xk:

(€} #,,=5{xz—y,), where 5, is a non-negative,
symmetric function, and

(dy [, xps(x,) dx, < 0.
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The various exemplar models differ in their assumptions
about stimulus and exemplar representation and in how
they define the similarity between the stimulus X and the
stored exemplar ¥ (i.e., #yy). Many of the models restrict
application to stimuli that vary on binary-valued dimen-
sions. This includes the context model {Medin & Schaffer,
1978), the array model (Estes, 1986, 1994}, and several
network models (Estes, 1994; Gluck & Bower, 1988;
Hurwitz, 1990).

The context model and the array model both assume an
unbiased version of the Eq. (8) probability matching rule
(ie., they assume £, = f;) and they both assume

1,
”Xkyk = q;} ,

i xe =y,
if xk :'é yk L]
where 0 < ¢, < 1. This definition of similarity satisfies condi-

tions (b), {c), and (d) of the general exemplar model (i.e.,
Definition 5) with

k> i x—ye=—1,
'kayk=sk(xk_yk)= 1’ if xk*“yk=0, (9)
Qs f x—y=1

Since the context model and the array model both assume
overall similarity satisfies the product rule, they are both
special cases of the general exemplar model.

A few exemplar models allow continuous-valued dimen-
sions. The most widely known of these are the generalized
context model (Nosofsky, 1986) and ALCOVE (Kruschke,
1992). These models assume perfect encoding (ie., n=1)
and that

Ny =exp(—d%y), (10)
where a=1 (exponential similarity function) or a=2
(Gaussian similarity function) and the distance between
stimulus X and stored exemplar Y, d,y, is defined by the
weighted Minkowski metric.

m

der=( &

k=1

1/r
Wklxk_yklr) - (11)

The non-negative scaling parameter C is a measure of over-
all discriminability and would be expected to increase with
the subject’s motivation and experience (Nosofsky, 1986).
The exponent r defines the nature of the distance metric.
The most popular cases occur when r=1 (city-block dis-
tance) and when r =2 (Euclidean distance). The parameter
w, measures the proportion of attention allocated to
stimulus dimension & (and thus Y w,=1). Finally,
a determines the nature of the similarity function.

The generalized context model (Nosofsky, 1986} assumes
the same response selection rule as the general exemplar
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model [ie., Eq. (8}]. Not all versions of the generalized con-
text model satisfy the product rule, however [ie., condition
{(a) of Definition 5]. When similarity is defined by Egs. (10)
and (11}, the product rule holds if and only if the exponent
of the Minkowski distance metric equals the exponent of the
similarity function (i.e., if and only if r = «; see Nosofsky,
1984). It is clear that all versions of Eqs. (10) and (11}
satisfy conditions (b} and {¢) of the general exemplar model.
If r = a, condition (d) holds because

J‘“; XS (X ) dxp = Jm

P — o

X €Xp(— CTwy |, |7} dx,
0
=" xpexp(—Cwy x, ") d
+J X expl —Crwy.x7) dx,
0
=~L viexp(—Cwp yi) dyy

o
+ J' X exp( — Cwx?h) dxg
0

2y | IC2/r)

rChwil" " rCrwir

=0

’

sc the integral converges and condition (d) holds. Thus, the
generalized context model with r =& is a special case of the
general exemplar model.

In virtually all applications of the generalized context
model, « is restricted to a =1 or a = 2. Therefore, the only
versions of the generalized context model that satisfy the
definition of the general exemplar model are the version
with city-block distance and an exponential similarity func-
tion (r =a = 1) and the version with Euclidean distance and
a Gaussian similarity function {r=a=2), Most applica-
tions of the generalized context model have been restricted
to these two versions.

Our next result shows that under certain weak condi-
tions, all versions of the general exemplar model are
equivalent to probability matching with a kernel density
estimator,

TueoreMm 7. Consider a categorization task with
categories A and B. The general exempliar model (Defini-
tion 5) is equivalent to probability matching on the stored
exemplars with an estimator of the category baserates and a
product kernel density estimator (Definition 4} if for all
values of k,

[ s40x0) dxe=bs, (12)
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where b, is a positive constant that may depend on k, but does
not depend on the category. If there is no response bias in the
general exemplar model (ie., B,=Pg5), then the baserate
estimator is unbiased and of minimum variance. If there is a
response bias (ie, f,#fg), then one of the baserate
estimators is biased [ i.e., either P(A4) or B{B)] and the other
is unbiased and of minimum variance. In either case, the

kernel K(x) equals
)
hk

The condition expressed in Eq. (12} is actually quite weak
in the sense that it is satisfied by most current exemplar
models. The function s, (x,—¥;) specifies the similarity
between two stimulus values (i.e., x, and y,) on dimension k.
Equation (12) is satisfied so long as the shape of this func-
tion does not depend on the category of the stored exemplar
Y, although there can be a different similarity function on
each dimension. For example, Eq. (12} would be violated if
the subject used an exponential similarity function to com-
pute the similarity between the stimulus and exemplars of
category A, but switched to a Gaussian similarity function
to compute the similarity between the stimulus and exem-
plars of category B. We know of no current models that
allow this kind of flexibility in similarity computation. In
particular, as the next two results show, the context model,
the array model, and the generalized context model with
r =u all satisfy the Bq. (12) constraint.

L]

1

k=1

LI
Jio~

=1

K(x) =

Ky Sp{xg).

hy

THEOREM 8. The context model (Medin & Schaffer,
1978) and the array model ( Estes, 1986, 1994) are equivalent
to probability matching on the stored exemplars with the
minimum variance unbiased estimator of the category
baserates and a product kernel density estimator in which the
marginal kernel on dimension k equals

1 Pis !f X = ‘1’
_Kk (‘*‘x_): 1—2pk, l_'f‘ x=0,
iy hy ,

Pis !f les

where pp=q,/(1+29 ) and 0 < g, < 1.

In statistical applications, Parzen kernel density
estimators are usually applied only when the data are
continuous-valued. With discrete-valued data, minimum
variance unbiased estimators are easy to find. This is
because when x is discrete, f;(x) is a probability rather than
a hikelihood, which can be estimated in the same fashion as
any other probability. Specifically, when x is discrete, the
proportion of total samples from category J exactly equal to
x is the minimum variance unbiased estimator of f,{x).
Even so, there is nothing in the definition of the kernel
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estimator (i.e., Definition 4) that precludes discrete data and
a discrete kernel.

THEOREM 9. The generalized context model with r=a
{Nosofsky, 1986) is equivalent to probability matching with
an estimator of the category baserates and a product kernel
density estimator if C>0 and all w,>0. If there is no
response bigs in the generalized context model, then the
baserate estimator is unbiased and of winivum variance. If
there is a response bias, then one baserate estimalor is
unbiased and of minimum variance and the others are biased.

This theorem has the following two immediate conse-
quences.

COROLLARY 1. The generalized context model with
Euclidean distance (ie.,r=2) and a Gaussian simifarity
Sfunction (ie.,on=2) is equivalent to probability matching
with a product kernel density estimator (assuming C> 0 and
all w,>0), in which the marginal kernel on dimension k
(1 £k <m) iy the univariate normal pdf with mean O and
standard deviation h.. The parameters of the generalized
context model are related 1o the paramerers of the kernel via

r#khz — 1

l L
C=_ﬁ<z . m hz h2 h2
i=1 Z,‘=1Hj#i 7 :—1 k/

CorOLLARY 2. The generalized context model with
city-block distance (ie., r=1) and an exponential similarity
Sunction (ie., o= 1) is equivalent to probability matching with
a product kernel density estimator (assuming C>0 and all
w,>0), in which the marginal kernel on dimension k
(1 <k <m) is the univariate Laplace pdf with mean 0 and
standard deviation hy. Specifically,

e ()= i (4T

The parameters of the generalized context model are related
to the parameters of the kernel via

=23 &

!—1

1 1/2
E) and wp=

— 00 < Xy < 00,

Tk b I

ISlHj#r j_ rwlhk/h

and  w,=

Note that in both corollaries, the parameter mappings
ensure that Tw, = 1. Also, the mappings clearly illustrate
the dependence of the discriminability parameter C and the
attention weights w, on the sample size, NV (since #,; depends
on N}.

The results in this section show that the most popular
exemplar models essentially assume that subjects proba-
bility match by using the minimum variance unbiased
estimator of the category baserates and a product kernel
density estimator. Furthermore, Theorem 2 showed that
such a subject shows reasonable agrecement with the true
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probability matching rule when the kernel estimator is con-
sistent. Not all product kernel estimators are consistent, so
it is vital that we determine the conditions under which the
product kernel estimators assumed by the various exemplar
models are consistent. The next result establishes these
conditions for the array and context models.

Turorem 10. The product kernel density estimator
implicitly assumed by the context model ( Medin & Schaffer,
1978) and the array model (Estes, 1986, 1994) is the mini-
mum variance unbiased estimator of the category distribu-
tions if m=1 (perfect encoding) and q, =0 for 1 <k<m
{perfect discrintinability). It is a consistent estimator of the
category distributions if n > 0 and

lim g.=0, lgk<m.

N — oo

Jfor ail

The assumption of the context and array models that
only some exemplars are encoded into memory (part i of
Definition 5) reduces the effective sample sizes from which
the category pdfs can be estimated. For example, in a
experiment in which N, and N, category 4 and B
exemplars are presented to the subject, respectively {where
N+ Ny =N), the context and array models predict that,
on the average, aN, exemplars from category A and aN,
exemplars from category B will be encoded into memory. So
long as the probability that an exemplar is encoded does not
depend on its similarity to other category exemplars, the
assumption of imperfect encoding does not destroy random
sampling. In other words, even with imperfect encoding, if
the experimenter presents the subject with a randem sample
of category exemplars, the exemplars actually encoded by
the subject will also form a random sample. Thus, the only
effect of the imperfect encoding assumption of the general
exemplar model is to reduce the effective sample size. Since
consistency is an asymptotic property, it is not affected by
the imperfect encoding assumption.

Theorem 10 is closely related to a result of Myung (1994,
Prop. 4). He showed that if all ¢, converge to zero as N
approaches infinity and if encoding is perfect, then the
context and array models are asymptotically equivalent to
a process that infers the category pdfs using maximum
entropy inference. The context and array models assume all
stimulus features are binary, and in this special case, Myung
(1994, Appendix B) showed that maximum entropy
inference is always optimal. Thus, for binary features, the
general exemplar model can be viewed as assuming subjects
either use maximum entropy inference or estimate the
category pdfs using a consistent nonparametric pdf
estimator.

The proof of Theorem 10 constructs the pdf estimator
directly. With continuous category distributions such con-
struction is not possible. Even so, the exact conditions the
kernel must satisfy before consistency is guaranteed are well

ASHBY AND ALFONSO-REESE

known. These conditions are specified in the next resuit,
which is due to Epanechnikov (1969).

TueoreM 11 {Epanechnikov, 1969).  Suppose [y(x) is a
product kernel estimator of the continuous pdf f(x), with
marginal kernel on dimension k equal to

lK (xk_yk)
kN By

Suppose, when every h,=1, that each x, satisfies the
Jollowing conditions:

(1) ke (y) is finite-valued, for all y. Specifically, there
exists some constant a, such that 0 <k {y) <a < oo, for all y.

(1) xp{y} is a symmetric function about 0. Specifi-
cally, k {y) =r,{—p}, for all y.

(iii) The variance associated with x,(y)=1. Specifi-
cally,

| yrdndy=1.

(iv) ANl moments of k,(y) are finite, Specifically, for
all r such that 0 < n < w,

oo

[ ywimay <o,

Then fy(X) is a consistent estimator of f(x) if, for
lsk<sm,

and

(a) lim #, =0,

N— oo

() lim N [] hy=oo.

N— w0 k=1

Condition {(a) requires that the kernel widths decrease as
the sample size increases, but condition (b) says they cannot
decrease too quickly. Specifically, the product of the kernel
widths cannot decrease at a rate faster than that at which
the sample size increases.

Theorem 11 can be used to establish the conditions
under which the pdf estimator implicitly assumed by the
generalized context model is consistent,

TrHEOREM 12. Consider a categorization experiment in
which all the category pdfs are continuous. The product kernel
density estimator implicitly assumed by the generalized
context model with r=a (Nosofsky, 1986) is a consistent
estimator of the category pdfs if
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(a) all attention weights are nonzero (Le., w, >0, for
ail k),

(b)  discriminability is nonzero (i.e., C>0),

(c) lim,_ ., C=0, and
(d)
lim Ve o e a o
N0 N

Cn! m
im &L= W if r=a=1
Novoa N

The sufficiency conditions in Theorem 12 for the con-
sistency of the generalized context model density function
estimator are fairly weak. The subject must be able to
discriminate between at least some of the stimuli (ie.,
C>0) and must allocate at least some attention to every
relevant stimulus dimension (ie., all w, > (). Condition (c)
says that the discriminability parameter, C, must increase
with experience. Equations (10) and (11) imply that the
similarity between a pair of stimuli decreases as C increases.
[t makes sense that as a subject gains experience with a pair
of categories stimuli begin to look more distinct and,
as a result, less similar to other stimuli. Although C
must increase with experience, condition (d) says it may
not increase too quickly. The parameter mappings in
Coroliaries | and 2 make it clear that the w, may change
with experience, since they are functions of the /., which
must decrease with experience. No strong conclusions can
be drawn, however, about the direction of change of a par-
ticutar w,.. Whether it increases or decreases with experience
depends on the rates of decrease of the various A,.
Nevertheless, the product of the w, may change with
experience. Even so, since the sum of the w, must equal 1,
the product is restricted to the interval (0, ™). Because
this interval is narrow, condition {d) of Theorem 12 limits
the rate at which C may increase.

The requirement of Theorem 12 that C increase with
experience is similar in spirit to the context model and array
model consistency requirement of Theorem 10 that each of
the g, decrease with experience. With binary-valued dimen-
sions, only one similarity is important-—the similarity
between the two levels on that dimension. In the array and
context models, that similarity is denoted by g¢,. If ¢,
decreases with experience, then the similarity of every pair
of nonidentical values on dimension &k decreases. Thus,
decreasing g, has exactly the same effect as increasing C.

When the stimulus dimensions are continuous, maximum
entropy inference is not guaranteed to be optimal (Tribus,
1969). Thus, in the continuous case, assuming the subject
uses maximum entropy inference is not equivalent to
assuming the subject estimates the category pdfs using a
consistent nonparametric pdf estimator. Myung (1994,
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Prop. 3} showed that the generalized context model with
r=a=2 is asymptotically equivalent to a maximum
entropy inference procedure only if ali of the category
pdfs are multivariate normal. In contrast, the results of
Theorem 12 hold for any continuous category pdfs.

DISCUSSION

The results of the previous section show that the context
model, the array model, and the generahized context model
assume subjects are extremely good at categorization. First,
the context and array models and the unbiased version of
the generalized context model {with r=a) each assume
subjects use the minimum variance unbiased estimator of
the category baserates. Although the proportion of stimuli
belonging to category J may not seem like a complicated
statistic, it assumes subjects keep a perfect count of the
presented stimuli. For example, suppose a random exem-
plar is somehow lost from a subject’s category representa-
tion. If the subject estimates the category baserates in the
same fashion as before, the resulting estimates will still be
unbiased, but they will no longer be of mimmum variance.
Second, all three models assume that subjects estimate the
category distributions by using a nonparametric estimator
that is among the most commonly used in the statistical
community. Third, these estimators are consistent under the
reasonable assumption that pairwise similarity decreases
with training, and in the case of the generalized context
model, that the subject is allocating at least some attention
to every relevant stimulus dimension.

These three facts, together with Theorem 2, imply that all
three exemplar models predict that with enough training,
subjects will respond almost optimally in any categorization
task, no matter how complex. The major source of sub-
optimal performance occurs because subjects probability
match instead of use the likelihood ratio rule,

In contrast, the prototype and decision-bound models
make strong assumptions about category structure.
Specifically, they are each equivalent to a parametric
classifier that assumes the category distributions are multi-
variate normal, The assumption of normality may be made
either because many natural categories have this structure
and subjects learn this through experience (Ashby, 1992a),
or else because subjects only estimate category means,
variances, correlations, and baserates and then infer the
multivariate normal distribution through maximum
entropy inference (Myung, 1994). In either case, these
models predict that subjects will have difficulty in a
categorization task with non-normal categories in which the
optimal decision bound is neither linear nor quadratic.

On the other hand, note that the prototype and decision-
bound models do not necessarily predict optimal perfor-
mangce in any categorization tasks, even those with normally
distributed categones. This is because they make no specific
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assumptions about how the subject will estimate the
unknown category parameters. For example, the models do
not rule out the possibility that subjects will act as if they are
using estimators that are asymptotically biased. In this
sense, these models are less detailed than the exemplar
models.

A popular approach to comparing alternative categoriza-
tion models is goodness-of-fit testing. The results of this
article suggest that an alternative approach is to first ask
whether human categorization performance is parametric
or nonparametric. If 1t is parametric, what distributional
family or families are assumed? What estimators of the
unknown parameters does the subject use? Are these
estimators unbiased? Are they consistent? If subjects are
nonparametric  classifiers, do they use kernel density
estimators? If so, what type of kernel do they use? Are the
kernel estimators consistent? Also, how do subjects estimate
category baserates? The answers to these questions require
a type of experimental and theoretical approach to the study
of categorization different from that currently popular in the
literature.

APPENDIX

Proof of Lemma 1. A sequence of estimators {#,) of a
parameter & is consistent if the sequence {9 ~} converges in
probability to & (e.g., see Neuts, 1973), and {4} converges
in probability to 8 if {#,} converges in measure to 8 {e.g.,
see Royden, 1968). When stated in terms of convergence in
measure, the results of Lemma 1 are standard results in
measure theory (e.g., see Halmos, 1950, pp. 92-95).
Lemma 1 was first proved by Slutsky (1925).

Proof of Theorem 1. Suppose L(x)>d. Then f,(x)>
ofg(x) or, equivalently, f,(x)—dfs(x)>0. Let Oy=
fa(x) —dfp(x) and 0= f,(x) —6fp(x). By parts (a) and (b)
of Lemma 1, #, is a consistent estimator of &, and for all
e>0,

1= lim P(|§y—6|<e)
N—wo

= lim P(—eg<@,—8<e)

N—w

= lim P(@—e<fy<b+e).

N—coo

Since this limit equals I for any & > 0, it must also equal 1
for any ¢ in the interval () < ¢ < #. Therefore, forall0 <e <8,

= lim P(0<fy<8+¢)
N— o

< lim P(8,>0)

N— o
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But since P(A,>0)is a probability, this last limit cannot
exceed 1. Therefore

1= lim P(f,y>0)

N— o

= lim P[],(x)—&f5(x)>0]

Proof of Theorem 2. Under the conditions of
Theorem 2, the following three statements follow directly
from results (a) and (b) of Lemma 1.

(i) P(4)[,(x}isa consistent estimator of P(A) f,(x),
(i) B(B) f4{(x) is a consistent estimator of P(B) f5(x),
(i) P(A4)f(x)+ P(B) fa(x) is a consistent estimator

of P(A) f4(x)} + P(B} f5(x).
Statements (i) and (iii), together with result {c¢) from
Lemma 1, imply that

P(A) F.ix)
P(A4) f(x) + B(B) fu(x)

is a consistent estimator of

P(A) f4{x)
P(A) f(x)+ P(B) fp(x)

P(A) f,(x)+ P(B) fz(x)cannot equal zero for any stimulus
X, since the stimuli are assumed to be sampled randomly
from either category 4 or category B. The theorem follows
immediately. ||

Proof of Theorem 4. Under conditions (a) and (b) of the
theorem, the optimal classifier (i.e., a classifier that uses the
likelihood ratio rule) uses a decision bound that satisfies
(see, e.g., Ashby & Gott, 1988)

0=2(ng— o) X+ (W2 'py—WpZ 'Rg)
=2(pp— Py ZTIX— (Wl Ty — W T T Ry)
=2pp—pe) T Ix—(Rp—p) T pptpy)
Denote the diagonal representation of Z by WDW’, where
W=[w,,.,w,] is a matrix whose columns are the
normalized eigenvectors of 2 and D is a diagonal matrix
containing the eigenvalues of X. Using this representation,
the optimal bound converts to
Ang—ny) WDTIW'x

—(pp—R.4) WD_IW'(FB"‘I‘A) =0. (A-1)
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Now the simple prototype model predicts the minimum
distance bound (see, e.g., Ashby, 1992a), which satisfies
(see, e.g., Ashby & Gott, 1988}

2pg—p) X+ (Wyp,—Pans)=0.

By hypothesis, one of the w,, say w,, must, therefore, be
orthogonal to the hyperplane

(np—p4) x=0.

Thus, w, must be orthogonal to every vector in this hyper-
plane. Now the hyperplane is the set {x | (pz—p ) x=0}
or, in other words, the set of all vectors orthogonal to
g — M. Therefore, w, must be coincident with the vector
W — N, Specifically,

1
\/("B_FAY (e —R4)

W = (np—py)

1
=E (mg—py)

Now Eq. (A-1) can be written as

2(‘18_"/1)’ [wl’ ey wm] D—IW,X
—(pp—ny [Wy, W, 1D W pg+np,) =0

Note that

'w,=¢

(ma—p,4)

and foralli=2, .., m

(hg—p,) w,=0
Therefore, Eq. (A-1) becomes

0=2cd, 'Wix—cd; 'Wi(ng+1,)
=2pag—ps) X—(Rp—p4) (Rp+Hy)
=2{ps— W) X+ (Wl — p5RE)

which is the minimum distance bound. |

Proof of Theorem 5. The proof of the first part follows
directly from results given by Ashby & Gott (1988). The
second part is true, since for any decision bound gencrated
by the general linear classifier, one can identify an infinite
number of pairs of points both of which are equidistant
from every point on the decision bound. Any one of these
pairs could serve as the category prototypes. |

Proof of Theorem 6. The proof follows directly from
results given by Ashby & Gott (1988). |
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Proof of Theorem 7. Let N, and N be the number of
category 4 and B exemplars encoded into memory, respec-
tively, and let N =N, 4+ N, In a classifier that probability
matches with an estimator of the category baserates and a
product kernel density estimator

PA) f4(x)
P X == )
(Ral2) P(4) fu(x)+ B(B) f3(x)
where
L, by om | )
POL0-50 3 1 g (22)
Joi=1 k=1

and where conditions {a} and (b) of Definition 4 are
satisfied. In the general exemplar model

P(R,| X)
_ BaXveallxy
BaXveattxyt B venlixy

_ BdZ vea Nxy/T k=1 be)
BAZ veanxy/l17_ 1 b)) +B5(Zven 'TXY/I—IZ; 1 by

where 5, is defined by Eq. (12), and

ﬁJ(ZY&J’TXY/kijI bk>=ﬁJ§ ﬁ g:rrx,,y,.k.

i=lk=1

Thus, the general exemplar model is equivalent to proba-
bility matching with a product kernel estimator if

p(J)=NJﬁJ (A-2)

and

LI TS B B
By k 7y _bkqx"'w"_bk 1l Xe = Vi

and the following two conditions hold:

(@ 1=[Kx)dx=| I bisk(xk)dx
(b) 0=jx,,1<(x)dx=jxk

o]
xnb—si(x,)dx forall 1<i<m

i=1%1

We begin by establishing condition (a). Because of the
product rule,

m

1
[T [+ sutxy) dxe=1.

k=1 bk

|
[ 11 5 selxe) dx=
k=1%k
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This latter equality holds since, by hypothesis,

b= J. S xy) dx.

Next we show that condition {b) is satisfied.
i |
[T P TT st ax
i=1 bi

1 1
= { I1 JES;(X;) dxf] b [ Xp8p(Xg) dxp

i=1

itk
_LJ’ (x,)d
_bk Xy Sl Xy ) ax,
=0.

The latter equality holds since, by definition, the integral on
the right converges and s,(x,) is symmetric about zero.

To complete the proof, we must verify the claims about
the baserate estimators. If responding is unbiased then,
without loss of generality, we can set §,=fz=1/N. In this
case, we see from Eq. (A-2) that A(J) is the minimum
variance unbiased estimator of P(J). Suppose, however,
that § 4 # f 5. Now

E[P(J)] zﬁJE(NJ)zﬁJNP(J)-

Thus, A(J) is biased if §, # 1/N. Since f, # f 4, they both
cannot equal 1/N, so either P(A4) or P(R) is biased.
However, without loss of generality, one of the f, can be set
to 1/N, so one P(J) estimator is unbiased and of minimum
variance. ||

Proof of Theorem 8. The context model and the array
model are special cases of the general exemplar model
Therefore, to prove the theorem we have to show only that
Eq. (12) holds. From Eq. {(9)

L

J‘gk(xk) dx; = Z s, (5 =14 2¢q,,

i=—1

which is a constant that does not depend on the target
category. From Theorem 7,

9 . _
T+ 20, if x,=-—1,
1 X; 1 i )
R i - f x, =0
i, Ky (hk> bksk(xk) 1+2f]k’ o Xy s
4 -
f =1.
1+2qk: 1 xk I
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Proof of Theorem 9. If r=u the generalized context
model is a general exemplar model with overall similarity
function

st =exp (~ € T we bl
k=1
= || exp(—Cwi [x¢]")-
k=1

Therefore, the component similarity function on dimension
k equals

Si(x) = exp( — CTwy | X {7).

Because of Theorem 7, to complete the proof we need only
establish the condition specified by Eq. (11). Now

| stxddx=] exp(—Cwilxil") dxi

=2 J.w exp(—C'w,x}) dx;,
0

_2I(1r)

CrCwl

< 00, forall r>0.
Note also that the value of the integral does not depend on

the target category. ||

Proof of Corollary 1. By Theorem 9, the generalized
context model with r=a=2 is equivalent to probability
matching with a product kernel density estimator. Since
r=o =2, the overall similarity function equals

S(x)=exp (—CZ i wkxi)

k=1

exp( — Cw,x3)
1

= T:ls

$e(xp),
1

>
I

where s,(x,) is the component similarity function for
dimension k. Now, let

m m 2
i=1 jaﬁlhj

2117 B

m 2
i#k‘hi

= S A —
m m 2
i=1 l—ljsél'hj

and Wy

1
Si( X} =exp (‘ﬁ xi)
&
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Now

%3 oo 1
[7 st du=[" exp (ﬁﬁ x,z) = STk,
w0 . k

Therefore, by Theorem 7

L (xk) L ( 1 2)
LR EIAN e,
By \h, ok, AT 2m2 ™

which is the univariate normal pdf with mean 0 and
standard deviation A,. The expression for C? can be
simplified by dividing the numerator and denominator

by TT147. 1

Proof of Corollary 2. By Theorem 9, the generalized
context model with r=a =1 is equivalent to probability
matching with a product kernel density estimator. Since
r=g =1, the overall similarity function equals

S(x)=-exp (C’E‘ Wi |xk|>

l_[ exp( — Cwy |x,|)
= H 5l Xg)-
k=1
Now, let
\/_Z:;l pé: ,- and Wy = T;kh
l—ih l_[};ér 7
Then
J2
sp(xg)=exp h |xe ! )
&
Now

o0 @ 2
f Silxp) dxk=J exp(—hi |xk|>dxk_\/§hk'
L) k

- — a0

Therefore, by Theorem 7

e G e (30,

which is the univariate Laplace pdf with mean 0 and
standard deviation h,. The expression for C can be
simplified by dividing the numerator and denominator

by [Th, 1
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Proof of Theorem 10, As in the proof of Theorem 7, let
N equal the total number of exemplars encoded into
memory. Now, without loss of generality we can assume
h.=1 for all k¥ in the kernel assumed by the array and
context models. In this case, the models assume

] N
fvx) ==Y K(x—y,)
N Nr:l t
N
ﬁg l:[ (xk ylk
where
kel =y, =1 7y,
RIS 2 2py, 0 xp=,.
Now,
IT xeloee —p.)
k=1
{ .
H(l_zpk), if xk=ylk!
k=1
forall k&
Pi H (I—ZPk), if X :'éylﬁ xk=yrk’
k=i
=< forall k#i
npka lf xk#yn,!
k=1

\ forall k.

Let Ny...,, equal the number of stored exemplars that
match the stimulus on dimension 4, .., m. Note that
i, f, .., m need not be consecutive integers. Then

"

fN(x) [N@ l_[ Prt -

-1

X H (1—-2p) + Nz H {(1-2p)|.

=1 k=1

-+ No o me1)Pm

Let 6, , equal the probability that an exemplar
randomly drawn from the category matches the stimulus
on dimensions i,j,..,m. Then by Lemma 1, fy(x) is a
consistent estimator of

“+ 0 m—1)Pm

(1 _zpk)+612-~~m 1_[ (1 _2Pk)

k=1
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Now 0, =f(x). Therefore, fy(x) is a consistent
estimator of

f(x) ﬁ (l—zpk)+9® H P

m-—1

o O me 3P [ (F=2py)-
k=1
Each term in this expression is independent of N. Therefore,
if any p, >0, then fy{x) is an asymptotically biased
estimator of f{x) and thus is not a consistent estimator of
F(x). However, if for all &( 1.e., for 1 <k <m)

lim p,=0 (A-3)
N—oo

then

Jim |0 10200 +0, [T 5
e k=1 k=t

m—1

+ o 0P [] (1 —2Pk)] =f(x),

k=1

50, under the conditions of Eq.{A-3), fy is a consistent
estimator of f(x). From Theorem 8 it is clear that Eq. (A-3)
holds if and only if

lim ¢,=0.
N> oo

Finally, if z =1 and all ¢,=0, then all p,=0 and N
equals the total number of exemplars presented by the
experimenter. In this case,

which is just the proportion of stored exemplars exactly
equal to the stimulus X. This is the minimum variance
unbiased estimator of f/(x). |

Proof of Theorem 12. There are two parts to the proof.
First, we must show that the four conditions of Theorem 11
are satisfied. Second, we must establish the implications on
the parameters of the generalized context model of results
(a} and (b) of Theorem 11.

Part 1. When all the A, =1, the marginal kernels in
the {r=a=1) version of the generalized context model
have a Laplace distribution, whereas the marginal kernels
in the (r=a=2) version have a normal distribution. In
both cases, the mean is zero and the variance is 1. Thus,
conditions (i), (ii), and (iii) of Theorem 11 are satisfied.
Condition (iv) is also satisfied because all moments of the
standard Laplace and normal distributions are finite (see,
¢.g.. Johnson & Kotz, 1970a, 1970b).

ASHBY AND ALFONSO-REESE

Part 2. Condition (b) of Theorem 1! implies that
no h, may be zero. The parameter mappings given in
Corollaries [ and 2 indicate that one or more w, =0 only
if one or more of the A, = 0. Therelore, consistency requires
all w, > 0. The parameter mappings also show that C=40,
only if all A, are infinite. Condition (a) of Theorem 11
implies that all A, are finite-valued, so C> 0. If condition
(a} of Theorem 11 holds, then it is clear from the parameter
mappings given in Corollaries 1 and 2 that condition (<)
of Theorem 12 must hold. Condition (d) of Theorem 12
follows from condition (b) of Theorem 11 and the fact that
when r=0=2

1
Iy

This identity follows directly from results given in the proof
of Corollary 1; When r=a =1, then
c m 2m/2
”’ W, =—".
n x Hfz 1 hk

C T we=

k=1

This identity follows directly from results given in the proof
of Corollary 2. |
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