
CSE 127 Lecture 6: Side-Channel Attacks

These notes were scribed by students from CSE 127 in Winter 2021. They have been
lightly edited but may still contain errors.

In the previous lecture, we talked about the importance of isolation in building secure
systems. The basic idea is that a secure system needs to protect secrets in hardware and
software so that an attacker cannot access them across a trust boundary. Some common
mechanisms for isolation include privilege separation, least privilege, and complete media-
tion. And, the assumption in building isolation in a system is that we know what our trust
boundaries are and can control access to them.

However, isolation mechanisms in systems are still not perfect defenses. A machine may
still have vulnerabilities. For example, an attack may find a vulnerability in an unprotected
program, the kernel, a virtual machine, hypervisor, or the run-time system. The attackers
can also find a hardware bug that lets them bypass isolation.

As computer scientists, we have learned to build computer systems on layers of abstrac-
tion. We build applications on top of the layer of the operating system. The operating
system is built on top of the layer of the hardware. And, the hardware is built on top of
the layer of physics. These abstraction layers let us specialize in one layer without having to
worry about the other layers underneath. That is, we treat the layer below as a black box
with well-defined behavior.

However, in this class, we have slowly discovered how the abstractions that we are using to
build computer systems are imperfect. Since implementations of any code or machinery have
artifacts and side effects, these artifacts and side effects can travel through different layers
of abstractions. An attacker can observe these behaviors at different levels of abstraction to
break the abstraction and violate the trust boundaries in a system we are building. Such
source of information beyond the output specified by an abstraction is called a Side Channel.
In this lecture, we will explore the history, examples, and countermeasures of side-channel
attacks.

1 Overview and History of Side Channels

In 1945, at the end of World War II, the Soviet Union gave a great seal as a gift to a US
ambassador. This seal was placed in the ambassador’s residence, and it contained a passive
listening device. This device would transmit audio when illuminated at a particular radio
frequency. The device couldn’t be found by looking for a signal because it was completely
passive; it was powered by the radio frequency and only active while being illuminated at
the signal from the Soviet. This was designed by Theremin, who was a brilliant electrical

1



engineer from the Soviet Union. The seal had been inside the ambassador’s residence for 7
years until it was discovered in 1952 [The˙Great˙Seal]. This is an early case of advanced
bugging.

During World War II, Bell Telephone discovered electromagnetic leakage in one-time pad
teleprinters. In order to avoid it, they recommended keeping a 100-ft radius around the
machine secured. However, this teleprinter leakage was rediscovered by the CIA in 1951. To
avoid the leakage, the CIA recommended protecting the system with a shield and securing
a 200-ft radius around it. In 1964, the US and NATO established a shielding rule called
TEMPEST in order to protect their systems securely [tempest].

These side-channel attacks were the domain of the governments until 1985, when side-
channel leakage was rediscovered in the open research world by Wim van Eck. He demon-
strated side-channel image recovery from a CRT monitor to another monitor using off-the-
shelf equipment [Wim˙van˙Eck].

This type of electromagnetic leakage can be demonstrated even for flat-panel displays.
During the demonstration in 2004, Markus G. Kuhn could pick up the radiation coming
from a screen connection cable and recover the original screen contents [Kuhn].

2 Examples of Side Channels

Side-channel attacks are using information gathered by observing a system. We will dive
into different examples of side channels. One general family of side channels is the resources
consumed by an operation. These could include timing, power consumption, and network
traffic. Another general family of side channels is emission side channels, which are signals
generated by performing some operation. These might include electromagnetic radiation,
sound, and error messages.

2.1 Consumption Side Channels Example: Timing

We will now examine software side channels. Imagine if we implement a simple function
that uses string comparison to compare the password entered by a user with the actual
password. It would check character by character, and if there was a mismatch between
characters between the inputted string and the actual string, we would return back. A
malicious user who can run this program can measure the amount taken to return from our
function. By knowing the amount of time taken to return from our function, the malicious
user can deduce how many correct characters there were in the trial password they entered.
Then they could use this information to learn the password character by character by timing
the return time of our function.

2.2 Consumption Side Channels Example: Power Consumption
and Network traffic

Power consumption is a measurable resource that can be recorded by an attacker with
physical access to a device. Different operations may use different amounts of power in
hardware. With this knowledge, we can interpret different patterns and use that to our

2



advantage. An additional example of a side-channel is analyzing network traffic. Network
traffic side-channel attacks monitor how packets are communicated. By doing this, one can
able to determine patterns from the traffic usage. Although this may not give direct access
to the encrypted information, it provides ample amounts of data to the attacker. They can
choose to continue with their current attack or look for something else based on the network
packets transferred.

2.3 Emission Side Channel Example

Emission side channels are when an out-of-band signal is generated when performing an
operation. This includes electromagnetic radiation. A nearby attacker would be able to
measure different strengths of electromagnetic emanation generated by different amounts of
voltage are running through a wire. Capacitors or fans producing noise are an examples of
sounds that might provide side channel information for an acoustic attack. Error messages
can sometimes be exploitable if they reveal secret-dependent information.

2.4 Tenex Password Bug

Alan Bell discovered that the Tenex computer system had a password checking bug.
Tenex had an early virtual memory implementation that could be exploited. It initially
compared characters one at a time, and users could set a flag to produce an interrupt if
a specific memory page was accessed. With these tools, a user could test if the password-
checking program would progress to a given character by checking if the interrupt happened.
Now this allowed a malicious user to test a user’s password character by character.

2.5 Timing Analysis of Keystrokes and Timing Attacks on SSH

This is an example of a more complex side channel attack. It was described in a paper
by Song, Wagner, and Tian [timing˙analysis˙ssh]. SSH is a protocol that allows a user
to establish an encrypted connection to a remote system. In typical usage, a user is typing
commands into the remote shell, which are transmitted over the network. In order to keep
the system responsive, keystrokes are sent as individual encrypted packets to the remote
system.

The idea behind this attack is that an attacker can sit on the network connection and
look at the network traffic to see when packets are sent from the user’s computer to the
remote system and measure the amount of time between packets. Naturally, the amount of
time between different keystrokes depends on the actual keystrokes themselves for a given
person. For example, typing the characters “as” will take a different amount of time than
typing the characters “mq.” Thus, it is possible to build a model of inter-character keystroke
timings for a given person. This model would allow the attacker to predict the most likely
pair of characters based on timings between the actual packets. The 2001 paper described
using Viterbi decoding to produce the most likely sequence of keystrokes corresponding to
a given set of timing meaurements, but we also discussed in class that it would probably be
possible to use machine learning to improve the performance of this attack today.

3



This kind of side-channel attack is difficult to defend against. When designing the SSH
system, the threat model is that an attacker is looking at the traffic between the user and the
remote system. To prevent them from seeing the traffic, packets are encrypted. However, the
timing of the packets, a side-channel, is outside the abstraction of the encryption. Possible
protection strategies include adding noise to the data, adding a delay between packets to
break the model, or even trying to add dummy traffic. However, none of these protections
are 100% perfect, and adding noise and delay might degrade the experience for the end user.

This kind of attack can further be seen in Fabian Monrose’s papers Hookt on fon-iks
[timing˙analysis˙voip]. Ten years ago, codecs being used for encoding audio transmissions
in video conferencing software like Skype were explicitly specialized for voice. However,
the packet timings and packet length depended on the actual sound being transmitted.
Various papers described being able to detect the language being spoken based on the packet
timings and the packet lengths. Later papers described being able to complete a phonetic
reconstruction of the language being spoken. From there, letter combinations could be
figured out, and the audio could be read off as the actual words being spoken.

2.6 Power Analysis Attacks

Another example of a side-channel attack is a power analysis attack which can be used to
break cryptography. Most of the work regarding side channels today has to do with breaking
cryptography. The first paper on power analysis attacks was published in 1998 by Kocher,
Jaffe, and Jun [power˙analysis].

The image below depicts a simple power analysis performed on a cryptographic circuit.
The cryptographic circuit was implemented such that the power consumption was different
based on if there was a 1 or 0 in the secret key. Analyzing the power consumption of the
circuit allowed one to read off the secret key’s bits.

Figure 1: SPA leaks from an RSA implementation [power˙analysis˙diagram]

2.7 Acoustic Attacks

Acoustic attacks arise because of the fact that capacitors within computers make noise
when discharging. A paper written by Genkin, Shamir, and Tromer describes this phe-
nomenon and how it can be exploited [acoutstic˙attacks]. Data can be gathered by point-
ing a parabolic microphone at a vulnerable machine performing cryptographic computations.

4



The acoustic data gathered by the parabolic microphone can be displayed visually on a graph
in which the actual bits can simply be read off, similar to the power analysis attack described
above.

It is important to note that in most cases, acoustic attacks end up being fun for research
purposes but not real threats. However, acoustic attacks highlight physical artifacts produced
by software of a computer that is audible from feet away from the actual device.

2.8 Browser History Sniffing

Another example has to do with browser history sniffing. For web browsers, the de-
fault behavior is that unvisited links are colored blue while visited links are colored purple.
However, the style attributes of text and links were available to scripts via the DOM. This
allowed malicious websites to create an invisible iframe that would enumerate through a set
of URLs and use the attributes of the links to determine whether the victim had visited the
website or not. The victim’s browser history is thus able to be assembled.

A number of malicious websites have exploited this as data such as this is valuable for ad
targeting. This issue has been fixed in modern browsers preventing browsers from accessing
the style and visited attribute of links. However, this particular threat of information leakage
is still challenging to eliminate as there have still been attacks exploiting this vulnerability
even with the countermeasures implemented by modern web browsers.

3 Active Side Channels

Active side channels are mainly fault attacks that can induce computational errors that
may leak vulnerable information. One example of this is an attacker radiating a chip in order
to flip a bit. Faults can be induced by many things – glitch power, voltage, the clock, varying
temperature, and subjection to light and/or EM radiation (this can be done by pointing a
laser at a machine or by sending radio waves).

3.1 Using Memory to Attack a Java VM

A clever example of a historical fault attack is a paper by Appel and Govindajhala
that used memory errors to attack the Java Virtual Machine. They produced a Java heap
overflow via glitching the address of a function pointer. To cause the memory errors that
resulted in incorrect pointer addresses, they aimed an incandescent desktop lamp at the
memory of a computer. When DRAM increases in temperature, the probability of a bit flip
increases. The malicious program was written so that a bit flip would cause an overflow
with 70 percent probability. The end result was a Java VM escape from mildly heating up
a computer [attack˙mem].

3.2 Types of RAM

There are two main types of memory/storage: “Volatile” and “Persistent.” Memory
is considered volatile when the data can be retained only as long as the power is on. In

5



comparison, storage is considered persistent when data can be retained without power (like
flash or magnetic disks).

3.2.1 SRAM

SRAM, or Static Random-Access Memory, is volatile memory that retains its bit values
as long as power is on without a refresh. SRAM carries several advantages, such as being
faster and lower density than DRAM. However, it does come with a higher cost. In addition,
it exhibits a ‘burn-in’ phenomenon: on startup before being written to, bits are more likely
to flip to a value that they “remembered”. Essentially, if a bit was set to a value consistently
over a period of time, the bit will be more likely to flip to this value when powered on. This
might reveal secret values that were stored in memory (like cryptographic keys in an ATM).
Because of the ‘burn-in’ effect, the bits will likely flip to their most remembered value, and
the keys can then be read.

3.2.2 DRAM

DRAM, or Dynamic Random-Access Memory, is the most common RAM for normal
modern computers. It is constructed from an array of capacitors, and requires periodic
refreshing to retain stored data while the power is on. One benefit is that it contains a
higher density of memory at a lower cost. There are a few examples of hardware attacks
exploiting the physical properties of DRAM.

3.2.3 Cold Boot Attacks

This is one type of attack that exploits the decay rates of the capacitors in DRAM. In
particular, from the paper, “once power is removed from the RAM, the data that it holds is
removed within seconds or minutes, based on the temperature of the RAM. The colder the
RAM chips are, the longer they maintain their data. By spraying the RAM with compressed
air, the RAM can reach temperatures that allow for data to remain for hours. This allows an
attacker to remove the RAM from a stolen computer, quickly freeze it, and then extract the
keys that remain in memory” [cold˙boot]. The demonstration attack read cryptographic
keys out of a DRAM chip that an attacker had physical access to.

3.2.4 Rowhammer Attacks

Another type of attack that can be done on a DRAM is glitch attacks. Cells in memory
are generally groups in rows, and at the time of refreshing, all cells are refreshed together.
For modern DRAM chips with high densities, it has been observed that the opening or
closing of a row consistently over the refresh interval can cause errors in adjacent rows. This
can be exploited by an attacker running a malicious process on the same machine as the
victim [rowhammer˙attacks].

6



4 Covert Channels

If Side Channels are artifacts of implementation, then Covert Channels use these artifacts
on purpose. An example of this can be described in the following situation: If a malicious
program produces a side channel, it can send encoded information across a trust boundary.
When the information is received by the other side, it can then be decoded and used. Ex-
ample covert channels include variations of time, memory usage, and even cache attacks. In
general, it can be very difficult to protect against covert channels if they are within your
threat model.

4.1 Radio Covert Channels

An example of an academic demonstration of a covert channel is a Radio Covert Channel
generated by memory writes. Essentially, when the CPU writes to memory, the memory bus
emits radio waves. This can be used as a covert channel to cross an air gap: software can
be written on the air gapped machine to perform memory operations to transfer bits, and
this signal can be detected by a cell phone, which decodes the message from the airgapped
computer [radio˙covert].

5 Cache Attacks

As discussed in the previous lecture, operating systems provide isolation between pro-
cesses on the same computer, and a hypervisor provides isolation between virtual machines
running on the same computer. However, this separation is at the software level and not at
the hardware level. The programs are running using the same CPU, the same CPU mem-
ory caches, and the same physical RAM, even though the OS and hypervisor provide an
abstraction of process and VM memory to the software.

Accessing main memory in RAM is relatively slow, so hardware CPU caches were im-
plemented to optimize memory accesses by storing frequently used data closer to the CPU.
Caches are much smaller than main memory; therefore, data is constantly evicted to make
room for new data. Caches are a shared memory resource, so unlike page tables where each
process has its own, caches are shared amongst processes.

Many cloud service providers, such as Amazon’s AWS, allow different clients to use their
computers for web servers. Many of these web servers run on the same physical hardware
and are only separated based on the abstraction of virtual machines through a Hypervisor.
Because these VMs are on the same hardware, they share the same cache memory. An
attacker VM can use this shared cache memory to observe side-channel information that
might reveal information about victim VM’s data. Below are three techniques an attacker
can use to infer details on a victim’s private data through cache side-channel attacks.

5.1 Evict and time

Cache implementations use eviction policies like “Least Recently Used” (LRU) at a hard-
ware level to manage the cache while maximizing temporal and spatial locality automatically.

7



An attacker can take advantage of this mechanism by making a series of consecutive reads
from addresses out of a victim’s address range. This puts the cache in a reproducible state
where the victim will start with a string of cache misses that allows the attacker to deter-
ministically figure out what blocks of data the victim requests during run time. From there,
the attacker can tweak the victim’s parameters and/or evict specific blocks from the cache
to narrow down the branching patterns and eventually learn the secret.

5.2 Prime and Probe

This technique focuses on measuring the run time of the attacker process instead of
the victim process. To learn the victim’s secret, the attacker needs first to establish a
baseline run time of their process in the case where the cache contains data relevant to the
attacker’s process. After running the victim, blocks have a chance to be evicted from the
cache depending on the control flow of the process. Any slowdowns in the attacker’s process
mean that the victim needed to overwrite a block that the attacker cached. Just as before,
the attacker can then employ other tactics to learn the secrets eventually.

5.3 Flush and Reload

The attacker can intentionally flush out the cache, meaning that the attacker would run
into a string of cache misses the next time the process is run from the same initial state.
However, if the victim loads a block into the cache that the attacker shares, the attacker will
experience a cache hit that will speed up execution time.

6 Mitigating Side Channels

Side channels can hard to eliminate entirely, but there are several best practices that can
be used to mitigate common side channels. These include constant-time programming tech-
niques, eliminating secret-dependent executions or branches, and hiding or blinding inputs.

6.1 Constant Time Programming

The idea behind constant-time programming is simple: eliminate timing variations by
writing a program that always takes the same amount of time to run. However, this is much
harder than it might seem at first glance, for a number of reasons.

First, even if your code itself is written to perform exactly the same number of operations
no matter what input it is provided, the operations themselves may take different amounts
of time for different inputs. This is because some CPU instructions take different amounts
of time depending on operands. Here is an example:

void foo(double x) {

double z, y = 1.0;

for (uint32_t i = 0; i < 100000000; i++) {

z = y*x;

8



}

}

The function call foo(1) would run faster than foo(1.0e-323). Since there are special mi-
crocode instructions dealing with special cases of subnormal floating-point values, executing
foo(1.0e-323) would end up going into microcode instead of purely in hardware. The for loop
amplifies the timing difference. This is an unusual kind of CPU behavior that would enable
attackers to observe time differences in execution that could be exploited in attacks. In order
to prevent cache attacks or time attacks with constant time programming, a defender will
need to avoid all variable-time instructions like sub-normal floating point values.

6.1.1 Modular exponentiation

m=1

for i = 0 ... len(d):

if d[i] = 1:

m = c * m mod N

m = square(m) mod N

return m

This is an implementation of modular exponentiation using the square and multiply
algorithm. The execution time for this code is dependent on the number of bits in d[]
that are 1. For example, if d[] stores a secret key, the code’s execution would leak some
information regarding its values. This is a classic example of an algorithm that is vulnerable
to a side-channel attack but is often run on cryptographic secrets. (We will talk more about
this when we get to cryptography.)

6.1.2 If-statements on secrets are unsafe

At the code structure level, an if-statement on a secret is unsafe because the execution
time depends on the value of secret and can leak information to attackers. In the code
structure below, if the secret value is true, it would execute 4 instructions (i.e. s0, s1, s2,
s3). Otherwise, it executes run 2 instructions (i.e. s0, s3).

s0;

if (secret) {

s1;

s2;

}

s3;

We might consider padding the else branch to allow either branch to take the same
amount of time:

if (secret) {

s1;

9



s2;

} else {

s1’; // where s1' takes the same amount of time as s1

s2;

}

However, an attack could potentially still perform a cache attack to figure out which
instructions were loaded from the cache. With this information, an attack would be able to
know which branch was taken. Similarly, an attacker can also observe the success or failure
of branch prediction to extract information.

To avoid this, one can use arithmetic techniques to mitigate if-else statements. Consider
the following example where code block A can be replaced with code block B:

// A - original

if (secret) {

x = a;

} else {

x = b;

}

// B - replaced with the following

x = secret * a + (1-secret) * x

x = (1-secret) * b + secret * x

Overall, writing constant-time code is complicated. Although there are tools to help,
most code is still written by hand. It can be slower, larger, and more complex. Thus,
people generally recommend not doing your cryptographic implementations. Thankfully, as
students, we shouldn’t be too worried about side-channel attacks unless we work for the
government.

10


