CSE 107 Discussion 2/7

Activity 1: Left over from last discussion
This activity will provide some practice of finding patterns you could exploit when designing an adversary for the IND-CPA security game.

Question 1: Let $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a block cipher. Consider the following encryption algorithm Enc which takes a 4n-bit message as input:

\[
\]
\[
\text{For } i = 1 \ldots 4:\
K_i \leftarrow K \oplus \text{int_to_string}(i \mod 3, k)
\]
\[
C[i] \leftarrow E(K_i, M[i])
\]
\[
\]

Note that a single message M is interpreted as having four blocks $M = M[1] \| M[2] \| M[3] \| M[4]$. For example, if $n = 2$, a valid message is $M = 01101100$. Each 2-bit block will then be handled over 4 iterations of the for loop.

What exploitable weakness does this encryption algorithm have (with only one LR query)? Let S_E be the symmetric encryption scheme based on Enc. Write pseudocode for an adversary A which makes one LR query and achieves $\text{Adv}_{\text{SE}}^{\text{ind-cca}}(A) = 1$.

Activity 2: What are block ciphers good for?
Suppose that a block cipher $E : \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ is a pseudorandom function (meaning, it has good PRF security).

Question 1: Let D be E^{-1} and let K output a random k-bit string. Now we have symmetric encryption scheme $S_E = (K, E, D)$. If E is PRF-secure does this mean S_E is IND-CPA-secure? If adversary A is allowed 2 queries in the IND-CPA game, can you achieve $\text{Adv}_{S_E}^{\text{ind-cca}}(A) = 1$?

Question 2: Recall the CR (collision resistance) game for a hash function H: Adversary A is given $K \leftarrow \{0, 1\}^k$ and is trying to output (x_1, x_2) such that $x_1 \neq x_2$ and $H_K(x_1) = H_K(x_2)$. There are no oracles in the CR game.

A hash function is called collision-resistant if it is hard for any A to find a collision (x_1, x_2). If E is a block cipher, is it collision-resistant? Would E be a good hash function? Why or why not?
Activity 3: Fun with MACs

For MACs (message authentication codes), the security goal we consider is UF-CMA: Let $T: \text{Keys} \times D \rightarrow R$ be a message authentication code. Let A be an adversary.

```
Game UFCMA_T

procedure Initialize
$K \leftarrow \text{Keys}; S \leftarrow \emptyset$

procedure Tag(M)
$T \leftarrow T_K(M); S \leftarrow S \cup \{M\}$
return $T$

procedure Finalize(M, T)
If $M \in S$ then return false
If $M \notin D$ then return false
Return $(T = T_K(M))$
```

The uf-cma advantage of adversary A is

$$\text{Adv}_{T}^{\text{uf-cma}}(A) = \Pr \left[\text{UFCMA}_{T}^{A} \Rightarrow \text{true} \right].$$

Question 1: Which of the following do you think could be a UF-CMA-secure MAC? Which of the following can you break?

(a) Let $T(K, M) = K \oplus M$, where keys and messages are both n-bit strings.

(b) Let $T(K, M) = H(K, M)$ for a hash function H that is collision-resistant.

(c) Let $T(K, M) = E(K, M)$ for a block cipher E that is PRF-secure.