CSE208: Advanced Cryptography (FHE)

Daniele Micciancio

UCSD

Winter 2023
Section 1

Introduction
CSE208: Advanced Cryptography

- Graduate Level Advanced Cryptography
- Prerequisites:
 - CSE207 or equivalent
 - Solid theoretical background, cryptographic definitions, etc.
 - Some programming
CSE208: Advanced Cryptography

- Graduate Level Advanced Cryptography
- Prerequisites:
 - CSE207 or equivalent
 - Solid theoretical background, cryptographic definitions, etc.
 - Some programming
- Past topics: Zero Knowledge, Functional Encryption, Secure Computation, etc.
- Not required: CSE206A (Lattice Algorithms)
CSE208: Advanced Cryptography

- Graduate Level Advanced Cryptography
- Prerequisites:
 - CSE207 or equivalent
 - Solid theoretical background, cryptographic definitions, etc.
 - Some programming
- Past topics: Zero Knowledge, Functional Encryption, Secure Computation, etc.
- Not required: CSE206A (Lattice Algorithms)
- Reading:
 - no textbook
 - mostly research papers
 - see course webpage
Introduction

Defining FHE

Bootstrapping

LWE

Linearity

Key Switching

Multiplication

FHE!!

Ring LWE

ANT

Project Info

Winter 2023 Topic

- Fully Homomorphic Encryption:
 - Encryption schemes that supports the evaluation of arbitrary programs on encrypted inputs

- Applications:
 - secure outsourced computing
 - building block for MPC and more
 - See slides from Eurocrypt 2019 invited talk “FHE from the ground up”
Brief History of Homomorphic Encryption

- 1978: Rivest, Adleman & Dertouzos posed the problem
- 2009: Gentry 2009 proposed the first candidate solution
- 2010-2020: Work towards more efficient solutions based on standard complexity assumptions (Brakerski, Vaikuntanathan, Gentry, Halevi, Smart, . . .)
Software libraries

- OpenFHE
- IBM HElib (Halevi & Shoup)
- Microsoft SEAL
- Functional Lattice Cryptography LoL (Crockett & Peikert)
- Fastest FHE of the West FHEW (Ducas & Micciancio)
- FHE over the Torus TFHE (Chillotti, Gama, Georgieva & Izabachene)
- Approximate FHE HEAAN (Cheon, Kim, Kim & Song)
- ... many more
Software libraries

- OpenFHE
- IBM HElib (Halevi & Shoup)
- Microsoft SEAL
- Functional Lattice Cryptography LoL (Crockett & Peikert)
- Fastest FHE of the West FHEW (Ducas & Micciancio)
- FHE over the Torus TFHE (Chillotti, Gama, Georgieva & Izabachene)
- Approximate FHE HEAAN (Cheon, Kim, Kim & Song)
- ... many more

In the News:
- February 21, 2019: Microsoft SEAL open source homomorphic encryption library gets even better for .NET developers!
- June 4, 2020: IBM releases FHE toolkit for MacOS and iOS; Linux and Android Coming Soon
Homework and Evaluation

Homework assignments:
- 2 or 3 assignments, due within one week from assignment date
- Cover theoretical/mathematical topics
Homework and Evaluation

- **Homework assignments:**
 - 2 or 3 assignments, due within one week from assignment date
 - Cover theoretical/mathematical topics

- **Project:**
 - Goal: get your hands dirty using one of the many available HE libraries
 - Minimal requirement: not much coding, but enough to demonstrate ability to make use of the library
 - Open ended: do something you like / find interesting
 - Evaluated primarily based on written report
Administrivia:

- Course webpage: http://cseweb.ucsd.edu/classes/wi23/
 - general course information, office hour, etc.
 - pointers to papers and other reading material
 - homework assignments

- Teamwork:
 - You can work in groups of size up to three both for HW and Project
 - Goal is to learn from each other, not to split the work
 - Working in teams is encouraged
Course Schedule

This is very tentative and subject to change

Week 1: Introduction and Definition

- FHE Definition
- Gentry’s Bootstrapping theorem
- Homework 1 out

Week 2-4: Fundamental techniques based on general lattices

- LWE encryption
- Linear Homomorphic computations
- Key Switching and Proxy re-encryption
- Nested encryption and homomorphic multiplication
- Ciphertext Tensoring and homomorphic multiplication
- Homomorphic Decryption and Bootstrapping algorithms
- Homework 2 out
Week 5: Algebraic Number Theory

- I really hope you like math!
- Homework 3 out?

Week 6-10: Efficient FHE from Ring LWE

- Message packing techniques
- Linear transformations on structured matrices
- Other FHE schemes: GHS, BFV, FHEW, AP13, TFHE, CKKS ...
Section 2

Defining FHE
Public Key Encryption

PKE(\text{Gen}, \text{Enc}, \text{Dec})

- \text{Gen}: () \rightarrow (pk, sk)
- \text{Enc}: (pk, m) \rightarrow c
- \text{Dec}: (sk, c) \rightarrow m

- All algorithms are given an implicit security parameter as input, and may be randomized
- \text{Gen}: Key Generation algorithm. Given a security parameter, produces a pair of matching secret and public keys
- \text{Enc}: Encryption algorithm, given the public key and a message, outputs a ciphertext
- \text{Dec}: Decryption algorithm, given the secret key and a ciphertext, recovers the message
Correctness of PKE

For every \((sk, pk) \leftarrow \text{Gen}()\) and \(m \leftarrow [M], r \leftarrow [R]:)\:

\[
\text{Dec}(sk, \text{Enc}(pk, m; r)) = m
\]

- \([M]\): message space, may be just \(\{0, 1\}\), or \(\{0, 1\}^n\)
- \(r \leftarrow [R]\): randomness
- \(A(x; r)\) means run algorithm \(A\) on input \(x\) using randomness \(r\)
Chosen Plaintext Attack (IND-CPA) security

- Indistinguishability under Chosen Plaintext Attack
- Experiment:

\[
\text{INDCPA}_\text{game}(b:\{0,1\}) \\
(sk,pk) \leftarrow \text{Gen}() \\
A(pk) \rightarrow (m_0,m_1) \\
b' \leftarrow A(\text{Enc}(pk,m_b)) \\
\text{return } b':\{0,1\}
\]
Chosen Plaintext Attack (IND-CPA) security

- Indistinguishability under Chosen Plaintext Attack
- Experiment:

 \[
 \text{INDCPA}_{\text{game}}(b:\{0,1\})
 \]
 \[
 (sk, pk) \leftarrow \text{Gen}()
 \]
 \[
 A(pk) \rightarrow (m_0, m_1)
 \]
 \[
 b' \leftarrow A(\text{Enc}(pk, m_b))
 \]
 \[
 \text{return } b' :\{0,1\}
 \]

Definition

\[
\text{Adv}(A) = |\Pr(\text{Game}(0)=1) - \Pr(\text{Game}(1)=1)|
\]

Definition

An encryption scheme \((\text{Gen}, \text{Enc}, \text{Dec})\) is \textbf{IND-CPA} secure if any efficient \(A\) has advantage \(\text{Adv}(A) \approx 0\)
Significance of CPA security

- Adversary can choose messages m_0, m_1
 - No assumption about input distribution
 - Adversary may have partial information about messages
 - Adversary may influence the choice of messages

- Ciphertext $c = \text{Enc}(\text{pk}, m_b)$ is computed honestly
 - Adversary cannot tamper with ciphertexts

- Adversary models a passive attacker
Definition of CCA security

Definition

An encryption scheme (Gen, Enc, Dec) is **IND-CCA** secure if any efficient A has advantage $Adv(A) \approx 0$ in the following game.

$$\text{Game}(b: \{0, 1\})$$

$$(sk, pk) \leftarrow Gen()$$

$A[D](pk) \rightarrow (m_0, m_1)$$

$c \leftarrow Enc(pk, m_b)$

$b' \leftarrow A[D'](c)$

return $b': \{0, 1\}$

- $A[D]$ is an adversary with oracle access to $D(x) = Dec(sk, x)$
- $A[D']$ uses a modified oracle (next slide)
IND-CCA1 vs IND-CCA2

There are two variants of CCA security, depending on the type of oracle given to the adversary after receiving the challenge ciphertext:

- **IND-CCA1** security: No decryption oracle after receiving the challenge

 \[D'(x) = \text{Nil} \]

- **IND-CCA2** security: decrypt any ciphertext, except the challenge \(c \)

 \[D'(x) = \begin{cases}
 \text{Nil} & \text{if } (x \neq c) \\
 \text{Dec}(sk, x) & \text{else}
 \end{cases} \]
Significance of CCA security

- **Goal:** model active attacks, where adversary can tamper with ciphertexts
- **Standard notion for regular encryption schemes**
- **IND-CCA2 theoretically equivalent to *non-malleable* encryption**
 - Any attempt to modify a ciphertext should be detected
Significance of CCA security

- Goal: model active attacks, where adversary can tamper with ciphertexts
- Standard notion for regular encryption schemes
- IND-CCA2 theoretically equivalent to non-malleable encryption
 - Any attempt to modify a ciphertext should be detected
- Seems incompatible with homomorphic encryption
 - Ability to modify ciphertexts can be a useful feature
 - Homomorphic encryption is perfectly malleable
- We will not consider CCA security
Homomorphic Encryption: first attempt

- Assume $f: \mathbb{M} \rightarrow \mathbb{M}$, later will extend to multi-input functions

- Intuition: “Encryption commutes with function application”

 $$f(\text{Enc}(pk, m)) = \text{Enc}(pk, f(m))$$

- How to apply f to a ciphertext

 $$\text{Eval}(pk, f, \text{Enc}(pk, m)) = \text{Enc}(pk, f(m))$$

- Recall, Enc is randomized!

 - Eval and Enc are unlikely to produce the same ciphertext
 - should Eval and Enc produce identical distribution?
 - should ciphertexts produced by Eval be independent?
Homomorphic Encryption: second attempt

\[\text{Dec}(sk, \text{Eval}(pk, f, \text{Enc}(pk, m))) = f(m) \]

This “homomorphic correctness” definition captures the workflow of a typical application

1. trusted party generates a pair of keys \((pk, sk) \leftarrow \text{Gen}()\)
2. data owner encrypts data \(m\) under \(pk\), and stores ciphertext on public server
3. server carries out computation of program \(f\) on encrypted data
4. final result is decrypted using \(sk\)
Many inputs are encrypted independently

\[c_1 \leftarrow \text{Enc}(pk, m_1) \]
\[\ldots \]
\[c_k \leftarrow \text{Enc}(pk, m_k) \]
Multi-input functions

- Many inputs are encrypted independently
 \[c_1 \leftarrow \text{Enc}(\text{pk}, m_1) \]
 \[\ldots \]
 \[c_k \leftarrow \text{Enc}(\text{pk}, m_k) \]

- \(k \)-ary function \(f: (m_1, \ldots, m_k) \rightarrow m \)

 \[
 \text{Dec}(\text{sk}, \text{Eval}(\text{pk}, f, c_1, \ldots c_k)) = f(m_1, \ldots, m_k)
 \]

- Different parties provide encrypted data to perform a joint computation
- Only owner of secret key \(\text{sk} \) can decrypt the result
- For added security, \(\text{sk} \) may be distributed using secret sharing scheme: this is called “Threshold FHE”, and there is much to say about it
Assume multiple users: P_1, P_2, \ldots

Each user has a key (pair): $P_i : (pk_i, sk_i)$

Data is encrypted and sent to different users

\[
\begin{align*}
c_1 & \leftarrow \text{Enc} (pk_1, m_1) \\
\ldots & \\
c_t & \leftarrow \text{Enc} (pk_t, m_t)
\end{align*}
\]

Users pool data together to perform a joint computation on c_1, \ldots, c_t, using $pk_1, \ldots pk_t$.
Multi-key Homomorphic encryption

- Assume multiple users: $P_1, P_2, ...$
- Each user has a key (pair): $P_i : (pk_i, sk_i)$
- Data is encrypted and sent to different users

 \[
 c_1 \leftarrow \text{Enc} (pk_1, m_1) \\
 \ldots \\
 c_t \leftarrow \text{Enc} (pk_t, m_t)
 \]

- Users pool data together to perform a joint computation on $c_1, ..., c_t$, using $pk_1, ... pk_t$.

- Final result is encrypts $f(m_1, ..., m_t)$ under what key?

 \[
 \text{Eval}(??? , f, c_1, \ldots , c_t) \approx \text{Enc} (??? , f(m_1, \ldots , m_t))
 \]
Restricting Homomorphic Encryption

- FHE is a useful and challenging problem already in the single key setting
FHE is a useful and challenging problem already in the single key setting.

In order to approach the problem we will further restrict it by parametrizing by a set of allowed computations/functions $\text{Func} = \{ f: \ldots \}$ where each $f: (M,\ldots,M) \rightarrow M$ may take a different number of arguments.
Restricting Homomorphic Encryption

- FHE is a useful and challenging problem already in the single key setting.

- In order to approach the problem we will further restrict it by parametrizing by a set of allowed computations/functions \(\text{Func} = \{ f: \ldots \} \) where each \(f: (M, \ldots, M) \rightarrow M \) may take a different number of arguments.

- More generally, one may consider functions \(f: (M_1, \ldots, M_k) \rightarrow M \) taking inputs from different sets (types), e.g., \(\text{ifThenElse}: (\text{Bool}, \text{Int}, \text{Int}) \rightarrow \text{Int} \).
Examples and Function Composition

- \((M, +, 0)\): abelian group, e.g., “fixed size” integers (modulo \(N\))
- Addition: \(f(x_1, ...x_t) = x_1 + ... + x_t\)
- Scalar multiplication: \(g_a(x) = a \cdot x\)
- Linear combinations: \(h(x_1, ...x_t) = \sum_i 2^{i-1}x_i\)
Examples and Function Composition

- $(M, +, 0)$: abelian group, e.g., “fixed size” integers (modulo N)
- Addition: $f(x_1, \ldots x_t) = x_1 + \ldots + x_t$
- Scalar multiplication: $g_a(x) = a \cdot x$
- Linear combinations: $h(x_1, \ldots x_t) = \sum_i 2^{i-1}x_i$

1-hop, n-hop, multi-hop: can functions f be composed?

$$h(x_1, \ldots, x_t) = f(g_1(x_1), \ldots, g_{2^t-1}(x_t))$$
Correctness and Function Composition

- Let $x, y, z \in M$ be messages and $f, g : M \rightarrow M$ two functions such that $y = f(x)$ and $z = g(y) = (g \circ f)(x)$
- Assume $(Gen, Enc, Dec, Eval)$ can evaluate f and g correctly:
 \[
 \begin{align*}
 \text{Dec}(sk, \text{Eval}(pk, f, \text{Enc}(pk, x))) &= f(x) \\
 \text{Dec}(sk, \text{Eval}(pk, g, \text{Enc}(pk, y))) &= g(y)
 \end{align*}
 \]
Correctness and Function Composition

- Let $x, y, z \in M$ be messages and $f, g : M \rightarrow M$ two functions such that $y = f(x)$ and $z = g(y) = (g \circ f)(x)$

- Assume $(Gen, Enc, Dec, Eval)$ can evaluate f and g correctly:

 $\text{Dec}(sk, \text{Eval}(pk, f, \text{Enc}(pk, x))) = f(x)$

 $\text{Dec}(sk, \text{Eval}(pk, g, \text{Enc}(pk, y))) = g(y)$

Question

Does it follow that

\[
\begin{align*}
\text{ctX} & \leftarrow \text{Enc}(pk, x) \\
\text{ctY} & \leftarrow \text{Eval}(pk, f, \text{ctX}) \\
\text{ctZ} & \leftarrow \text{Eval}(pk, g, \text{ctY}) \\
\text{Dec}(sk, \text{ctZ}) & \overset{?}{=} z
\end{align*}
\]*
Formalizing Restricted Composition

- Restrict scheme to a set \mathcal{F} of strongly typed functions:
 \[f : M_1 \times \ldots \times M_k \rightarrow M_0 \]

- \textbf{Enc, Dec, Eval} are given type information
Formalizing Restricted Composition

- Restrict scheme to a set \mathcal{F} of strongly typed functions:

 $$f : M_1 \times \ldots \times M_k \rightarrow M_0$$

- $\text{Enc}, \text{Dec}, \text{Eval}$ are given type information

- We can use types to bound computation depth:
 - Start from $f : M \rightarrow M$
 - Define $M_i = M$ for $i = 1, \ldots, n$
 - Define $f_i : M_i \rightarrow M_{i+1}$, where $f_i(x) = f(x)$

- $\mathcal{F} = \{f\}$ allows arbitrary composition

- $\mathcal{F} = \{f_0\}$: no composition

- $\mathcal{F} = \{f_0, f_1, \ldots, f_n\}$: bounded depth composition
State: (initially empty) list L of message-ciphertext pairs

```
CorrectFHEgame() = (sk, pk) ← Gen()
L ← []
A[E,F](pk)
(m, c) ← last(L)
return (Dec(sk, c) ≠ m)
```

```
E(m) = c ← Enc(pk, m)
L ← L;(m, c)
return c
```

```
F(f, I) = (ms, cs) ← unzip L[I]
m ← f(ms)
c ← Eval(pk, f, cs)
L ← L;(m, c)
return c
```
Reading papers, you will find references to

- Fully Homomorphic Encryption
- Somewhat Homomorphic Encryption
- Leveled Fully Homomorphic Encryption
- etc.
Reading papers, you will find references to

- Fully Homomorphic Encryption
- Somewhat Homomorphic Encryption
- Leveled Fully Homomorphic Encryption
- etc.

We will use FHE as a catchall term

- Definition is parametrized by a set of functions \mathcal{F}
- Functions in \mathcal{F} can be composed only if their types match
- \mathcal{F} is closed under composition
- Can use “phantom” types to limit composition

We will rarely define \mathcal{F} formally, but it is a useful exercise
Security of Homomorphic Encryption

INDCPA game \(b : \{0, 1\} \)

\((sk, pk) \leftarrow \text{Gen}() \)

\(A(pk) \rightarrow (m_0, m_1) \)

\(\text{return } A(\text{Enc}(pk, m_b)) : \{0, 1\} \)

Remark

The IND-CPA security definition depends only on \(\text{Gen} \) and \(\text{Enc} \), but not on \(\text{Dec} \) (or \(\text{Eval} \))

Question

Can the IND-CPA security definition be applied as it is to FHE schemes \((\text{Gen, Enc, Dec, Eval}) \)?
A trivial FHE scheme

Consider the following FHE scheme:

- Let (Gen, Enc, Dec) be IND-CPA secure
- Define $TrivialFHE = (Gen, Enc', Dec', Eval)$

\[
\begin{align*}
Enc'(pk, m) &= (Enc(pk, m), []) \\
Dec'(sk, (ct, [])) &= Dec(sk, ct) \\
Dec'(sk, (ct, [f; fs])) &= f(Dec'(sk, (ct, fs))) \\
Eval(pk, f, (ct, [fs])) &= (ct, [f; fs])
\end{align*}
\]

Question

- *Is* $TrivialFHE$ a correct FHE scheme?
- *Is* $TrivialFHE$ a secure FHE scheme?
- What makes the above scheme “trivial”?
The TrivialFHE scheme is both correct and secure.

The problem with TrivialFHE is that it is not efficient:

- Computation is performed by Dec, not Eval!

Definition

A FHE scheme is **compact** if the size of ciphertext $ct = \text{Eval}(pk, f, \text{Enc}(pk, m))$ is independent of $\text{Size}(f)$.

- Weaker forms of compactness:
 - Ciphertext size may grow logarithmic with $\text{Size}(f)$.
 - Ciphertext size may depend on $\text{Depth}(f)$.
Function Privacy

\[f_0(x, y) = x + y \]
\[f_1(x, y) = y + x \]
\[\text{Eval}(pk, f_1, ctX, ctY) = \text{Eval}(pk, f_0, ctY, ctX) \]

Game [A](b: \{0,1\})
- \((sk, pk) \leftarrow \text{Gen}() \)
- \(ctX \leftarrow \text{Enc}(pk, x) \)
- \(ctY \leftarrow \text{Enc}(pk, y) \)
- \(ct \leftarrow \text{Eval}(pk, f_b, ctX, ctY) \)
- \text{return } A(ct) \]

Question

Assume \((\text{Gen}, \text{Enc}, \text{Dec}, \text{Eval})\) is a secure FHE scheme. Can an efficient adversary \(A\) recover the bit \(b = \text{Game}[A](b)\)?
Passive Attacks to FHE

Game[A](b: \{0,1\})
(sk, pk) ← Gen()
State ← []
b' ← A[E, D, F](pk)
return b'

Adversary has access to three stateful oracles:

- Encryption oracle: E(m₀, m₁)
- Function Evaluation oracle: F(f₀, f₁, I)
- Decryption oracle: D(i)
- Joint State: List of message-message-ciphertext triplets (m₀, m₁, ct)
Passive Attack (oracles)

\[E(m_0, m_1) = ct \leftarrow \text{Enc}(pk, m_b) \]
\[\text{State} \leftarrow (\text{State};(m_0, m_1, ct)) \]
\[\text{return } ct \]

\[F(f_0, f_1, I) = (m_{s0}, m_{s1}, cts) \leftarrow \text{unzip} \text{ State}[I] \]
\[ct \leftarrow \text{Eval}(pk, f_b, cts) \]
\[m_0 \leftarrow f_0(ms_0) \]
\[m_1 \leftarrow f_1(ms_1) \]
\[\text{State} \leftarrow \text{State};(m_0, m_1, ct) \]
\[\text{return } ct \]

\[D(i): (m_0, m_1, ct) \leftarrow \text{State}[i] \]
\[\text{if } (m_0 \equiv m_1) \]
\[\quad \text{then return Dec}(sk, ct) \]
\[\quad \text{else return } \text{Nil} \]
Passive Attack with/without function privacy

- The game we just described guarantees function privacy
- A similar definition without function privacy can be obtained by requiring $f_0 \equiv f_1$ in the function evaluation queries

$$F'(f, I): (m_0, m_1, cts) \leftarrow \text{unzip} \ State[I]$$
$$ct \leftarrow \text{Eval}(pk, f, cts)$$
$$m_0 = f(m_0)$$
$$m_1 = f(m_1)$$
$$\text{State} \leftarrow (\text{State}; (m_0, m_1, ct))$$
$$\text{return} \ ct$$

- Similarly, you can define function privacy without message privacy
Example: Circuit Privacy

- Assume messages are single bits m: \{0, 1\}
- Let $\text{FHE}=(\text{Gen}, \text{Enc}, \text{Dec}, \text{Eval})$ a function private FHE scheme supporting $\text{NAND}(x, y) = \text{not} (x \land y)$
- $\text{Eval}_C(pk, C, \ldots)$: evaluates boolean circuit C: $\{0, 1\}^n \rightarrow \{0, 1\}$ one gate at a time using $\text{Eval}(pk, \text{NAND}, \ldots)$
- Let C_0, C_1: NAND circuits with the same number of inputs and NAND gates
- $(sk, ps) \leftarrow \text{Gen}()$
- Let xs_0, xs_1 be input bits such that $C_0(xs_0) = C_1(xs_1)$

Question
Are the following two distributions indistinguishable?

$$(pk, \text{Eval}_C(pk, C_0, \text{Enc}(pk, xs_0)))$$
$$(pk, \text{Eval}_C(pk, C_1, \text{Enc}(pk, xs_1)))$$
Section 3

Bootstrapping
For simplicity: fix message space to \{0, 1\}

\[HE = (Gen, Enc, Dec, Eval) \]

- Homomorphic functions: \(\text{Func} = \{ \text{nand} \} \)
- Supports only bounded computations: \(\text{Depth}(C) < D \)
For simplicity: fix message space to \{0, 1\}

HE = (Gen, Enc, Dec, Eval)

- Homomorphic functions: Func = \{ nand \}
- Supports only bounded computations: Depth(C) < D

Question

Can we use HE to build a FHE scheme supporting arbitrary circuits/functions?

- The process of building FHE from HE is called “bootstrapping”
Decryption as a boolean function

- Everything is a sequence of bits
 - Secret key $sk: \{0, 1\}^k$
 - Ciphertext $ct: \{0, 1\}^l$

- $\text{Dec}(sk, ct): \{0, 1\}$
Decryption as a boolean function

- Everything is a sequence of bits
 - Secret key sk: $\{0, 1\}^k$
 - Ciphertext ct: $\{0, 1\}^l$

- $Dec(sk, ct): \{0, 1\}$

- Usually we think of Dec as a function
 - described by secret key sk
 - mapping ciphertext ct to message bit $Dec(sk, ct): \{0, 1\}$
Decryption as a boolean function

- Everything is a sequence of bits
 - Secret key sk: $\{0, 1\}^k$
 - Ciphertext ct: $\{0, 1\}^l$

- $Dec(sk, ct): \{0, 1\}$

- Usually we think of Dec as a function
 - described by secret key sk
 - mapping ciphertext ct to message bit $Dec(sk, ct): \{0, 1\}$

- But we can also think of Dec as a function
 - described by ciphertext ct
 - mapping secret key sk to message bit $Dec(sk, ct): \{0, 1\}$
Homomorphic Decryption

- Fix a ciphertext c
- Define $f_c : sk \mapsto Dec(sk, c)$
- Assume $\text{Size}(f_c) < S$, $\text{Depth}(f_c) < D$
- Let $b_k[1..k] = \text{Enc}(pk, sk[1..k])$

Question

What is the result of the following computation?

$\text{EvalC}(pk, f_c, b_k[1..k])$
Proxy Re-encryption

- Primary key: \((pk, sk)\)
- Secondary key: \((pk_1, sk_1)\)
- Re-encryption key: \(rk = Enc(pk_1, sk[1..k])\)
- Input ciphertext \(c = Enc(pk, m)\)
- Decryption function \(f_c(sk) = Dec(sk, c)\)

Question

What is the result of the following computation?

\[\text{EvalC}(pk_1, f_c, rk) \]
Decrypt and compute (unary)

- Homomorphic Encryption (Gen, Enc, Dec, Eval)
- Assume Func = \{ f_c \mid c: CipherText \} where
 \[f_c(sk) = \text{not} \left(Dec(sk, c) \right) \]
Decrypt and compute (unary)

- Homomorphic Encryption \((\text{Gen}, \text{Enc}, \text{Dec}, \text{Eval})\)
- Assume \(\text{Func} = \{ f_c \mid c: \text{CipherText} \}\) where
 \[f_c(sk) = \text{not} \ (\text{Dec}(sk, c))\]

\[(pk, sk) \leftarrow \text{Gen}()\]
\[ek = \text{Enc}(pk, sk)\]
\[c = \text{Enc}(pk, m)\]

Question

What is the result of the following computation?

\[\text{EvalC}(pk, f_c, ek)\]
Homomorphic Encryption (Gen, Enc, Dec, Eval)

Assume Func = \{ f_{c,c'} | c, c' : CipherText \} where

\[f_{c,c'}(sk) = \text{Dec}(sk, c) \text{ nand } \text{Dec}(sk, c') \]
Decrypt and compute (binary)

- Homomorphic Encryption \((\text{Gen}, \text{Enc}, \text{Dec}, \text{Eval})\)
- Assume \(\text{Func} = \{ f_{c,c'} \mid c,c' : \text{CipherText} \}\) where
 \[
 f_{c,c'}(sk) = \text{Dec}(sk,c) \text{ nand } \text{Dec}(sk,c')
 \]

\[
\begin{align*}
(pk, sk) & \leftarrow \text{Gen}() \\
ek & \leftarrow \text{Enc}(pk, sk) \\
c & \leftarrow \text{Enc}(pk, m) \\
c' & \leftarrow \text{Enc}(pk, m')
\end{align*}
\]

Question

What is the result of the following computation?

\[
\text{EvalC}(pk, f_{c,c'}, ek)
\]
Given (1-hop) \((\text{Gen}, \text{Enc}, \text{Dec}, \text{Eval})\) supporting functions

\[f_{c,c'}(sk) = \text{Dec}(sk, c) \text{\ AND } \text{Dec}(sk, c') \]
Bootstrapping

- Given (1-hop) \((\text{Gen}, \text{Enc}, \text{Dec}, \text{Eval})\) supporting functions
 \[f_{c,c'}(sk) = \text{Dec}(sk,c) \text{ nand } \text{Dec}(sk,c') \]

- Define (multi-hop) FHE scheme with \(\text{Func} = \{ \text{nand} \}\)

\[
\text{Gen}'() = (sk, pk) \leftarrow \text{Gen}()
\]
\[
\text{ek} \leftarrow \text{Enc}(pk, sk)
\]
\[
\text{return} (sk, (pk, ek))
\]

\[
\text{Enc}'((pk, ek), m) = \text{Enc}(pk, m)
\]

\[
\text{Eval}'((pk, ek), \text{nand}, c, c')
\]
\[
= \text{EvalC}(pk, f_{c,c'}, ek)
\]
Correctness

Let \((\text{Gen}', \text{Enc}', \text{Dec}, \text{Eval}')\) be the new encryption scheme.

Theorem

If \(\text{Dec}(sk, c) = m\) and \(\text{Dec}(sk, c') = m',\) then

\[
\text{Dec}(sk, \text{Eval}'((pk, ek), \text{nand}, c, c')) = m \text{ nand } m'
\]
Correctness

Let \((\text{Gen}', \text{Enc}', \text{Dec}, \text{Eval}')\) be the new encryption scheme.

Theorem

If \(\text{Dec}(sk, c) = m\) and \(\text{Dec}(sk, c') = m'\), then

\[
\text{Dec}(sk, \text{Eval}'((pk, ek), \text{nand}, c, c')) = m \text{nand } m'
\]

Strong correctness property:

\[
\text{Dec}(sk, \text{Eval}'((pk, ek), \text{nand}, c, c')) = \text{Dec}(sk, c) \text{nand } \text{Dec}(sk, c')
\]

for any ciphertexts \(c, c'\)!
Security

- Assume $\text{FHE} = (\text{Gen}, \text{Enc}, \text{Dec}, \text{Eval})$ is IND-CPA secure
- Build new scheme FHE':

 $\text{Gen}'() = (\text{sk}, \text{pk}) \leftarrow \text{Gen}()$
 $\text{ek} \leftarrow \text{Enc}(\text{pk}, \text{sk})$
 $\text{return} \ (\text{sk}, (\text{pk}, \text{ek}))$

 $\text{Enc}'((\text{pk}, \text{ek}), m) = \text{Enc}(\text{pk}, m)$

Is FHE' IND-CPA secure?
Leveled Homomorphic Encryption

- Goal: build a FHE supporting NAND circuits of depth up to \(L \), for any given \(L \)
- Key generation procedure takes \(L \) as input:

\[
\text{Gen}'(L) = \begin{align*}
 &\text{for } (i = 0.. L) \\
 & (sk[i], pk[i]) \leftarrow \text{Gen} () \\
 &\text{for } (i = 1.. L) \\
 & ek[i] = \text{Enc} (pk[i], sk[i-1]) \\
 & sk' = sk[0.. L] \\
 & pk' = pk[0.. L], ek[1.. L] \\
 & \text{return } (sk', pk') \\
 & \text{Enc}'(pk', m) = \text{Enc} (pk[0], m)
\end{align*}
\]
Leveled Homomorphic Encryption

- Goal: build a FHE supporting NAND circuits of depth up to L, for any given L
- Key generation procedure takes L as input:

```
Gen'(L) =
    for (i=0..L)
        (sk[i], pk[i]) ← Gen()
    for (i=1..L)
        ek[i] = Enc(pk[i], sk[i-1])
    sk' = sk[0..L]
    pk' = pk[0..L], ek[1..L]
    return (sk', pk')

Enc'(pk', m) = Enc(pk[0], m)
```
FHE Today

State of the art
We can build leveled FHE from standard LWE assumption
- Built using bootstrapping
- Inefficient, but better than nothing

Open problem
Build (non-leveled) FHE from standard LWE
- In practice, one can apply bootstrapping with
 \(ek = Enc(pk, sk) \)
- Much smaller key than leveled FHE
- No known attacks to circular security
- Still, it is not known how to prove security
Section 4

LWE
Linear equations

- q: integer modulus
- \mathbb{Z}_q: integers modulo q
- $A \in \mathbb{Z}_q^{n \times m}$: matrix
- $b \in \mathbb{Z}_q^n$

Problem

\[
\text{Given } A, b, \text{ find } x \in \mathbb{Z}^m \text{ such that } Ax = b \pmod{q}
\]

Problem

\[
\text{Given } A, b, \text{ find } x \in \{0, 1\}^m \text{ such that } Ax = b \pmod{q}
\]

Question

Which problem can be efficiently solved?
Problem

Given A, b, find $x \in \{0, 1\}^m$ such that $Ax = b \pmod{q}$

- NP-hard: no polynomial time algorithm unless P=NP
- Is it hard to solve on the average?
- For what probability distribution?
 - $A \leftarrow \mathbb{Z}_q^{n \times m}$
 - $x \leftarrow \{0, 1\}^m$
 - $b = Ax \pmod{q}$
- Is $f : (A, x) \mapsto (A, Ax \pmod{q})$ is a One-Way Function?
- For what values of n, m, q?
One-Way Functions

Definition

\(f: D \rightarrow R \) is a one-way function if for any PPT algorithm \(I \)
\(\Pr\{\text{InvertGame}(I)\} \approx 0 \) where

\[
\text{InvertGame:}
\begin{align*}
x & \leftarrow D \\
y & = f(x) \\
x' & \leftarrow I(y)
\end{align*}
\]
\[
\text{return } (f(x') \overset{?}{=} y)
\]

- \(D = \mathbb{Z}_q^{n \times m} \times \{0, 1\}^m \)
- \(R = \mathbb{Z}_q^n \)
- \(f(A, x) = Ax \mod q \)
- Asymptotics: \(q(m) = 2^{\text{poly}(m)}, n(m) = \text{poly}(m) \)
One-Way?

- $A \leftarrow \mathbb{Z}^{n \times m}$
- $x \leftarrow \{0, 1\}^m$
- $f(A, x) = Ax \mod q$

Question

Is f a one-way function when

1. $q = 2^m$, $n = m$
2. $q = 2^m$, $n = m/2$
3. $q = m$, $n = m/2$
4. $q = m$, $n = \sqrt{m}$
Short Integer Solution (SIS) problem

- **Parameters:**
 - modulus \(q \)
 - dimensions \(n < m \)
 - bound \(\beta \)

Problem

SIS: Given \(A \in \mathbb{Z}_q^{n \times m} \) and \(b \in \mathbb{Z}_q^n \), find \(x \in \mathbb{Z}^m \) such that

\[
Ax = b \pmod{q} \quad \text{and} \quad \|x\| \leq \beta
\]

- More generally: \(x \in S \subseteq \mathbb{Z}^m \)
- Special cases:
 - \(S = \{x : \|x\| \leq \beta\} \)
 - \(S = \{0, 1\}^m \)
 - \(S = \{x : \|x\|_\infty \leq \beta\} \)
Systematic Form

- Assume \(n < m \) (e.g., \(n = m/2 \))
- Let \(A = [I, A'] \in \mathbb{Z}^{n \times m} \) for some \(A' \in \mathbb{Z}^{n \times (m-n)} \)

Lemma

If SIS is hard, then SIS’ is hard
Learning With Errors

- SIS': $A = [I, A'] \in \mathbb{Z}^{n \times m}$ where $n < m$ (say, $n = m/2$)
- Let $x = (e, s)$
- $Ax = [I, A'](e, s) = A's + e$

Problem

LWE: Given A' and b, find small e, s such that $A's + e = b$

Problem

LWE: Given A' and b, find small e, s such that $A's \approx b$

Notice:

- $A' \in \mathbb{Z}_q^{n \times n}$
- $A's = b$ is easy to solve
- $A's \approx b$ seems hard
LWE problem

Notation:

- secret $s \leftarrow \mathbb{Z}_q^n$, usually chosen at random
- modulus $q(n) = \text{poly}(n)$
- $A \leftarrow \mathbb{Z}_q^{m \times n}$
- error $e \leftarrow \mathcal{X}_m$, usually $|e_i| \approx \sqrt{n}$
- $b = As + e \in \mathbb{Z}_q^{m}$

Problem

Search LWE: Given A and b, find s

- Each row of A gives an approximate equation $\langle a, s \rangle \approx b$
- if $m \gg n$, then s is uniquely determined
- Still, hard to find s
Uniform vs Small secrets

Lemma

If LWE is hard for $s \leftarrow \chi^n$, then it is hard for $s \leftarrow \mathbb{Z}_q^n$
Uniform vs Small secrets

Lemma

If LWE is hard for $s \leftarrow \chi^n$, then it is hard for $s \leftarrow \mathbb{Z}_q^n$

Proof: Assume Adv solves LWE with uniform $s \leftarrow \mathbb{Z}_q^n$

$$Adv'(A, b)$$

$s \leftarrow \mathbb{Z}_q^n$

$b' = b + As$

$s' = Adv(A, b')$

return $(s' - s)$
Decisional LWE (DLWE)

Definition

LWE distribution:

\[
\text{LWE}[q,n,m] =
\begin{align*}
\text{do } & A \leftarrow \mathbb{Z}_{q}^{m \times n} \\
\text{do } & s \leftarrow \mathbb{Z}_{q}^{n} \\
\text{do } & e \leftarrow \chi_{q}^{m} \\
b & = As + e
\end{align*}
\]

\text{return } (A, b)

Definition

Decisional LWE (DLWE): distinguish LWE[q,n,m] from Uniform(\(\mathbb{Z}_{q}^{m \times (n+1)}\))
Decision to Search reduction

Theorem

If DLWE is hard, then LWE is hard
Decision to Search reduction

Theorem

If DLWE is hard, then LWE is hard

Proof:

- Assume \(\text{Adv} \) solves LWE
- Given \(\text{Adv}' \) that solves DLWE

\[
\text{Adv}'(A,b): \\
\quad s \leftarrow \text{Adv}(A,b) \\
\quad \text{if } (As \approx b) \\
\quad \quad \text{then return } "\text{LWE}" \\
\quad \text{else return } "\text{random}"
\]
Search vs Decision

Is (Search) LWE harder than DLWE?

Theorem

If Search LWE is hard for any \(m = \text{poly}(n) \), then DLWE is also hard for any \(m = \text{poly}(n) \)

Theorem

For any \(m = \text{poly}(n) \), if Search LWE is hard, then DLWE is also hard for any \(m = \text{poly}(n) \)
LWE Search to Decision reduction (easy version)

- Assume \(\text{Adv} \) can distinguish LWE from uniform
- Task: Given \(A, b \), find \(s \) such that \(As \approx b \pmod{q} \)
- Assumption: \(s \) is unique (holds with very high probability)
- We show how to check if \(s_i = \gamma \):

\[
\text{Adv}(A, b): \quad a \leftarrow \mathbb{Z}^m \\
A' = A + [0..0, a, 0..0] \\
b' = b + \gamma \ a \\
\text{case } \text{Adv}(A', b') \text{ of} \\
\quad "\text{LWE}" : \text{ return } s_i = c \\
\quad "\text{random}" : \text{ return } s_i \neq c
\]

- Recover all entries of \(s \), one at a time
(Decisional) LWE Assumption

- In the rest of the course we will just assume that DLWE is hard.

- There are several variants of the assumption:
 - Uniform vs. small secret s
 - Different (always small) error distributions $e \leftarrow \chi$
 - Fixed vs unbounded number of samples m
 - Different values of q
 - Concrete hardness assumptions

- By and large all variants are equivalent up to polynomial reductions.
How to Encrypt with LWE

- Fix secret s in \mathbb{Z}_q^n
- LWE samples (a_i, b_i) where $a_i \in \mathbb{Z}_q^n$ and $b_i \in \mathbb{Z}$
- Polynomialsly many samples (a_i, b_i) for $i = 1, 2, ...$
- DLWE: the b_i values are pseudorandom
- Idea: use b_i as a one-time pad to encrypt a message m
LWE Symmetric Encryption

\begin{align*}
\text{Gen}() : \\
& s \leftarrow \mathbb{Z}_q^n \\
& \text{return } s
\end{align*}

\begin{align*}
\text{Enc}(s, m) : \\
& a \leftarrow \mathbb{Z}_q^n \\
& e \leftarrow \chi \\
& b = \langle a, s \rangle + e + m
\end{align*}

\begin{align*}
\text{Dec}(s, (a, b)) : \\
& \text{return } (b - \langle a, s \rangle)
\end{align*}

Is this a valid encryption scheme?
Symmetric Encryption

\[
\text{SKE}(\text{Gen}, \text{Enc}, \text{Dec})
\]

\[
\begin{align*}
\text{Gen} &: () \rightarrow \text{sk} \\
\text{Enc} &: (\text{sk}, m) \rightarrow c \\
\text{Dec} &: (\text{sk}, c) \rightarrow m
\end{align*}
\]

Correctness: for every \(\text{sk} \leftarrow \text{Gen()} \) and \(m \leftarrow [M], r \leftarrow [R] \):

\[
\text{Dec}(\text{sk}, \text{Enc}(\text{sk}, m; r)) = m
\]

Question

Is this a valid encryption scheme?
Correcting from errors

- Ciphertext modulus q
- Message modulus p (assume p divides q)
- Message space: $m \in \mathbb{Z}_p$

$\text{Enc}(s,m) = (a,b)$ where

 $a \leftarrow \mathbb{Z}_q^n, e \leftarrow \chi$

 $b = \langle a, s \rangle + e + (q/p)m$

$\text{Dec}(s,(a,b)) = \text{round}(c*p/q))$ where

 $c = b - \langle a, s \rangle \mod q$

Lemma

If $|e| < \beta$ then $\text{Dec}(s,\text{Enc}(s,m;a,e)) = m$

Question

For what value of β is the lemma correct?
IND-CPA security for symmetric encryption

\[\text{INDCPA}_{\text{game SKE}}(b: \{0, 1\})\]
- \[\text{sk} \leftarrow \text{Gen}()\]
- \[b' \leftarrow A[LR]\]
- \text{return } b': \{0, 1\}

\[\text{LR}(m_0, m_1):\]
- \[\text{ct} \leftarrow \text{Enc}(\text{sk}, m_b)\]
- \text{return } \text{ct}

- Similar LR security definition can be given also for PKE: \[A[LR](\text{pk})\] is given \text{pk} and oracle access to LR
- Previous PKE INDCPAGame allows only one query to LR

Question

Why can restrict PKE INDCPAGame to one query?
Security of LWE symmetric encryption

- Assume $|e| < \beta = q/(2p)$ for all $e \leftarrow \chi$
- Is LWE INDCPA$_{gameSKE}$ secure?

Theorem

Assume DLWE holds for a given $q(n)$ and any $m = \text{poly}(n)$. Then LWE symmetric encryption is INDCPA secure, i.e., any adversary Adv has negligible advantage in the INDCPA$_{gameSKE}$ distinguishing game.
RR-CPA security

- LWE encryption satisfies a stronger security property: ciphertext indistinguishability from random

\[
\text{INDCPA}_{\text{gameSKE}}(b: \{0, 1\})
\]

\[
\begin{align*}
\text{sk} & \leftarrow \text{Gen}() \\
\text{b'} & \leftarrow A[\text{RR}] \\
\text{return} & \text{ b':} \{0, 1\}
\end{align*}
\]

\[
\text{RR}(m):
\]

\[
\begin{align*}
\text{ct}_0 & \leftarrow \text{Enc}(\text{sk}, m) \\
\text{ct}_1 & \leftarrow \mathbb{Z}_q^{n+1} \\
\text{return} & \text{ ct}_b
\end{align*}
\]

- “Real or Random” oracle RR
- RR-CPA security also provides a form of anonymity
Theorem

If a (SKE or PKE) scheme is INDCPA-RR secure, then it is also INDCPA-LR secure.

Remark

A (SKE or PKE) scheme can be INDCPA-LR secure, but not INDCPA-RR secure.
Compact LWE Encryption

- Ciphertext expansion: bitsize(ct)/ bitsize(m)
- Compact LWE SKE (Gen, Enc, Dec)

Gen():

\[S \leftarrow \mathbb{Z}_q^{l \times n} \]

\[\text{return } S \]

Enc(S, m) = (a, b)

\[a \leftarrow \mathbb{Z}_q^n \]
\[e \leftarrow \chi^l \]
\[b = Sa + e + \text{round}(\frac{p}{q}m) \]

Dec(S, (a, b)):

\[c \leftarrow b - S^t a \mod q \]

\[\text{return } \text{round}(c \times \frac{p}{q}) \]

Theorem

Compact LWE SKE is correct and IND-CPA-RR secure
Compact LWE encryption:

- Key $S \in \mathbb{Z}_q^{l \times n}$
- Message $m \in \mathbb{Z}_p^l$
- Encryption $\text{Enc}(S, m) = (a, b)$ where $b = Sa + e + mp/q$
- Ciphertext $(a, b) \in \mathbb{Z}_q^{n+l}$

Question

What is the ciphertext/plaintext size ratio?

Example:

- $\text{Enc}(f, x; r) = (f(r), H(r) \oplus m)$ where $f : \{0, 1\}^k \rightarrow \{0, 1\}^k$
- $\text{Enc}(f, .) : \{0, 1\}^m \rightarrow \{0, 1\}^{m+k}$
- Ciphertext expansion: $(m + k)/m = 1 + (k/m)$
Section 5

Linearity
LWE Symmetric Encryption

\textbf{Gen}():
\begin{align*}
 s & \leftarrow \mathbb{Z}_q^n \\
 \text{return } & \ s
\end{align*}

\textbf{Enc} (s, m):
\begin{align*}
 a & \leftarrow \mathbb{Z}_q^n \\
 e & \leftarrow \chi \\
 b & = \langle a, s \rangle + e + (q/p)m \\
 \text{return } & \ (a, b)
\end{align*}

\textbf{Dec} (s, (a, b)):
\begin{align*}
 d & = b - \langle a, s \rangle \mod q \\
 \text{return } & \ (\text{round}(d \times p/q))
\end{align*}
Compact (Matrix) LWE

Gen():
\[S \leftarrow \mathbb{Z}_q^{l \times n} \]
return \(S \)

Enc\((S, M) = (A, B)\):
\[A \leftarrow \mathbb{Z}_q^{n \times w} \]
\[E \leftarrow \chi^{l \times w} \]
\[B = SA + E + \text{round} \left(\left(\frac{p}{q} \right) M \right) \mod q \]

Dec\((S, (A, B))\):
\[D \leftarrow B - SA \mod q \]
return \(\text{round} \left(D \cdot \frac{p}{q} \right) \)

Notation:
- \([A, B]\): horizontal concatenation
- \((A, B)\): vertical concatenation
Linearity of the LWE function

- Let $LWE(S, X; A, E) = SA + X + E$ be the raw LWE function.
- Encryption: $Enc(S, M) = LWE(S, (q/p)M; A, E)$ for random A, E.
- Linear properties:

 $LWE(S, X; A, E) + LWE(S, X'; A', E')$
 $= LWE(S, X + X'; A + A', E + E')$

 $LWE(S, X; A, E) - LWE(S, X'; A', E')$
 $= LWE(S, X - X'; A - A', E - E')$

 $c* LWE(S, X; A, E) = LWE(S, c*X; c*A, c*E)$
Linearity of the LWE function

- Let $\text{LWE}(S, X; A, E) = SA + X + E$ be the raw LWE function.
- Linear properties:

 \[
 \text{LWE}(S, X; A, E) + \text{LWE}(S, X'; A', E') = \text{LWE}(S, X+X'; A+A', E+E')
 \]

 \[
 \text{LWE}(S, X; A, E) - \text{LWE}(S, X'; A', E') = \text{LWE}(S, X-X'; A-A', E-E')
 \]

 \[
 c\ast \text{LWE}(S, X; A, E) = \text{LWE}(S, c\ast X; c\ast A, c\ast E)
 \]

- Key Homomorphism:

 \[
 \text{LWE}(S, X; A, E) + \text{LWE}(S', X'; A, E') = \text{LWE}(S+S', X+X'; A, E+E')
 \]

- Ciphertexts must use the same A!
Introduzione

Definizioni

LWE(S, X; E) = \{ (A, B): B = LWE(S, X; A, E) \}

LWE(S, X; \beta) = \{ (A, B): B = LWE(S, X; A, E), |E|_{\infty} < \beta \}

LWE(S, X; \beta) + LWE(S, X'; \beta') \subseteq LWE(S, X+X'; \beta+\beta')?

LWE(S, X; \beta) - LWE(S, X'; \beta') \subseteq LWE(S, X+X'; \beta-\beta')?
Linearity of Ciphertexts

Ciphertexts that “encrypt” \(X \) under \(S \) with error \(E \).

Definition

\[
LWE(S,X;E) = \{ (A,B) : B = LWE(S,X;A,E) \}
\]

\[
LWE(S,X;\beta) = \{ (A,B) : B = LWE(S,X;A,E), |E|_\infty < \beta \}
\]

- \(LWE(S,X;E) + LWE(S,X';E') \subseteq LWE(S,X+X';E+E') \)
- \(LWE(S,X;E) - LWE(S,X';E') \subseteq LWE(S,X-X';E-E') \)
- \(c \cdot LWE(S,X;E) \subseteq LWE(S,c \cdot X; c \cdot E) \)
Linearity of Ciphertexts

Ciphertexts that “encrypt” X under S with error E.

Definition

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{LWE}(S, X; E) = {(A, B) : B = \text{LWE}(S, X; A, E)}$</td>
<td></td>
</tr>
<tr>
<td>$\text{LWE}(S, X; \beta) = {(A, B) : B = \text{LWE}(S, X; A, E),</td>
<td>E</td>
</tr>
</tbody>
</table>

- $\text{LWE}(S, X; E) + \text{LWE}(S, X'; E') \subseteq \text{LWE}(S, X+X'; E+E')$
- $\text{LWE}(S, X; E) - \text{LWE}(S, X'; E') \subseteq \text{LWE}(S, X-X'; E-E')$
- $c*\text{LWE}(S, X; E) \subseteq \text{LWE}(S, c*X; c*E)$

Question

- $\text{LWE}(S, X; \beta) + \text{LWE}(S, X'; \beta') \subseteq \text{LWE}(S, X+X'; \beta + \beta')$?
- $\text{LWE}(S, X; \beta) - \text{LWE}(S, X'; \beta') \subseteq \text{LWE}(S, X+X'; \beta - \beta')$?
Message and Ciphertext Operations

- **Addition:**
 - \(M_0 + M_1 \in \mathbb{Z}_q^{l \times w} \)
 - \((A_0, B_0) + (A_1, B_1) = (A_0 + A_1, B_0 + B_1) \in \mathbb{Z}_q^{(n+l) \times w}\)

- **Subtraction**
 - \(M_0 - M_1 \in \mathbb{Z}_q^{l \times w} \)
 - \((A_0, B_0) - (A_1, B_1) = (A_0 - A_1, B_0 - B_1) \in \mathbb{Z}_q^{(n+l) \times w}\)

- **Scalar multiplication**
 - \(c \cdot M \in \mathbb{Z}_q^{l \times w} \)
 - \(c \cdot (A, B) = (c \cdot A, c \cdot B) \in \mathbb{Z}_q^{(n+l) \times w}\)

- **Arbitrary linear transformations**
Additive Homomorphism Encryption

- Homomorphic Encryption supporting the *addition* of ciphertexts

\[
\begin{align*}
\text{sk} & \leftarrow \text{Gen}() \\
\text{c}_0 & \leftarrow \text{Enc}(\text{sk}, \text{m}_0) \\
\text{c}_1 & \leftarrow \text{Enc}(\text{sk}, \text{m}_1) \\
\text{c} & = \text{c}_0 + \text{c}_1 \\
\text{m} & = \text{m}_0 + \text{m}_1 \\
\text{Dec}(\text{sk}, \text{c}) & \overset{?}{=} \text{m}
\end{align*}
\]

Question

Does LWE encryption satisfy the additive homomorphic property? For what error bound $|\chi| < \beta$?

Question

Is ciphertext c distributed according to $\text{Enc}(m_0 + m_1)$?
Summation

- Homomorphic Encryption supporting the *addition* of ciphertexts

\[
\begin{align*}
 \text{sk} & \leftarrow \text{Gen}() \\
 c_1 & \leftarrow \text{Enc}(\text{sk}, m_1) \\
 c_2 & \leftarrow \text{Enc}(\text{sk}, m_2) \\
 \ldots \\
 c_k & \leftarrow \text{Enc}(\text{sk}, m_k) \\
 c & = c_1 + c_2 + \ldots + c_k \\
 m & = m_1 + m_2 + \ldots + m_k \\
 \text{Dec}(\text{sk}, c) & \equiv m
\end{align*}
\]

Question

For any given bound $|\chi| < \beta$, what is the largest value of k for which one can add k ciphertexts?
Subtraction and Scalar multiplication

- Subtraction $m_0 - m_1$: similar to addition $m_0 + m_1$
- ± 1-linear combinations: similar to summation
- Scalar multiplication $c \cdot m$: error grows by a factor c
- Ciphertexts can be multiplied only by small scalars!
Concatenation

- \(\text{LWE}(S, X; A, E) = SA + X + E \)

 - \(S \in \mathbb{Z}_{q}^{k \times n} \)
 - \(A \in \mathbb{Z}_{q}^{n \times w} \)
 - \(X, E \in \mathbb{Z}_{q}^{k \times w} \)

- The same \(S \) can be used with messages \(X \) with any number of columns \(w \)

- Message Concatenation \(X \mid X' = [X, X'] \)

Definition

\((A, B) \mid (A', B') = ([A, A'], [B, B'])\)

Theorem

\(\text{LWE}(S, X; A, E) \mid \text{LWE}(S, X'; A', E) \subseteq \text{LWE}(S, [X, X']; [A, A'], [E, E']) \)
Linear Transforms

- Left multiplication by a constant matrix: \(M \rightarrow M^T \)
- Ciphertext \(C = LWE(S, M; E) \)
- Notice: \(M \) and \(C \) have the same number of columns
- We can apply \(T \) to \(C \): \(C \rightarrow CT \)

Theorem

\[
\begin{align*}
LWE(S, X; A, E) \ast T & \subseteq LWE(S, XT; AT, ET) \\
LWE(S, X; E) \ast T & \subseteq LWE(S, XT; ET)
\end{align*}
\]

Special case:

- Addition: \(C + C' = [C|C']T \) for \(T=(I,I) \)
- Subtraction: \(C - C' = [C|C']T \) for \(T=(I,-I) \)
Constant Messages

Question

Can you compute an LWE encryption of a message M without knowing the secret key S?

- I pick $S \leftarrow \text{Gen}()$ and keep it secret
- Goal: find ciphertext C such that $\text{Dec}(S, C) = M$
Question

Can you compute an LWE encryption of a message M without knowing the secret key S?

- I pick $S \leftarrow \text{Gen}()$ and keep it secret
- Goal: find ciphertext C such that $\text{Dec}(S, C) = M$

Let $(A, B) = (0, (q/p)M)$

$\text{Dec}(S, (A, B)) = (p/q)(B - SA) = M$

We write $\text{Const}(M)$ for the constant ciphertext $(0, (q/p)M)$

Remarks:

- The ciphertext C is independent of S
- $C = \text{LWE}((q/p)M; 0)$ is a “noiseless” encryption of M
Constant Messages as Homomorphic properties

- \(\text{LWE}(S, M; E) + \text{LWE}((q/p)M'; 0) = \text{LWE}(S, M + M'; E) \)

- Homomorphism for “nullary functions” \(f_M() = M \)
 - Given an empty sequence of ciphertexts [], produce an encryption of \(f_M([]) = M \)

- Homomorphism for unary functions \(f_M(M') = M + M' \)
 - Given an encryption of \(M' \), produce an encryption of the shifted message \(M + M' \)
Circular security

- A PKE scheme is “circular secure” if one can securely publish the encryption $\text{Enc}(pk, sk)$.
- A SKE scheme is “circular secure” if one can securely publish the encryption $\text{Enc}(sk, sk)$.

Definition

A PKE scheme (Gen, Enc, Dec) is circular secure if $(\text{Gen}', \text{Enc}', \text{Dec})$ is IND-CPA secure where

```plaintext
\text{Gen}'() :
   (sk, pk) \leftarrow \text{Gen}()
   ct \leftarrow \text{Enc}(pk, sk)
   pk' = (pk, ct)

\text{Enc}'((pk, ct), msg) = \text{Enc}(pk, msg)
```
Application: Public key encryption

Can we transform Secret Key Encryption to Public Key Encryption?

- Not in general: black box separations
- Impagliazzo’s worlds: Minicrypt vs Cryptomania
Application: Public key encryption

- Can we transform Secret Key Encryption to Public Key Encryption?
 - Not in general: black box separations
 - Impagliazzo’s worlds: Minicrypt vs Cryptomania

- What if we start from an Additively Homomorphic SKE scheme?
 - Black box separation results break down

- What about a weakly (bounded) additive scheme?
- What about our LWE SKE scheme?
PKE: Construction

- Start from SKE \((\text{Gen}, \text{Enc}, \text{Dec}) \)
- Construct a PKE \((\text{Gen'}, \text{Enc'}, \text{Dec}) \)

\textbf{Gen'}():

\begin{align*}
\text{sk} &\leftarrow \text{Gen}() \\
\text{for } i=1..n \\
& \quad \text{pk}[i] \leftarrow \text{Enc}(\text{sk},0) \\
\text{pk} &\leftarrow \text{pk}[1..n] \\
\text{return } (\text{sk}, \text{pk})
\end{align*}

\textbf{Enc'}(pk, msg):

\begin{align*}
\text{for } i=1..n \\
& \quad r[i] \leftarrow \{0,1\} \\
\text{ct} &\leftarrow \text{Const}(msg) + \sum \{ \text{pk}[i] : r[i] = 1 \} \\
\text{return } \text{ct}
\end{align*}
Correctness of PKE

\[\text{Dec}(\text{sk}, \text{msg} + \text{Enc}(\text{sk}, 0) + \ldots + \text{Enc}(\text{sk}, 0)) = \text{msg} + 0 + \ldots + 0 = \text{msg} \]

Theorem

If SKE is (1-hop) homomorphic under constant increment and \(n\)-summation, then PKE is correct.

Theorem

If SKE is (1-hop) homomorphic under constant increment and \(hn\)-summation, then PKE is correct and homomorphic under constant increment and \(n\)-summation.
Correctness of PKE

\[\text{Dec}(sk, \text{msg} + \text{Enc}(sk, 0) + \ldots + \text{Enc}(sk, 0)) \]

\[= \text{msg} + 0 + \ldots + 0 = \text{msg} \]

Theorem

If SKE is (1-hop) homomorphic under constant increment and \(n \)-summation, then PKE is correct.

Theorem

If SKE is (1-hop) homomorphic under constant increment and \(hn \)-summation, then PKE is correct and homomorphic under constant increment and \(n \)-summation.

Question

Assume SKE is an IND-CPA secure and homomorphic. Is PKE secure?
For what value of n?

Certainly not secure for $n = 1$ (or even $n = 0$!)

What about large n?

How large?

Answer: Secure, for large enough n and any additively homomorphic SKE [Rothblum, TCC 2011]
The case of LWE SKE

Consider the PKE scheme obtained from our LWE-based SKE

\[
\text{Gen}'() : \\
S \leftarrow \text{Gen}() \\
P = \text{Enc}(S,0) \mid \ldots | \text{Enc}(S,0) = \text{Enc}(S,[0\ldots0]) \\
\text{return } (S,P)
\]

\[
\text{Enc}'(P,M) : \\
R \leftarrow \{0,1\}^* \\
PR + \text{Const}(M)
\]

Theorem

\text{LWE PKE is RR-IND secure.}
Universal Hashing

Definition
A function family $H = \{ h : X \to Y | h \}$ is 2-universal if for any $a, b \in X$,

$$\{(h(a), h(b)) | h \in H\} \equiv \{(f(a), f(b)) | f : X \to Y\}$$

- Let $(X, +)$ be an additive group
- For any vector $a \in X^n$, define the subset-sum function
 $$h(a, S) = \sum \{a_i : i \in S\}$$

Question
Which of the following function families is 2-universal?

1. $\{h_a : S \to h(a, S) | a \in X^n\}$
2. $\{h_S : a \to h(a, S) | S \subseteq \{1, \ldots, n\}\}$
3. Both
4. Neither
Universal Hashing (continued)

- $h_a(S) = \sum_{i \in S} a_i$ is not 2-universal
- What about $g_{a,b}(S) = b + h_a(S)$?
 - Yes, this is 2-universal
 - Prove it as an exercise
- $\{h_a : \{0,1\}^n \rightarrow X\}_a$ still satisfies a weaker property which is enough for our purposes

Definition

For any $a \neq b$, $\Pr_h\{h(a) = h(b)\} = 1/|X|$

- We will refer to this weaker property as 2-universal’
Universal Hashing: proof

Lemma

For any group \((X, +)\), the function family \(\{h_a(S) = \sum_{i \in S} a_i\}\) is 2-universal', i.e., for all \(S \neq T\) we have
\[
\Pr_h\{h(S) = h(T)\} = \frac{1}{|X|}
\]

Proof.

- Let \(j \in S \setminus T\)
- Fix \(a_i\) for all \(i \neq j\)
- Let \(T' = T \setminus S\) and \(S' = S \setminus (T \cup \{i\})\)
- \(c = \sum_{i \in T'} a_i - \sum_{i \in S'} a_i\) does not depend on \(a_j\)
- \(h_a(S) = h_a(T)\) iff \(a_j = c\)
- \(\Pr\{a_j = c\} = \frac{1}{|X|}\)
Leftover Hash Lemma

Lemma

For any 2-universal’ family \(\{h : X \rightarrow Y | h \in H\} \), the distributions

- \(\{(h, h(x)) | h \leftarrow H, x \leftarrow X\} \)
- \(\{(h, y) | h \leftarrow H, y \leftarrow Y\} \)

are within statistical distance \(\Delta \leq \sqrt{|Y|/|X|} \).

Proof Steps:

1. If \(H \) is 2-universal’, then \((H, H(X))\) has small collision probability
2. If \((H, H(X))\) has small collision probability, then it is statistically close to uniform
Collision Probability and Uniformity

- \(Z, Z' \) i.i.d., with \(\Pr\{Z = z\} = p(z) \)

Definition

Collision Probability:

\[
C(Z) = \Pr\{Z = Z'\} = \sum_z p(z)^2
\]

- \(\sum_z (p(z) - 1/|Z|)^2 = C(Z) - 1/|Z| \)
- Norm inequality: \(\forall v \in \mathbb{R}^n. \|v\|_1 \leq \sqrt{n}\|v\|_2 \)
- \(\Delta(Z, U) = \frac{1}{2} \sum_z |p(z) - 1/|Z|| \)
Collision Probability and Uniformity

- Z, Z' i.i.d., with $\Pr\{Z = z\} = p(z)$

Definition

Collision Probability:
$C(Z) = \Pr\{Z = Z'\} = \sum_z p(z)^2$

- $\sum_z (p(z) - 1/|Z|)^2 = C(Z) - 1/|Z|$
- Norm inequality: $\forall v \in \mathbb{R}^n. \|v\|_1 \leq \sqrt{n}\|v\|_2$
- $\Delta(Z, U) = \frac{1}{2} \sum_z |p(z) - 1/|Z||$
- $\Delta \leq \frac{1}{2} \sqrt{|Z|} \sqrt{\sum_z (p(z) - 1/|Z|)^2}$
- $\Delta \leq \frac{1}{2} \sqrt{|Z|} C(Z) - 1$
Collision Probability of Universal Hashing

- \(Z = (H, H(X)) \), 2-universal function family \(H : X \rightarrow Y \)
- Collision Probability of \(Z \):
 \[
 C(Z) = \Pr(h = h', h(x) = h'(x')| h, h' \leftarrow H, x, x' \leftarrow X)
 \]
- \(C = \frac{1}{|H|} \Pr_{x,x'}[\Pr_h(h(x) = h(x'))] \)
Collision Probability of Universal Hashing

- \(Z = (H, H(X)) \), 2-universal function family \(H : X \rightarrow Y \)
- Collision Probability of \(Z \):
 \[
 C(Z) = \Pr(h = h', h(x) = h'(x') | h, h' \leftarrow H, x, x' \leftarrow X)
 \]
 \[
 C = \frac{1}{|H|} \Pr_{x,x'}[\Pr_h(h(x) = h(x'))]
 \]
- Union bound:
 - \(\Pr(x = x') = 1/|X| \)
 - If \(x \neq x' \), then \(\Pr_h(h(x) = h(x')) \leq 1/|Y| \)
Collision Probability of Universal Hashing

- $Z = (H, H(X))$, 2-universal function family $H : X \rightarrow Y$

Collision Probability of Z:

$$C(Z) = \Pr(h = h', h(x) = h'(x')| h, h' \leftarrow H, x, x' \leftarrow X)$$

$$C = \frac{1}{|H|} \Pr_{x,x'}[\Pr_h(h(x) = h(x'))]$$

Union bound:

- $\Pr(x = x') = 1/|X|$
- If $x \neq x'$, then $\Pr_h(h(x) = h(x')) \leq 1/|Y|$

$$C \leq \frac{1}{H} \left(\frac{1}{|X|} + \frac{1}{|Y|} \right)$$
Collision Probability of Universal Hashing

- \(Z = (H, H(X)) \), 2-universal function family \(H : X \to Y \)

Collision Probability of \(Z \):

\[
C(Z) = \Pr(h = h', h(x) = h'(x') \mid h, h' \leftarrow H, x, x' \leftarrow X)
\]

\[
C = \frac{1}{|H|} \Pr_{x,x'}[\Pr_h(h(x) = h(x'))]
\]

Union bound:

- \(\Pr(x = x') = 1/|X| \)
- If \(x \neq x' \), then \(\Pr_h(h(x) = h(x')) \leq 1/|Y| \)

\[
C \leq \frac{1}{|H|} \left(\frac{1}{|X|} + \frac{1}{|Y|} \right)
\]

Using \(|Z| = |H| \cdot |Y| \) we get

\[
\Delta \leq \frac{1}{2} \sqrt{|Z| C - 1} = \frac{1}{2} \sqrt{|Y|/|X|}
\]
Security of LWE PKE

Theorem

LWE PKE is RR-IND secure.

Gen(): $S, E \leftarrow \ldots$

\[P = \text{Enc}(S, [0..0]) = (A, SA+E) \]

return (S, P)

Enc(P, M): $R \leftarrow \{0,1\}^*$

return $PR + \text{Const}(M)$
Security of LWE PKE

$$\text{Gen()}: \text{S,E} \leftarrow \ldots$$
$$\text{P} = \text{Enc}(\text{S},[0\ldots0]) = (A,SA+E)$$
$$\text{return } (S,P)$$

$$\text{Enc}(P,M): R \leftarrow \{0,1\}^*$$
$$\text{return } PR + \text{Const}(M)$$

Theorem

LWE PKE is RR-IND secure.

Proof:

1. Assume Adv breaks PKE
2. LWE Assumption: $P = (A,SA+E) \approx (A,B)$
3. Adv breaks RR-CPA when P is uniform
4. If P is uniform, then (P,PR) is close to uniform
Claim: \((P, PR)\) is close to uniform

- Enough to look at a single column \((P, Pr)\)
 - Statement for matrix \((P, PR)\) follows by hybrid argument

- \(P: r \rightarrow Pr\) is 2-universal
 - Columns of \(P\) belong to a group \((\mathbb{Z}_q^{n+l}, +)\)
 - \(r\) selects a subset of the columns of \(P\)
 - Apply Leftover Hash Lemma
Homomorphic PKE

- $\text{Enc}(P, M) = PR + \text{Const}(M)$
- $\text{Enc}(P, M) + \text{Enc}(P, M') = PR + \text{Const}(M) + PR' + \text{Const}(M') = PR(R + R') + \text{Const}(M + M')$
- $\text{Enc}(P, M) + \text{Enc}(P, M') \approx \text{Enc}(P, M + M')$
 - Noise: E + E'
Homomorphic PKE

- \(\text{Enc}(P, M) = PR + \text{Const}(M) \)
- \(\text{Enc}(P, M) + \text{Enc}(P, M') = PR + \text{Const}(M) + PR' + \text{Const}(M') = P(R+R') + \text{Const}(M+M') \)
- \(\text{Enc}(P, M) + \text{Enc}(P, M') \approx \text{Enc}(P, M+M') \)
 - Noise: \(E+E' \)
- \([\text{Enc}(P, M) | \text{Enc}(P, M')] = \text{Enc}(P, [M|M']) \)
 - Noise: \([E|E'] \)
- \(\text{Enc}(P, M)^T \approx \text{Enc}(P, MT) \)
 - Noise: \(ET \)
 - \(T \) must be small
Encoding modulo q

- Ciphertext modulus q. Assume $q = 2^k$
- Plaintext modulus $p \ll q$, e.g., $p=2$. Use scaling $\text{Const}(\text{msg}) = (0, (q/p) \text{msg})$ to allow error correction and correct decryption
Encoding modulo q

- Ciphertext modulus q. Assume $q = 2^k$
- Plaintext modulus $p \ll q$, e.g., $p=2$. Use scaling $\text{Const}(msg) = (0, (q/p)msg)$ to allow error correction and correct decryption

- What if we want to encrypt $msg \in \mathbb{Z}_q$?
Encoding modulo q

- Ciphertext modulus q. Assume $q = 2^k$
- Plaintest modulus $p \ll q$, e.g., $p=2$. Use scaling $\text{Const}(\text{msg}) = (0, (q/p)\text{msg})$ to allow error correction and correct decryption

What if we want to encrypt $\text{msg} \in \mathbb{Z}_q$?

Idea:

- write $\text{msg} = \sum_i m_i 2^i$, where $m_i \in \{0, 1\}$
- Encrypt each bit individually: $\text{Enc}(m_0), \ldots, \text{Enc}(m_k)$
Encoding modulo q

- Ciphertext modulus q. Assume $q = 2^k$
- Plaintest modulus $p \ll q$, e.g., $p=2$. Use scaling
 \[
 \text{Const}(msg) = (0, (q/p) \cdot msg)
 \]
 to allow error correction and correct decryption

\[
\text{Enc}(m: \{0,1\}^k) = (a, Sa + e + (q/2)m)
\]

```plaintext
\text{bitDecomp}(msg: \mathbb{Z}_q) = 
  \text{for } i=0..k-1 
  \quad m[i] = ((msg \gg i) \mod 2)
  \text{return } m[]
```

\[
\text{Enc}'(msg: \mathbb{Z}_q) =
 \text{return } (\text{Enc}(\text{bitDecomp}(msg))
\]
Linear Encoding

- Bit encoding: $(msg: \mathbb{Z}_q) \rightarrow (m[\ast]: \{0, 1\}^k)$
 - good: works for any message space
 - bad: breaks linear homomorphic properties

- We need to use a linear encoding function:
 - $(msg: \mathbb{Z}_q) \rightarrow (m[\ast]: \mathbb{Z}_q^k)$
 - $msg \rightarrow msg^*(1, 2, 4, 8, \ldots)$
Linear Encoding

- Bit encoding: \((\text{msg} : \mathbb{Z}_q) \rightarrow (\text{m[*]} : \{0, 1\}^k) \)
 - good: works for any message space
 - bad: breaks linear homomorphic properties

- We need to use a linear encoding function:
 - \((\text{msg} : \mathbb{Z}_q) \rightarrow (\text{m[*]} : \mathbb{Z}_q^k) \)
 - \(\text{msg} \rightarrow \text{msg}^*(1, 2, 4, 8, \ldots) \)

- Column encoding:
 - \(\text{pow2col} = (1, 2, 4, 8, \ldots) \)
 - \(\text{Enc}'(S, \text{msg}) = \text{LWE}(S, \text{msg}^*\text{pow2col}) = (a, b) \)

- Row encoding:
 - \(\text{pow2row} = [1, 2, 4, 8, \ldots] \)
 - \(\text{Enc}'(s, \text{msg}) = \text{LWE}(s, \text{msg}^*\text{pow2row}) = (A, b) \)
Decoding modulo q

Question

- **Can you decrypt**

 $Enc'(S, msg) = LWE(S, msg \cdot \text{pow2col}) = (a, b)$?

- **Can you decrypt**

 $Enc'(s, msg) = LWE(s, msg \cdot \text{pow2row}) = (A, b)$?

- **For what error bound** $|e|_\infty < \beta$?
Decryption algorithm

Enc'(s, msg) = LWE(s, msg*\text{pow2row}) = (A, b) where
\[b = sA + e + msg*\text{pow2row} \]

Dec'(s, (A, b)):
\[
\begin{align*}
\text{msg} & \leftarrow 0 \\
\text{for } i = 0 \ldots (k-1) & \\
\text{ct} & \leftarrow (A[k-i-1], b[k-i-1] - \text{msg}*2^{k-i}) \\
\text{m}[i] & \leftarrow \text{Dec}(s, \text{ct}) \\
\text{msg} & \leftarrow \text{msg} + \text{m}[i]<<(i)
\end{align*}
\]

return msg
Decryption algorithm

- Enc'\((s, \text{msg}) = \text{LWE}(s, \text{msg} \ast \text{pow2row}) = (A, b)\) where
 \[b = sA + e + \text{msg} \ast \text{pow2row} \]

- Dec'\((s, (A, b)):\)
 \[
 \text{msg} \leftarrow 0 \\
 \text{for } i = 0 \ldots (k-1) \\
 \quad \text{ct} \leftarrow (A[k-i-1], b[k-i-1] - \text{msg} \ast 2^{k-i}) \\
 \quad \text{m}[i] \leftarrow \text{Dec}(s, \text{ct}) \\
 \quad \text{msg} \leftarrow \text{msg} + \text{m}[i] \ll (i) \\
 \text{return } \text{msg}
 \]

Theorem

\((\text{Gen}, \text{Enc}', \text{Dec}')\) is a valid encryption algorithm for \(\beta = q/4\)

Question

Does a similar algorithm work for \(\text{pow2col}\)?
Arbitrary linear transformations

- Starting point: $\text{Enc}()$ linearly homomorphic for small t
 - $\text{Enc}(P, m) \times t \approx \text{Enc}(P, mt)$
 - problem: error grows by a factor t
Arbitrary linear transformations

- Starting point: $\text{Enc}()$ linearly homomorphic for small t
 - $\text{Enc}(P,m) \times t \approx \text{Enc}(P,mt)$
 - problem: error grows by a factor t

- What about computations modulo q?
 - $\text{pow2row} = [1, 2, 4, 8, ...]$
 - $\text{Enc}'(s, \text{msg}) = \text{LWE}(s, \text{msg} \times \text{pow2row}) = (A, b)$

- Multiplying by any $t \in \mathbb{Z}_q$
 - Compute $t\text{Bin}[] = \text{bitDecomp}(t)$
 - Compute scalar product with vector $t\text{Bin}[]$
Correctness of scalar multiplication

\[
\text{Enc}'(s,\text{msg}) \ast \text{tBin[]}
\]
\[
= \text{LWE}(s,\text{msg} \ast \text{pow2row}; e) \ast \text{tBin[]}
\]
\[
= \text{LWE}(s,\text{msg} \ast \text{pow2row} \ast \text{tBin[]}; e \ast \text{tBin[]})
\]
\[
= \text{LWE}(s,\text{msg} \ast \text{t}; e ')
\]

- \text{pow2row} \ast \text{tBin[]} = \sum_i 2^i \cdot \text{tBin}[i] = t
Correctness of scalar multiplication

\[\text{Enc}'(s, \text{msg}) \times t\text{Bin}[] \]
\[= \text{LWE}(s, \text{msg} \times \text{pow2row}; e) \times t\text{Bin}[] \]
\[= \text{LWE}(s, \text{msg} \times \text{pow2row} \times t\text{Bin}[]; e \times t\text{Bin}[]) \]
\[= \text{LWE}(s, \text{msg} \times t; e') \]

- **pow2row** * \(t\text{Bin}[] = \sum_i 2^i \cdot t\text{Bin}[i] = t \)
- If \(|e| < \beta \), then \(|e'| = |\sum_i e_i \cdot t\text{Bin}[i]| \leq k \cdot \beta \)
- Error grows only by \(k = \log q \)
Correctness of scalar multiplication

\[\text{Enc}'(s, \text{msg}) \ast \text{tBin[]} \]
\[= \text{LWE}(s, \text{msg} \ast \text{pow2row}; e) \ast \text{tBin[]} \]
\[= \text{LWE}(s, \text{msg} \ast \text{pow2row} \ast \text{tBin[]} ; e \ast \text{tBin[]}) \]
\[= \text{LWE}(s, \text{msg} \ast \text{t}; e') \]

- **pow2row** \(\ast \) \text{tBin[]} = \(\sum_i 2^i \cdot \text{tBin}[i] = \text{t} \)

- if \(|e| < \beta \), then \(|e'| = |\sum_i e_i \cdot \text{tBin}[i]| \leq k \cdot \beta \)

- Error grows only by \(k = \log q \)

- **Problem:**
 - result \(\text{msg} \ast \text{t} \) is a value modulo \(q \)
 - \(\text{Enc}(s, \text{msg} \ast \text{t}; e') \) is not properly encoded
 - we need an encryption of \(\text{msg} \ast \text{t} \ast \text{pow2row} \)
Constant Multiplication algorithm

- $\text{Enc}'(s, \text{msg}) = \text{LWE}(s, \text{msg} \cdot \text{pow2row})$
- $\text{Enc}'(s, \text{msg}) \cdot \text{bitDecomp}(t) = \text{LWE}(s, \text{msg} \cdot t; e')$

$\text{CMul}(C, t)$:

$$T = \text{bitDecomp}(t \cdot \text{pow2row})$$

return $C \cdot T$

Proof:
Extensions and Generalizations

- Matrix messages
 \[M \otimes \text{pow2row} = [M, M \times 2, M \times 4, M \times 8, \ldots] \]

- Arbitrary message modulus:
 \[\text{round}(m \times (q/p), m \times (q/p)/2, m \times (q/p) \times 4, \ldots) \]

- Other gadgets, e.g., based on Chinese Remainder Theorem
 - \(q = \prod_i p_i \) product of small primes
 - encoding vector \(\text{crtRow} = [q/p_1, q/p_2, \ldots, q/p_k] \)
 - \(\text{crtRow} \ast \text{crtDecomp}(t) = t \)
Summary

At this point we have an encryption algorithm

\[\text{Enc}'(S, M) = \text{LWE}(S, M \otimes \text{pow2row}) \]

with message space \(\mathbb{Z}_q^{w 	imes l} \), and supporting the homomorphic evaluation of the following operations:

- \(\text{Const}(M) \): noiseless encryption of \(M \)
- \((+) \): addition of ciphertexts
- \((-) \): subtraction of ciphertexts
- \(\text{CMul}(., T) \): multiplication by any linear transformation modulo \(q \)
Section 6

Key Switching
Remember Proxy Re-encryption?

- Primary key: \((pk, sk)\)
- Secondary key: \((pk1, sk1)\)
- Re-encryption key: \(rk = Enc(pk1, sk[1..k])\)
- Input ciphertext: \(c = Enc(pk, m)\)
- Decryption function: \(f_c(sk) = Dec(sk, c)\)

Question

What is the result of the following computation?

\[\text{Eval}(pk1, f_c, rk) \]
Remember Proxy Re-encryption?

- Primary key: \((pk, sk)\)
- Secondary key: \((pk_1, sk_1)\)
- Re-encryption key: \(rk = Enc(pk_1, sk_{[1..k]})\)
- Input ciphertext \(c = Enc(pk, m)\)
- Decryption function \(f_c(sk) = Dec(sk, c)\)

Question

What is the result of the following computation?

\[\text{Eval}(pk_1, f_c, rk) \]

Question

Can you implement proxy re-encryption using LWE?
LWE-based Proxy Re-encryption?

\[\text{Enc}(sk, msg) = \text{LWE}(sk, msg \ast \text{pow2row}) = (A[], b[])\]

\[\text{rk}[i] = \text{Enc}(sk', sk[i])\]

\[\text{Dec}'(sk, (A, b))[j] = b[j] - \sum_i sk[i] \ast A[i, j] \approx msg \ast \text{pow2row}\]

\[\text{Dec}(sk, (A, b)) = \text{decode}(\text{Dec}'(sk, (A, b)))\]

\textbf{Question}

\textit{Can you compute \text{Dec}' homomorphically? Does it give you a proxy re-encryption scheme?}
LWE-based Proxy Re-encryption

\[
\text{Enc}(sk, msg) = \text{LWE}(sk, msg \cdot \text{pow2row})
\]
\[
rk[i] = \text{Enc}(sk', sk[i])
\]
\[
\text{Dec}'(sk, (A, b)) = b[j] - \sum_i sk[i] \cdot A[i,j]
\]

Goal: homomorphically evaluate the function

\[
f_{A,b}(sk) = \text{Dec}'(sk, (A, b))
\]
\[
\text{Eval}(f_{A,b}, rk) = ?
\]
LWE-based Proxy Re-encryption

\[
\text{Enc}(sk, \text{msg}) = \text{LWE}(sk, \text{msg} \times \text{pow2row})
\]

\[
rk[i] = \text{Enc}(sk', sk[i])
\]

\[
\text{Dec}'(sk, (A, b)) = b[j] - \sum_i sk[i] \times A[i, j]
\]

Goal: homomorphically evaluate the function

\[
f_{A,b}(sk) = \text{Dec}'(sk, (A, b))
\]

\[
\text{Eval}(f_{A,b}, rk) = ?
\]

Solution: \(\text{Eval}(f_{A,b}, rk) = ct\)

\[
ct[j] = \text{Const}(b[j]) - \sum_i \text{CMul}(rk[i], A[i, j])
\]
Key Switching

- Generalize proxy re-encryption:
 - sk, sk' may have different dimensions and moduli
 - $Enc(sk, .), Enc'(sk', .)$ may use different plaintext moduli and message encodings

- Example
 - Message space $msg: \mathbb{Z}_p$
 - Ciphertext modulus q
 - $sk[1..n], sk'[1..n] \in \mathbb{Z}_q^n$
 - $Enc(sk, m) = LWE(sk, (q/p) \times msg) \mod q$
 - Evaluation key: $rk[i] = Enc(sk', sk[i])$

- Do you see any problem?
Key Switching

Source scheme:

\[
\begin{align*}
\text{msg} & : \mathbb{Z}_p \\
\text{sk}[1..n] & \in \mathbb{Z}_q^n \\
\text{Enc}(\text{sk}, \text{msg}) & = \text{LWE}(\text{sk}, \frac{q}{p} \text{msg}) = (a[], b) \mod q
\end{align*}
\]

Target scheme:

\[
\begin{align*}
\text{msg}' & : \mathbb{Z}_q \\
\text{sk}'[1..n'] & \in \mathbb{Z}_q^{n'} \\
\text{Enc}'(\text{sk}', \text{msg}') & = \text{LWE}(\text{sk}', \text{msg}' \ast \text{pow2row})
\end{align*}
\]

Evaluation:

\[
\begin{align*}
\text{ek}[i] & = \text{Enc}'(\text{sk}', \text{sk}[i]) \\
\text{KeySwitch}(\text{ek}, (a[], b)) & = \\
\text{Const}(b) - \sum_i \text{CMul}(a[i], \text{ek}[i])
\end{align*}
\]
Correctness

\[
\begin{align*}
\text{msg: } & \; \mathbb{Z}_p; \; \text{sk}[1..n] \in \mathbb{Z}_q^n \\
\text{msg': } & \; \mathbb{Z}_q; \; \text{sk}'[1..n'] \in \mathbb{Z}_q^{n'} \\
\text{Enc}(\text{sk},\text{msg}) & = \text{LWE}(\text{sk}, \frac{q}{p}\text{msg}) = (a[], b) \mod q \\
\text{Enc}'(\text{sk}',\text{msg'}) & = \text{LWE}(\text{sk}',\text{msg'}*\text{pow2row}) \\
\text{ek}[i] & = \text{Enc}'(\text{sk}',\text{sk}[i]) \\
\text{KeySwitch}(\text{ek} ,(a[],b)) & = \text{Const}(b) - \sum_i \text{CMul}(a[i],\text{ek}[i])
\end{align*}
\]
Correctness

\[\text{msg: } \mathbb{Z}_p; \text{ sk}[1..n] \in \mathbb{Z}_q^n \]

\[\text{msg': } \mathbb{Z}_q; \text{ sk'}[1..n'] \in \mathbb{Z}_q^{n'} \]

\[\text{Enc}(\text{sk}, \text{msg}) = \text{LWE}(\text{sk}, \frac{q}{p} \text{msg}) = (a[], b) \mod q \]

\[\text{Enc}'(\text{sk'}, \text{msg'}) = \text{LWE}(\text{sk'}, \text{msg'} \times \text{pow2row}) \]

\[\text{ek}[i] = \text{Enc}'(\text{sk'}, \text{sk}[i]) \]

\[\text{KeySwitch}(\text{ek}, (a[], b)) = \text{Const}(b) - \sum_i \text{CMul}(a[i], \text{ek}[i]) \]

\[= \text{Const}(b) - \sum_i \text{CMul}(a[i], \text{Enc}'(\text{sk'}, \text{sk}[i])) \]
Correctness

\[\text{msg}: \mathbb{Z}_p; \text{sk}[1..n] \in \mathbb{Z}_q^n \]
\[\text{msg}': \mathbb{Z}_q; \text{sk}'[1..n'] \in \mathbb{Z}_q^{n'} \]

\[\text{Enc}(\text{sk}, \text{msg}) = \text{LWE}(\text{sk}, \frac{q}{p}\text{msg}) = (a[], b) \mod q \]
\[\text{Enc}'(\text{sk}', \text{msg}') = \text{LWE}(\text{sk}', \text{msg}' \times \text{pow2row}) \]

\[\text{ek}[i] = \text{Enc}'(\text{sk}', \text{sk}[i]) \]

\[\text{KeySwitch}(\text{ek}, (a[], b)) = \text{Const}(b) - \sum_i \text{CMul}(a[i], \text{ek}[i]) \]
\[= \text{Const}(b) - \sum_i \text{CMul}(a[i], \text{Enc}'(\text{sk}', \text{sk}[i])) \]
\[= \text{LWE}(\text{sk}', b - \sum_i a[i] \times \text{sk}[i]) \]
\[= \text{LWE}(\text{sk}', \frac{q}{p}\text{msg} + e) \]
\[= \text{Enc}(\text{sk}', \text{msg}) \]
Remarks

- Source and Target schemes may use different moduli
 - \(\text{Enc}'(sk', msg') = \text{LWE}(sk', \frac{q}{q} \cdot msg' \cdot \text{pow2row}) \)
Remarks

- Source and Target schemes may use different moduli
 - \(\text{Enc}'(sk', msg') = \text{LWE}(sk', \frac{q}{q} msg' \cdot \text{pow2row}) \)

- Input ciphertext may use compact (matrix) LWE
 - \(\text{Enc}(SK, msg[]) = \text{LWE}(SK, \frac{q}{p} msg[]) \)
 - \(\text{RK}' = \text{Enc}'(SK', SK) \)
Remarks

- Source and Target schemes may use different moduli
 - \(\text{Enc}'(sk',msg') = \text{LWE}(sk', \frac{q}{p} \cdot \text{msg}' \cdot \text{pow2row}) \)

- Input ciphertext may use compact (matrix) LWE
 - \(\text{Enc}(SK, \text{msg}[]) = \text{LWE}(SK, \frac{q}{p} \cdot \text{msg}[]) \)
 - \(\text{RK}' = \text{Enc}'(SK', SK) \)

- Key Switching:
 - Input: \(\text{Enc}(sk, \text{msg: mod } p) : \text{mod } q \)
 - Switching Key: \(\text{Enc}'(sk', sk: \text{mod } q) : \text{mod } q' \)
 - Output: \(\text{Enc}(sk', \text{msg: mod } p) : \text{mod } q' \)
Remarks

- Source and Target schemes may use different moduli
 - $\text{Enc}'(sk', msg') = \text{LWE}(sk', \frac{q}{p} \text{msg}' \ast \text{pow2row})$

- Input ciphertext may use compact (matrix) LWE
 - $\text{Enc}(SK, \text{msg}[]) = \text{LWE}(SK, \frac{q}{p} \text{msg}[])$
 - $\text{RK}' = \text{Enc}'(SK', SK)$

- Key Switching:
 - Input: $\text{Enc}(sk, \text{msg}: \mod p): \mod q$
 - Switching Key: $\text{Enc}'(sk', sk: \mod q): \mod q'$
 - Output: $\text{Enc}(sk', \text{msg}: \mod p): \mod q'$

- Input/Output can use arbitrary encoding, e.g.,
 - Input: $\text{Enc}(sk, \text{msg}) = \text{LWE}(sk, \text{msg} \ast \text{pow2row})$
 - Output: $\text{Enc}(sk', \text{msg}) = \text{LWE}(sk', \text{msg} \ast \text{pow2row})$
Sub-key Switching

- Application: reduce key size $SK \rightarrow SK'$
- Always: SK, SK' must have the same number of rows
- Often SK is a “sub-matrix” of $SK = [SK', SK'']$
- Switching Key

$$\begin{align*}
[RK', RK''] &= Enc'(SK', SK) \\
&= Enc'(SK', [SK' | SK'']) \\
&= [Enc'(SK', SK') | Enc'(SK', SK'')] \\
\end{align*}$$

- But RK' is publicly known! (remeber circular security?)
- Can use a smaller switching key $RK'' = Enc'(SK', SK'')$

Question

Does it work? What if $SK''=[]$? Then, $RK''=[]$ and $SK = SK'$! Is it trivial? Is it useful?
Modulus switching

- Subkey switching from SK to SK' = SK can still be useful to change the ciphertext modulus from q to q'.
- So far we used the simplifying assumption that p | q.
- Switching from q to q' requires a switching key with
 - plaintext modulus q
 - ciphertext modulus q'
 - but if q | q', this only allows to increase the modulus.
- (Sub-)Key Switching works also for p /\!\!\!\!\!\!\!/ q
 - but introduces a “small” rounding error
 - for subkey switching the rounding error if proportional to SK
 - switching to a smaller modulus requires “small” key SK
Subkey and Modulus Switching

- **Subkey switching**
 - Input: \(ct = \text{Enc}([SK', SK''], m) \) and \(RK = \text{Enc}'(SK', SK'') \)
 - \(\text{SubkeySwitch}(RK, ct) = ct' \) such that \(\text{Dec}(SK', ct') = m \)

- **Modulus switching**
 - Assume \(SK \) has small entries
 - Input: \(ct = \text{Enc}(SK, m) \mod q \) and nothing else
 - \(\text{ModSwitch}(ct) = ct' \mod q' \) such that \(\text{Dec}(SK, ct') = m \)

Question: Give explicit description of \(\text{SubkeySwitch} \) algorithm

Question: Give explicit description of \(\text{ModSwitch} \) algorithm
Subkey and Modulus Switching

- **Subkey switching**
 - Input: $ct = \text{Enc}([SK', SK''], m)$ and $RK = \text{Enc}'(SK', SK'')$
 - $\text{SubkeySwitch}(RK, ct) = ct'$ such that $\text{Dec}(SK', ct') = m$

Question

Give explicit description of SubkeySwitch algorithm
Subkey and Modulus Switching

- **Subkey switching**
 - Input: $ct = Enc([SK', SK''], m)$ and $RK = Enc'(SK', SK'')$
 - $SubkeySwitch(RK, ct) = ct'$ such that $Dec(SK', ct') = m$

Question

Give explicit description of $SubkeySwitch$ algorithm

- **Modulus switching**
 - Assume SK has small entries
 - Input: $ct = Enc(SK, m) mod q$ and nothing else
 - $ModSwitch(ct) = ct' mod q'$ such that $Dec(SK, ct') = m$
Subkey and Modulus Switching

Subkey switching
- **Input:** \(ct = \text{Enc}([SK', SK''], m) \) and \(RK = \text{Enc}'(SK', SK'') \)
- \(\text{SubkeySwitch}(RK, ct) = ct' \) such that \(\text{Dec}(SK', ct') = m \)

Question

Give explicit description of \text{SubkeySwitch} algorithm

Modulus switching
- **Assume** \(SK \) has small entries
- **Input:** \(ct = \text{Enc}(SK, m) \mod q \) and nothing else
- \(\text{ModSwitch}(ct) = ct' \mod q' \) such that \(\text{Dec}(SK, ct') = m \)

Question

Give explicit description of \text{ModSwitch} algorithm
Section 7

Multiplication
What we have done so far

Simple LWE Encryption: private key encryption supporting

- small message modulus \((p \ll q)\)
- homomorphic addition
- homomorphic multiplication by small constants
- enough to obtain public key encryption
- circular security (for small keys)

Extended LWE Encryption to support

- large message modulus \((p = q)\)
- homomorphic multiplication by arbitrary constants
- circular security (for arbitrary keys)
- key switching
Next: Homomorphic Multiplication

Problem

Given $\text{Enc}(sk, \text{msg}[0])$ and $\text{Enc}(sk, \text{msg}[1])$, *compute a ciphertext* ct *such that* $\text{Dec}(sk, \text{ct}) = \text{msg}[0] \times \text{msg}[1]$.

- Can this be done for our LWE encryption scheme?
- Can it be done with the help of some additional key material?
- Yes, in fact, there are multiple ways to do it
 - Nested encryption
 - Homomorphic decryption
 - Tensor product
Method 1: Nested Encryption

- $\text{msg}[0], \text{msg}[1] \in \mathbb{Z}_q$
- $\text{ct}[0] = \text{Enc}(\text{sk}[0], \text{msg}[0])$
- $\text{ct}[1] = \text{Enc}(\text{sk}[1], \text{msg}[1])$
- Multiply encryption of $\text{msg}[0]$ by $\text{ct}[1]$

$$\text{ct}[0] \times \text{ct}[1] = \text{Enc}(\text{sk}[0], \text{msg}[0]) \times \text{ct}[1] = \text{Enc}(\text{sk}[0], \text{msg}[0] \times \text{ct}[1])$$

- Inner multiplication:

$$\text{msg}[0] \times \text{ct}[1] = \text{msg}[0] \times \text{Enc}(\text{sk}[1], \text{msg}[1]) = \text{Enc}(\text{sk}[1], \text{msg}[0] \times \text{msg}[1])$$

- Final result: $\text{Enc}(\text{sk}[0], \text{Enc}(\text{sk}[1], \text{msg}[0] \times \text{msg}[1]))$
Details

- \(\text{ct}[1] = \text{Enc}(\text{sk}[1], \text{msg}[1]) \) is a vector!
 - \(\text{ct}[0] = \text{Enc}(\text{sk}[0], \text{msg}[0] \cdot I) \)
 - \((\text{msg}[0] \cdot I) \cdot \text{ct}[1] = \text{msg}[0] \cdot \text{ct}[1]\)

- \(\text{msg}[0] \cdot \text{Enc}(\text{sk}[1], \text{msg}[1]; e[1]) = \text{Enc}(\text{sk}[1], \text{msg}[0] \cdot \text{msg}[1]; \text{msg}[0] \cdot e[1]) \)
 - Assume \(\text{msg}[0] \) is small (e.g., \(10, 1\))
 - May set \(\text{Enc}(\text{sk}[1], \text{msg}[1]) = \text{LWE}(\text{sk}[1], (q/2) \cdot \text{msg}[1]) \)

- Using \(\text{Enc}(\text{sk}[0], \text{Enc}(\text{sk}[1], \text{msg})) \)
 - Keep nesting?
 - Ciphertexts get larger and larger!
Key Nesting

- Recall: \(\text{Enc}(S, M) = \text{LWE}(S, M) = (A, S \times A + E + M) \)
- Claim: Nested encryption \(\text{Enc}(Z, \text{Enc}(S, M)) = \text{Enc}(Z \otimes S, M) \)

Question

For what key \(Z \otimes S ? \)
Key Nesting

- Recall: $\text{Enc}(S,M) = \text{LWE}(S,M) = (A, S \cdot A + E + M)$
- Claim: Nested encryption $\text{Enc}(Z, \text{Enc}(S,M)) = \text{Enc}(Z \diamond S, M)$

Question

For what key $Z \diamond S$?

- $S : \mathbb{Z}[k,n]$, $Z : \mathbb{Z}[n+k,n]$
- $Z = (Z_n, Z_k)$ where $Z_n[n,n]$ and $Z_k[k,n]$
- $Z \diamond S = [S \cdot Z_n + Z_k, S] = [S, I] Z$
 - $\text{Enc}(Z, \text{Enc}(S,m; e); e') = \text{Enc}(Z \diamond S, m; e'')$
 - $e'' = e + [S, I] e'$
- Key S needs to be small!
Nested Encryption + (Sub)Key Switching

Combine nested multiplication with key switching:

- Input keys: Z, S
- Evaluation key: \(W = \text{Enc}(S, [S, I]Z; F) \)
- Input ciphertexts:
 - \(CT[0] = \text{Enc}(Z, msg[0]*I; E[0]) \)
 - \(CT[1] = \text{Enc}(S, msg[1]*I; E[1]) \)
- Output: \(\text{SubkeySwitch}(W, CT[0]*CT[1]) = \text{Enc}(S, msg*I; E) \)
 - \(msg = msg[0]*msg[1] \)
 - \(E = msg[0]*E[1] + [S, I]*E[0]*X + F*Y \) for binary matrices \(X, Y \)
- Key S needs to be small!
- Security Assumption: Standard LWE

Key Switching
Multiplication
FHE!!
Ring LWE
ANT
Project Info
Method 1.5: Homomorphic Decryption

- Assume both ciphertexts use the same key S
- Nested Encryption:
 1. Homomorphic multiplication: $\text{Enc}(S, \text{msg}[0]) \times \text{CT}[1]$
 2. Key Switching: Homomorphic multiplication by $[S,I]$
- Method 1: $\text{Eval}([S,I], \text{Enc}(S, \text{msg}[0]) \times \text{CT}[1])$
- Combine the two homomorphic multiplications:
 - Bring $[S,I]$ inside the first ciphertext
 - $\text{Enc}(S, \text{msg}[0] \times [S,I]) \times \text{CT}[1]$
 - Define a new LWE encryption variant:
 - $\text{Enc}#(S, \text{msg}) = \text{Enc}(S, \text{msg} \times [S,I])$
 - $\text{Enc}#(S, \text{msg}[0]) \times \text{Enc}(S, \text{msg}[1])$
 - $= \text{Enc}(S, \text{msg}[0] \times [S,I] \times \text{Enc}(S, \text{msg}[1]))$
 - $= \text{Enc}(S, \text{msg}[0] \times \text{msg}[1])$
Security

\[\text{Enc}^\#(S, \text{msg}) = \text{Enc}(S, \text{msg} \cdot [S, I]) \]
\[= [\text{Enc}(S, \text{msg} \cdot S), \text{Enc}(S, \text{msg} \cdot I)] \]

- Circular security:
 - Can compute \(\text{Enc}(S, \text{msg} \cdot S) = \text{msg} \cdot \text{Enc}(S, S) \) without knowing \(S \)
 - Problem: \(\text{msg} \cdot (-I, 0) \) reveals \(\text{msg} \)
 - Solution: \(\text{Enc}(S, 0) + \text{msg} \cdot \text{Enc}(S, S) \)

Theorem

\text{Enc} \text{ is secure under the LWE assumption}
Remarks

- Second encryption scheme can be chosen arbitrarily
 \[\text{Enc}^\#(S, m_0) \times \text{Enc}(S, m_1) = \text{Enc}(S, m_0 m_1) \]
 \[\text{Enc}^\#(S, m_0) \times \text{Enc}^\#(S, m_1) = \text{Enc}^\#(S, m_0 m_1) \]

- No need for key switching
 - Product \(\text{Enc}(S, m_0 m_1) \) uses the same key as the input
 - Key \(S \) does not have to be small
 - No evaluation key!

- \(\text{Enc} \) is a homomorphic encryption scheme supporting
 - Ciphertext addition
 - Ciphertext multiplication
 - without any evaluation key!

- Too good to be true?
Error growth

- $\text{Enc}(m_0; E_0) \times \text{Enc}(m_1; E_1) = \text{Enc}(m_0 m_1; E)$
 - Error: $E \approx m_0 \times E_1 + E_0 \times X$

- Multiplying many ciphertexts
 - $\text{CT}[i] = \text{Enc}(m_i; E_i)$
 - Assume $m_i \in 0, 1$
 - Given $\text{CT}[1], \ldots, \text{CT}[k]$
 - Goal: compute $\text{CT}[1] \times \ldots \times \text{CT}[k] = \text{Enc}(\prod_i m_i)$

 How? Several options (multiplication is associative):
 - Left to right multiplication chain
 - Right to left multiplication chain
 - Binary tree (minimize circuit depth)

Question

What order is best?
Arithmetic and Boolean operations

- **Addition**
 - Can add polynomially many ciphertexts
 - Error grows by polynomial factor (e.g., $O(\log(n))$ bits)

- **Multiplication**
 - Assume *binary* message space
 - Can multiply polynomially many ciphertexts in a *chain*
 - Error grows by polynomial factor (e.g., $O(\log(n))$ bits)
Arithmetic and Boolean operations

- **Addition**
 - Can add polynomially many ciphertexts
 - Error grows by polynomial factor (e.g., $O(\log(n))$ bits)

- **Multiplication**
 - Assume **binary** message space
 - Can multiply polynomially many ciphertexts in a **chain**
 - Error grows by polynomial factor (e.g., $O(\log(n))$ bits)

- **Bit operations:**
 - $m_0, m_1 \in \{0, 1\}$
 - $m_0 \land m_1 = m_0 \cdot m_1$
 - $\neg m_0 = 1 - m_0$
 - $m_0 \lor m_1 = \neg(\neg m_0 \land \neg m_1)$

- **Conditional:** $(b, m_0, m_1) \mapsto m_b$
 - $m_b = (1 - b) \cdot m_0 + b \cdot m_1$

- **Arbitrary log-depth boolean circuits**
Method 2: Tensor and Key Switch

- Why? Efficiency! Allows SIMD operations using polynomial rings

- Ciphertext as a function
 - \(f_C(S) = \text{Dec}'(S,C) = [S,I]C \)
 - \(f_C \) is linear in \([S,I]\)

- Product ciphertext \(C = C_0 \times C_1 \)
 - Goal: \(\text{Dec}'(S,C) = \text{Dec}'(S,C_0) \times \text{Dec}'(S,C_1) \)
 - \(f_{C_0,C_1}(S) = \text{Dec}'(S,C_0) \times \text{Dec}'(S,C_1) \) is bilinear in \([S,I]\)

- Tensor product: \(Z = [S,I] \otimes [S,I] = [S \otimes S, S, S, I] \)
 - Any bilinear function of \([S,I]\) is linear in \(Z\)
 - \(C = C_0 \otimes C_1 \) decrypts to \(m_0 \cdot m_1 \) under \(Z\)
Mixed product property

Theorem

For any A, B, X, Y,

$$(A \otimes B) \cdot (X \otimes Y) = (A \cdot X) \otimes (B \cdot Y)$$
Mixed product property

Theorem

For any A, B, X, Y,

$$(A \otimes B) \cdot (X \otimes Y) = (A \cdot X) \otimes (B \cdot Y)$$

$$([S, I] \otimes [S, I]) \cdot (C_0 \otimes C_1) = ([S, I]C_0) \otimes ([S, I]C_1)$$

$$= (X_0 + E_0) \otimes (X_1 + E_1)$$

Result: $X_0 \otimes X_1 + X_0 \otimes E_1 + E_0 \otimes X_1 + E_0 \otimes E_1$

- Assume scalar messages: $x_0 \otimes x_1 = x_0 \cdot x_1$
- Messages must be encoded: $x_i = \frac{q}{p} m_i$
Encoding issues

- Encode scalar messages: \(x_i = \frac{q}{p} m_i \)
- Product: \((x_0 + e_0)(x_1 + e_1) = x_0 x_1 + x_0 e_1 + e_0 x_1 + e_0 e_1\)
- Issues:
 - Error terms \(x_0 e_1 + e_0 x_1 = \frac{q}{p} (m_0 e_1 + e_0 m_1) \) are too large
 - Main term \(x_0 x_1 = (q/p)^2 m_0 m_1 \) is not properly encoded
- Solutions:
 - **Modular arithmetics**: assume \(\gcd(q, p) = 1 \), and multiply result by \(p \pmod{q} \)
 - **Modulus lifting**: Compute the product modulo \(q^2 \), and then switch to smaller modulus \(q \)
Modular arithmetics

- Compute $c = p \cdot c_0 \otimes c_1 \pmod q$
- Output c decrypts (under $sk \otimes sk$) to

$$p(x_0 + e_0)(x_1 + e_1) = \frac{q}{p}(-qm_0 m_1) + pe_0 e_1$$

Assume $q = -1 \pmod p$

Error growth: $\beta \mapsto p^2 \beta^2$

Modulus switching can be used to reduce β to a fixed polynomial $\sigma = \|s\|_1 = O(n)$, and substantially slow down the error growth
Modular arithmetics

- Compute \(c = p \cdot c_0 \otimes c_1 \pmod{q} \)
- Output \(c \) decrypts (under \(sk \otimes sk \)) to

\[
p(x_0 + e_0)(x_1 + e_1) = \frac{q}{p}(-qm_0m_1) + pe_0e_1
\]

- Assume \(q = -1 \pmod{p} \)
 - Error growth: \(\beta \mapsto p\beta^2 \)

- Arbitrary \(q, p \)
 - Multiply result by \((-q)^{-1} \pmod{p} \)
 - Error growth: \(\beta \mapsto p^2\beta^2 \)

- Modulus switching can be used to reduce \(\beta \) to a fixed polynomial \(\sigma = \|s\|_1 = O(n) \), and substantially slow down the error growth
Computing $c = p \cdot c_0 \otimes c_1 \pmod{q^2}$

Assume key $\|s\|_1 < \sigma$ has small entries

Analyze the relative error: $c_i = \text{Enc}(m_i; (q/p)e_i)$

Theorem

The product $p(c_0 \pmod{q}) \otimes (c_1 \pmod{q})$ is an encryption of $m_0 m_1 \pmod{p}$ under key $s \otimes s \pmod{q^2}$ with error $(q^2/p)e$

$$e \leq 3e_0 e_1 + \frac{p}{2} (\sigma + 1)(e_0 + e_1)$$
Relative error growth

- Fixed polynomials $\beta \approx \sqrt{n}$, $\sigma = \|s\|_1 \approx O(n^{1.5})$

- Modulus lifting error growth
 - relative error: input $(q/p)e_i$, output $(q^2/p)e$
 - assume $|e_i| < \epsilon$
 - output (multiplication) error $\approx p\sigma\epsilon$

- After L levels of multiplications, error $\approx (p\sigma)^L\epsilon < 1$

- Input ciphertext modulus must be $q \approx (p\sigma)^L$
 - Better than modular arithmetics approach $q > (p\beta)^{2L}$
 - Similar growth to modular arithmetics + modulus switching
Both methods produce a ciphertext under key
\([S \otimes S, I \otimes S, S \otimes I]\)

For scalar messages \(I = [1]\) and \(I \otimes S = S \otimes I = S\)

Can use subkey switching from \([S \otimes S, S]\) to \(S\)

Evaluation key: \(\text{Enc}(S, S \otimes S)\)

Security:
- Does not follow from circular security of LWE

Using standard LWE:
- Evaluation key \(\text{Enc}(Z, S \otimes S)\)
- Use a sequence of keys \(S_0, \ldots, S_L\), one for each multiplicative level of circuit/computation
- Can you still use subkey switching?
Arithmetic computations using Tensor products

- Message encoding: \((q/p)m\)
- Plaintext arithmetic modulo \(p\) (both addition and multiplication)
- Error grows with multiplicative depth of the circuit
- Use small key \(\|s\|_1 < \sigma\) to use modulus switching and slow down error growth
- Error at depth \(L\): \(\approx (p\sigma)^L < q\)
 - \(L = O(\log n): q = n^{O(\log n)}\)
 - \(L = \text{poly}(n): q = 2^{\text{poly}(n)}\)
- Impact of modulus:
 - Efficiency: running time \(\text{poly}(\log q)\)
 - Security: requires hardness of approximating lattice problems within \(\gamma \approx q/\beta\)
Section 8

FHE!!
Bootstrapping

- Given (1-hop) \((\text{Gen, Enc, Dec, Eval})\) supporting functions
 \[f_{c,c'}(sk) = \text{Dec}(sk, c) \text{ nand } \text{Dec}(sk, c') \]

- Define (multi-hop) FHE scheme with \(\text{Func} = \{ \text{nand} \}\)

\[
\text{Gen}'() = (sk, pk) \leftarrow \text{Gen}()
\]
\[
\text{ek} \leftarrow \text{Enc}(pk, sk)
\]
\[
\text{return } (sk, (pk, ek))
\]

\[
\text{Enc}'((pk, ek), m) = \text{Enc}(pk, m)
\]

\[
\text{Eval}'((pk, ek), \text{nand}, c, c') = \text{EvalC}(pk, f_{c,c'}, ek)
\]
LWE Homomorphic Encryption

- **Goal**: homomorphic evaluation of
 \[f_{c,c'}(sk) = \text{Dec}(sk,c) \text{ nand } \text{Dec}(sk,c') \]

- **LWE-based cryptosystem**
 - Supports bounded depth addition and multiplication
 - Bit operations: \(x \text{ nand } y = 1 - (1-x) \cdot (1-y) \)

- **Key Switching**
 \[
 ek[i] = \text{Enc'}(sk',sk[i])
 \text{KeySwitch}(ek,(a[],b)) =
 \text{Const}(b) - \sum_i \text{CMul}(a[i],ek[i])
 \]

- **Homomorphic evaluation of** \(\text{Dec'}(a,b) = b - Sa \)
Key switching only computes the linear part of Dec.

We also need to round the result to $\text{decode}(b - Sa)$.

Is this really needed?

- Yes, $b - Sa = \frac{q}{p}m + e$.
- Key switching gives a noisy encryption of $\frac{q}{p} + e$.
- Without rounding, noise keeps getting bigger.

Questions:

- Can we express rounding as a polynomial function (mod q)?
- What is the degree of the polynomial?
Error growth and bounded computation

We have seen two methods to multiply ciphertexts:

- **Tensor products**
 - error growth $\sim \beta \rightarrow \beta \sigma$
 - can evaluate arbitrary circuits with **multiplicative depth** L
 - even for $L = \log n$, requires superpolynomial modulus $q > \sigma^L \approx n^{O(\log n)}$

- **Nested Encryption / Homomorphic Decryption**
 - asymmetric error growth: $(m_0, e_0) \times (m_1, e_1) \rightarrow m_0 e_1 + e_0 \beta$
 - can evaluate arbitrary multiplication **chains** of L **fresh** encryptions of **binary** messages
 - even for large L, polynomial modulus $q \approx L \beta^2$ is enough
Roadmap

For each multiplication method

1. Describe/analyze a bootstrapping algorithm
2. Homomorphically evaluate the algorithm using an appropriate cryptographic data structure (encrypted accumulator)
3. Implement the cryptographic data structure using LWE
Cryptographic accumulators

- **Cryptographic Data Structure $\text{ACC}[v]$**
 - Holds a value $v \in V$ in encrypted form
 - Input Encryption scheme: Enc'
 - Output Encryption scheme: Enc''

- **Operations on $\text{ACC}[v]$**
 - Given $\text{Enc}'(x)$, update $\text{ACC}[v] \rightarrow \text{ACC}[f(v, x)]$
 - Given $\text{ACC}[v]$, output $\text{Enc}''(f(v))$

- **Bootstrapping:**
 - Bootstrapping key: $\text{Enc}'(s)$
 - Final output: $\text{Enc}''(m)$
Assume $p = 2, m \in \{0, 1\}$

Decryption Algorithm:
- Input: $a[1..n] \in \mathbb{Z}_q^n, b \in \mathbb{Z}_q$
- Secret key: $s[1..n] \in \mathbb{Z}^n$
- Compute $d = b - \sum_i a[i]s[i] + (q/4) \pmod{q}$
- Round d to $\text{MSB}(d) = \lfloor 2d/q \rfloor$

Homomorphic Computation:
- Given $\text{Enc}(s[i])$
- Compute $\text{Enc}(\text{MSB}(d))$

Simplifying assumption:
- $s[i] \in \{0, 1\}$
- without loss of generality using $(a, 2a, 4a, ...)$
Ripple-carry addition

- Standard schoolbook method
 - using binary digits
 - add n numbers at a time
 - carry in $\{0, \ldots, n\}$

- Input digits are encrypted
Ripple-carry accumulator

- Parameters:
 - Message space $V = \{v', \ldots, v''\}$
 - Input: $\text{Enc}'(x) = \text{Enc}^\#(x)$
 - Output: $\text{Enc}''(x) = \text{LWE}(x)$
 - $\text{ACC}[x] = (\text{Enc}''("x=v"): v \in V)$
 - $\text{Init}(v) = \text{ACC}[v]$
 - Function application: $f(\text{ACC}[v]) = \text{ACC}[f(v)]$
 - Selection:
 $\text{Enc}'(b) ? \text{ACC}[v0] : \text{ACC}[v1] = \text{ACC}[b?v0:v1]$
 - Output: $p(\text{ACC}[v]) = \text{Enc}''(p(b))$
Bootstrapping algorithm

\[b + q/4 = \sum_j 2^j b[j] \]
\[a[i] = \sum_j 2^j a[i,j] \]
\[\text{ACC} \leftarrow \text{ACC}[0] \]
\[\text{for} \ h = 0..k-1 \]
\[\text{ACC}[x] \leftarrow f(\text{ACC}[x]) \text{ where } f(x) = (x/2) + b[h] \]
\[\text{for all } i,j \]
\[\text{if } (a[i,j] = 1) \]
\[\text{ACC}[x + s[i]] \leftarrow \text{Enc}'(s[i]) \ ? \text{ACC}[x] : \text{ACC}[x+1] \]
\[\text{return} \ (\text{even}(\text{ACC}[x])) = \text{Enc}'''(\text{even}(x)) \]
Carry-save accumulator

- Parameters: bit length k
- $\text{ACC}[x] = (x_0, x_1)$
 - $x = x_0 + x_1 \pmod{2^k}$
 - $x_0[0, \ldots, k-1]$ and $x_1[0, \ldots, k-1]$
 - redundant representation

- Operations:
 - add y to ACC
 - compute $\text{MSB}(\text{ACC})$
Carry-save addition

Add(ACC(x0, x1), y):
 x0'[i] = (x0[i] + x1[i] + y[i]) mod 2
 x1'[i+1] = (x0[i] + x1[i] + y[i] > 1)
 return ACC(x0', x1')
MSB computation

- **Standard MSB computation**
 - addition $x_0 + x_1$ with carry propagation
 - $O(\log(k))$ depth circuit where $k = \log(q)$

- Can also add in $\log(k)$ depth
 - Compute both MSB(ACC) and MSB($\text{ACC}+1$)
 - $\text{ACC}[k]$: k-bit accumulator
 - Recursive algorithm: split
 $\text{ACC}[k] = (\text{HiACC}[k/2], \text{LoACC}[k/2])$

```plaintext
MSBs(ACC=(HiACC, LoACC)):
  parallel:
    hi[0,1] = MSBs(HiACC)
    lo[0,1] = MSBs(LoACC)
  out[0] = hi[lo[0]]
  out[1] = hi[lo[1]]
return out
```

- **ANT**
 - Project Info
Bootstrapping algorithm

\[
\begin{align*}
\text{ACC}[0] & = b + q/4 \\
\text{for } & \ i = 1 .. n \\
& \quad \text{ACC}[i] = s[i] * a[i] \\
\text{ACC} & = \text{Sum}(\text{ACC}[0], ..., \text{ACC}[n]) \\
\text{return} & \quad \text{MSB}(\text{ACC}) \\
\text{Sum}(\text{ACC}[0..n]) & \\
\text{if } & \quad n = 0 \\
& \quad \text{then return } \ ACC[0] \\
\text{else} & \quad h = n/2 \\
& \quad \text{ACC0} = \text{Sum}(\text{ACC}[0..h-1]) \\
& \quad \text{ACC1} = \text{Sum}(\text{ACC}[h..n]) \\
& \quad (x_0, x_1) = \text{ACC1} \\
\text{return} & \quad (\text{ACC0} + x_0) + x_1
\end{align*}
\]
Summary

Bootstrapping functions can be computed by

1. $O(n \log q)$-long sequence of multiplications, or
2. $\log(n) + \log \log(q)$-depth arithmetic circuits

Error growth:

1. Using LWE \odot: final error $\approx O(n) \cdot \beta$
2. Using LWE \otimes: final error $\approx \sigma^{\log n + \log \log q} = \sigma^{O(\log n)}$

Parameters $\beta(n), \sigma(n)$: fixed polynomials in n

Modulus:

1. polynomial modulus $q(n) \approx O(n)\beta = n^{O(1)}$
2. quasipolynomial $q(n) = n^{O(\log n)}$
Summary (security)

- Hardness of lattice problems within factor $\gamma \approx q/\beta$
 1. LWE \circ: polynomial $\gamma = n^{O(1)}$
 2. LWE \otimes: quasipolynomial $\gamma = n^{O(\log n)}$

- Circular security assumption
 - Needed by tensor product multiplication / keyswitching
 - Needed to apply bootstrapping
 - Not needed for leveled homomorphic encryption
Summary (security)

- Hardness of lattice problems within factor $\gamma \approx q/\beta$
 1. LWE \circ: polynomial $\gamma = n^{O(1)}$
 2. LWE \otimes: quasipolynomial $\gamma = n^{O(\log n)}$

- Circular security assumption
 - Needed by tensor product multiplication / keyswitching
 - Needed to apply bootstrapping
 - Not needed for leveled homomorphic encryption

Question

Remove circular security assumption:
- Can you build (unbounded) FHE from standard LWE?
- Can you build (unbounded) linearly homomorphic HE?
Efficiency

- Main security parameter $n > 100$ (typically, $n \approx 1000$)
- Modulus $q(n) < 2^n$ has bitsize $\log q < n$
- Assume 1GHz, arithmetic operations modulo q
- Bootstrapping: homomorphically evaluate decryption algorithm (once or twice per gate)

Question

Can you estimate the cost of a single FHE operation?
Section 9

Ring LWE
(In)efficiency of LWE

Standard LWE

- Ciphertexts: \((a, b) \in \mathbb{Z}_q^{(n+1) \times \log q}\) store one value \((\text{mod } p)\)
- Ciphertext size: \(O(n \log q)\)
- Addition, Scalar multiplication: \(T \approx n \log q\)
- Ciphertext multiplication: \(T \approx n^2 \log^2 q\)

Compact LWE

- Ciphertexts: \((a, b) \in \mathbb{Z}_q^{(2n) \times \log q}\) store \(n\) values \((\text{mod } p)\)
- Amortized ciphertext size: \(O(\log q)\)
- Amortized addition, scalar multiplication: \(T \approx \log q\)
- Ciphertext multiplication?
Ring LWE

- Generalize LWE using a ring R instead of \mathbb{Z}
- Ring of polynomials $\mathbb{Z}[X]$
- Monic irreducible $p(X)$ of degree n
 - e.g., $p(X) = X^n - 1$
- Quotient ring $R = \mathbb{Z}[X]/p(X)$
 - isomorphic to $(\mathbb{Z}^n, +)$
 - convolution product
 - $R_q = R/qR$

Ring LWE

- Key: $s(X) \in R$
- Ciphertexts $(a, b) \in R_q^2$
- Messages: $m \in R_p$
Ring LWE vs Compact LWE

Both methods:

- Encrypt n values (mod p) using $O(n)$ values (mod q)
- Efficient (linear time) vector addition and scalar multiplication

Multiplication:

- Compact LWE: tensor multiplication, cost $O(n^2)$
- Ring LWE: polynomial multiplication, cost $O(n \log n)$ using FFT

Applications / Programming model:

- Addition, scalar multiplication: SIMD
- Multiplication: convolution is usually not what you want
- Encode data to perform SIMD multiplication
Data encoding

- Polynomial representation
 - \(p(x_1), \ldots, p(x_n) \in \mathbb{Z}_q^n \)
 - \(p(x) = a_0 + a_1 x_1 + \ldots a_{n-1} x^{n-1} \equiv \mathbb{Z}_q^n \)
 - Polynomial multiplication: SIMD multiplication of evaluation representations

- Quasilinear time transformations:
 - \((y_1, \ldots, y_n) \rightarrow (a_0, \ldots, a_{n-1}) \): polynomial interpolation
 - \((a_0, \ldots, a_{n-1}) \rightarrow (y_1, \ldots, y_n) \): polynomial evaluation

- Other operations:
 - SIMD: great to run same program on \(n \) data sets
 - Need also to pack, unpack, shuffle, etc. for general computations
Is Ring LWE secure?
For what rings?

Short answer:
- Working modulo $p(X) = X^n - 1$ is not a good idea
- Better to work with *cyclotomic* polynomials
- SWIFFT ring: $p(X) = X^n + 1$ where $n = 2^k$

Useful both for
- security, pseudorandomness, search/decision reductions
- efficient implementation using Number Theoretic Transform (NTT)
Implementation and Libraries

Libraries:

- SEAL
- HElib
- PALISADE
- Lattigo
- ...

Interface:

- try to hide math as much as possible
- offer encoding, decoding and SIMD operations
A lattice is cyclic if it is closed under
\[\text{rot}(v_1, \ldots, v_n) = (v_n, v_1, v_2, \ldots, v_{n-1}) \]

Equivalently
- view vectors as coefficients of a polynomial
- lattice is closed under \(\text{rot}(v(X)) = X \ast v(X) \mod (X^n - 1) \)

Commonly used in coding theory (over finite fields)
- cyclic codes: linear code, closed under rotation
- equivalently, set of polynomials in \(\mathbb{F}[X]/(X^n - 1) \), closed under multiplication by \(X \)
Theorem

Any cyclic code over finite a field \mathbb{F} can be written as

$$C = \{ g(X) \cdot f(X) \mod (X^n - 1) | f(X) \}$$

for some $g(X)$

Proof.
Theorem

Any cyclic code over finite a field \mathbb{F} can be written as

$$C = \{g(X) \cdot f(X) \mod (X^n - 1) | f(X)\}$$

for some $g(X)$

Proof.

Question

Is the same true for cyclic lattices?
NTRU (1998): public key encryption, efficient, no proof
First provable construction, (M., FOCS 2002): one-way function

\[R_q = \mathbb{Z}[X]/(q, X^n - 1) \]
key: \(a_1(X), \ldots, a_m(X) \in R_q \)
input: \(v_1(X), \ldots, v_m(X) \in \{0, 1\}^n \subset R_q \)
output: \(w(X) = \sum_i a_i(X) \cdot v_i(X) \in R_q \)
compression function: \(m = 2n \log_2(q) \)

One-way: given \(a_1, \ldots, a_m \) and \(w \),

- easy to find \(v_1, \ldots, v_m \in R_q \) such that \(\sum_i a_i v_i = w \in R_q \)
- hard to find \(v_1, \ldots, v_m \in \{0, 1\}^n \)

Intuition: Compact knapsack, circulant matrices
Compact knapsack, circulant matrices

- Polynomials: \(a(X) \in \mathbb{Z}[X]/(X^n - 1) \)
- Equivalently: \(A \in \mathbb{Z}^{n \times n} \) circulant matrix
 - \(a_1 + a_2 \equiv A_1 + A_2 \)
 - \(a_1 \cdot a_2 \equiv A_1 \cdot A_2 \)
- Compact knapsack
Collision resistance?

- Regular knapsack:
 - Given random $a_1, \ldots, a_m \in \mathbb{Z}_q$
 - $m = 2 \log_2(q)$
 - Collisions exist
 - Collisions are hard to find

- Compact knapsack:
 - Given random $a_1, \ldots, a_m \in \mathbb{Z}_q[X]/(X^n - 1)$
 - $m = 2n \log_2(q)$
 - Collisions exist

Question

Are collisions hard to find?
Collisions in compact knapsacks

- Multiply each “circulant” matrix a_i by the all-one vector
- Find collision in \mathbb{Z}_q
- Algebraic description:
 - multiply each $a_i(X)$ by $u(X) = (1 + X + X^2 +)$
 - Notice $(X^n - 1) = u(X) \cdot (X - 1)$
 - CRT: $R \equiv (\mathbb{Z}[X]/(X - 1)) \times (\mathbb{Z}[X]/u(X))$
 - Multiplication by $u(X)$ maps R to $\mathbb{Z}[X]/(X - 1) \equiv \mathbb{Z}$
Anti-Cyclic lattices

- A lattice is anticyclic if it is closed under $\text{rot}(x_1, \ldots, x_n) = (-x_n, x_1, x_2, \ldots, x_{n-1})$

- Equivalently: work in $R = \mathbb{Z}[X]/(X^n + 1)$

- Questions:

 1. Are compact knapsacks over R collision resistant?
 2. Does $(X^n + 1)$ have small degree factors?
Anti-Cyclic lattices

- A lattice is anticyclic if it is closed under \(\text{rot}(x_1, \ldots, x_n) = (-x_n, x_1, x_2, \ldots, x_{n-1}) \)
- Equivalently: work in \(R = \mathbb{Z}[X]/(X^n + 1) \)
- Questions:
 1. Are compact knapsacks over \(R \) collision resistant?
 2. Does \((X^n + 1) \) have small degree factors?

Theorem

\(X^n + 1 \) is irreducible if and only if \(n \) is a power of 2
Roots of Unity

- $\omega_m = \exp(2\pi i/m) \in \mathbb{C}$, primitive mth root of unity
- Observation: $X^m - 1 = \prod_{k=0}^{m-1} (X - \omega_m^k)$

$$X^m - 1 = \prod_{d|m} \prod_{\gcd(k,m)=d} (X - \omega_m^k)$$

$$= \prod_{d|m} \prod_{k \in \mathbb{Z}_m^*} (X - \omega_m^{k/d})$$

Definition

Cyclotomic Polynomial: $\Phi_m(X) = \prod_{k \in \mathbb{Z}_m^*} (X - \omega_m^k) \in \mathbb{C}[X]$

- Question: does Φ_m have integer coefficients?
Division Theorem

- \((R, +, *, 0, 1)\): any ring
- \(R[X]\): polynomials with coefficients in \(X\)

Theorem

For any \(a(X) \in R[X]\) and monic \(b(X) \in R[X]\), there exists unique \(q(X), r(X) \in R[X]\) such that
- \(a(X) = q(X) \times b(X) + r(X)\)
- \(\deg(r(X)) < \deg(b(X))\)
Division Algorithm

\[
\text{divRem} :: \text{Poly} \rightarrow \text{Poly} \rightarrow \text{Poly}
\]
\[
\text{divRem} \ a \ b =
\]
\[
\begin{align*}
\text{if} \ (\text{deg} \ a < \text{deg} \ b) \\
\text{then} \ (0, a)
\end{align*}
\]
\[
\begin{align*}
\text{else let} \ & aL = \text{leadingTerm} \ a \\
& bL = \text{leadingTerm} \ b \\
& qL = aL / bL \\
& a' = a - b \times qL \\
& (q', r) = \text{divRem} \ a' \ b \\
& q = qL + q'
\end{align*}
\]
\[
\text{in} \ \text{divRem} \ (q, r)
\]

- Dividing by \(b(X) \) requires divisions by the leading coefficient of \(b \)
- If \(R \) is a field, we can divide by any non-zero \(b(X) \):
- If \(b(X) \) is monic, division is possible in any ring \(R \)
Question

Divide \(a(X) = 5X^8 + 4X^6 - 5X^3 + 4 \) by \(b(X) = X^3 - X + 7 \)
Polynomial Division: Example

Question

Divide \(a(X) = 5X^8 + 4X^6 - 5X^3 + 4 \) by \(b(X) = X^3 - X + 7 \)

Solution:

- quotient: \(q(X) = 5X^5 + 9X^3 - 35X^2 + 9X - 103 \)
- remainder: \(r(X) = 254X^2 - 166X + 725 \)
Remarks about Division Algorithm

- Division Algorithm:
 \((a(X), b(X) \in R[X]) \mapsto (q(X), r(X) \in R[X])\)

- For any subring \(S \subseteq R\), and \(a(X), b(X) \in S[X]\)

 - Result of dividing \(a(X)\) by \(b(X)\) is in \(S[X]\)

 - Division as polynomials in \(R[X]\) or as polynomials in \(S[X]\) produces the same result
Polynomial GCD

- \(\mathbb{F}[X] \): polynomials with coefficients in a field \(\mathbb{F} \)
- The Greatest Common Divisor (gcd) of \(a(X), b(X) \in \mathbb{F}[X] \) is a polynomial \(g(X) \in \mathbb{F}[X] \) such that
 - \(g(X) \) divides \(a(X) \) and \(b(X) \)
 - any \(d(X) \in \mathbb{F}[X] \) that divides both \(a(X) \) and \(b(X) \) also divides \(g(X) \)

Theorem

For any \(a(X), b(X) \in \mathbb{F}[X] \)

\[
\gcd(a(X), b(X)) = u(X)a(X) + v(X)b(X)
\]

for some \(u(X), v(X) \in \mathbb{F}[X] \).
Euclid's Algorithm

- Input: \(a(X), b(X) \in \mathbb{F}[X] \)
- Output: \(u(X), v(X) \in \mathbb{F}[X] \) such that \(u(X)a(X) + v(X)b(X) = \gcd(a(X), b(X)) \)
- Invariant: \(\gcd(a(X), b(X)) = \gcd(b(X), a(X) \ mod \ b(X)) \)

```haskell
euclid :: (Poly, Poly) \rightarrow (Poly, Poly)
euclid (a, b) =
    if (deg b \equiv 0)
    then (1, 0)
    else let (q, r) = divRem b a
            (u, v) = euclid (b, r)
            in (-q*v, u+v)
```

- Base case: \(1*a + 0*b = a = \gcd(a, b) \)
- Induction: \((-qv)a+(u+v)b = ub + v(b-qa)= ub+vr \)
Remarks about Euclid Algorithm

```haskell
euclid :: (Poly, Poly) → (Poly, Poly)
euclid (a, b) =
  if (deg b ≡ 0)
    then (1, 0)
    else let (q, r) = divRem b a
            (u, v) = neuclid (b, r)
            in (-q*v , u+v)
```

- Euclid Algorithm works over a field:
 - Even if \(b(X) \) is monic, \(r(X) = b(X) \mod a(X) \) may not be
 - If \(a(X), b(X) \in R[X] \) have coefficients in a domain \(R \subseteq F \), then we can compute \(\gcd(a(X), b(X)) \in F[X] \)
Cyclotomic Polynomials

\[X^m - 1 = \prod_{d|m} \Phi_m(X) \]

Theorem

\[\Phi_m(X) \in \mathbb{Z}[X] \]
Cyclotomic Polynomials

- $X^m - 1 = \prod_{d|m} \Phi_m(X)$

Theorem

$\Phi_m(X) \in \mathbb{Z}[X]$

Proof:

- For $m = 1$, $\Phi_1(X) = (X - 1)$
- For $m > 1$, $b(X) = \prod_{m > d|m} \Phi_d(X)$ is in $\mathbb{Z}[X]$ by induction
- Compute $(q(X), r(X)) = \text{divRem}(X^m - 1, b(X))$ in $\mathbb{Z}[X]$
- $r(X) = 0$ because $b(X)$ divides $X^m - 1$
- $\Phi_m(X) = q(X)$ is in $\mathbb{Z}[X]$
Irreducibility of Cyclotomices

Theorem

\[\Phi_m(X) \in \mathbb{Z}[X] \text{ is irreducible} \]

Theorem

\[C_m \equiv \mathbb{Z}[X]/\Phi_m(X) = \mathbb{Z}[\omega_m] \]

- simple proof, helps intuition
- Algebraic Number Fields
 - finite dimensional extensions of \(\mathbb{Q} \)
 - key concepts: field extensions, vector spaces
- Algebraic Number Rings
 - finite dimensional extensions of \(\mathbb{Z} \), i.e., lattices
 - key concepts: ring extensions, modules over a ring
Factoring primes in Cyclotomic rings

- \(\Phi_m(X) \in \mathbb{Z}[X] \): \(m \)th cyclotomic polynomial
- \(\Phi_m(X) \) is irreducible in \(\mathbb{Z}[X] \)
- Let \(p \) be a prime, and assume \(\gcd(m, p) = 1 \)
- Question: if \(\Phi_m(X) \) irreducible also in \(\mathbb{Z}_p[X] \)?
- Answer: no, and this is very useful

Question

Question: What’s the factorization of \(\Phi_m(X) \) modulo \(p \)?

Technically, this is the problem of factoring (the ideal generated by) the prime \(p \) in the ring of polynomials modulo \(\Phi_m(X) \)
Factoring primes in Cyclotomic rings

- $\Phi_m(X) \in \mathbb{Z}[X]:$ mth cyclotomic polynomial
- $\Phi_m(X)$ is irreducible in $\mathbb{Z}[X]$
- Let p be a prime, and assume $\gcd(m, p) = 1$
- Question: if $\Phi_m(X)$ irreducible also in $\mathbb{Z}_p[X]$?
- Answer: no, and this is very useful

Question

Question: What’s the factorization of $\Phi_m(X)$ modulo p?

Technically, this is the problem of factoring (the ideal generated by) the prime p in the ring of polynomials modulo $\Phi_m(X)$

“The obvious mathematical breakthrough would be development of an easy way to factor large prime numbers”

(Bill Gates, The Road Ahead, p. 265)
Motivation

- \(R = \mathbb{Z}[X]/\Phi_m(X) \)
- \(R_p = R/(pR) \equiv \mathbb{Z}[X]/\langle \Phi_m(X), p \rangle_{\mathbb{Z}[X]} \)
- Equivalently, \(R_p \equiv \mathbb{Z}_p[X]/\Phi_m(X) \)
- The structure of \(R_p \) is equivalently described by
 - the factorization of \((pR)\) in \(R \), or
 - the factorization of \(\Phi_m \) in \(\mathbb{Z}_p[X] \)
Section 10

ANT
Basic Algebra

Review of basic algebraic structures:

- (Commutative) monoids and groups
- Rings and Fields
- Modules and Vector spaces

Some common examples:

- \(\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \): the fields of rational, real and complex numbers
- \(\mathbb{Z}, \mathbb{Z}_n \): the rings of integers, and integers modulo \(n \)
- \(\mathbb{R}[X] \): The ring of polynomials with coefficients in \(R \)
Monoids and Groups

- A monoid \((A, \ast, 1)\) is a set \(A\) with a binary operation \((\ast) : A \times A \rightarrow A\) and unit element \(1 \in A\) such that
 - \((x \ast y) \ast z = x \ast (y \ast z)\) (associativity)
 - \(1 \ast x = x \ast 1 = x\) (identity)

- A monoid is commutative if
 - \(x \ast y = y \ast x\) (commutativity)

- An element \(x\) is invertible if there is a \(y\) such that \(x \ast y = y \ast x = 1\)

- A group is a monoid such that all elements are invertible

- Abelian group: commutative groups, additive notation \((A, +, 0)\), additive inverse \(-x\)
Rings and Fields

- A (commutative) Ring \((R, +, *, 1, 0)\) is a set with two binary operations such that
 - \((R, +, 0)\) is an abelian group
 - \((R, *, 1)\) is a (commutative) monoid
 - \(x \ast (y + z) = x \ast y + x \ast z\) and \((x + y) \ast z = x \ast z + y \ast z\) (distributivity)
- Subring \(S \subseteq R\), subset of a ring closed under \(+, *, 0, 1\)
- A commutative ring \((F, +, *, 1, 0)\) such that all nonzero elements are invertible is called a Field
- A subring of a field \(R \subseteq F\) is called an Integral Domain
Modules and Vector Spaces

- Let \((R, +, *, 0, 1)\) be a commutative ring.

- An \(R\)-module is an additive group \((A, +, 0)\) with a scalar multiplication operation \((*) : R \times A \rightarrow A\) such that:
 - \(r * (s * a) = (r * s) * a\)
 - \((r + s) * a = r * a + s * a\)
 - \(r * (a + b) = r * a + r * b\)

- If \(R\) is a field, then \(A\) is called a **Vector Space**
 - Linear independence
 - Dimension
 - Basis
Submodules and Quotients

- Let \((A, +, 0)\) be an \(R\)-module
- An \(R\)-submodule of is
 - a subgroup \(B \subseteq A\)
 - closed under scalar multiplication: \(R \times B \subseteq B\)
- Quotient group: \(A/B = \{[a]_B : a \in A\}, [a]_B = a + B\)
 - also an \(R\)-module with \(r \times [a]_B = [r \times a]_B\)
- Special case:
 - \(R\) is an \(R\)-module
 - \(R\)-submodules \(I \subseteq R\) are called ideals
 - \(R/I\) is also a ring with \([a] \times [b] = [a \times b]\)
Integral and Algebraic Numbers

- Domain $R \subseteq F$: subring of a field F

- $\alpha \in F$ is **algebraic** over R if $m(\alpha) = 0$ for some $m(X) \in R[X]$

- $\alpha \in F$ is **integral** over R if $m(\alpha) = 0$ for some **monic** $m(X) \in R[X]$

Examples:

- $\alpha = \sqrt{2}$ is integral over \mathbb{Z} because $m(\alpha) = 0$ for $m(X) = X^2 - 2$

- $\alpha = 1/\sqrt{2}$ is algebraic over \mathbb{Z} because $m(\alpha) = 0$ for $m(X) = 2X^2 - 1$, but is it not integral
Minimal Polynomial

- Field Extension $F \subseteq E$
- Let $\alpha \in E$ be algebraic over F
- Ring homomorphism: $h_\alpha : F[X] \to E$, where $h_\alpha(p(X)) = p(\alpha)$
- $I = \ker(h_\alpha)$: set of polynomials p such that $p(\alpha) = 0$
- $I \subseteq F[X]$ is a non-zero ideal
- **Minimal polynomial**: smallest degree monic polynomial $m(X) \in I$
- $I = F[X] \cdot m(X)$, i.e., $p(\alpha) = 0$ iff $m(X)|p(X)$
Irreducibility

- Let $m(X)$ be the minimal polynomial of α
- $m(X)$ is irreducible:
 - If $m(X) = a(X) \cdot b(X)$, then $a(\alpha) \cdot b(\alpha) = m(\alpha) = 0,$
 - either $a(\alpha) = 0$ or $b(\alpha) = 0.$
 - either $a(X) = c \cdot m(X)$ or $b(X) = c \cdot m(X)$
- $F[\alpha] \equiv F[X]/m(X)$ are isomorphic
- isomorphism: $h_\alpha : F[X]/m(X) \to F[\alpha]$
Algebraic Extensions

- Algebraic $\alpha \in E \subseteq F$
- Minimal polynomial $m(\alpha) = 0$ of degree $n = \deg(m(X))$
- $F[\alpha] \equiv F^n$ as an F-vector space with basis $\alpha^0, \alpha^1, \ldots, \alpha^{n-1}$:
 - $\alpha^0, \alpha^1, \ldots, \alpha^{n-1}$ are linearly independent
 - $\alpha^0, \alpha^1, \ldots, \alpha^{n-1}$ generate $F[\alpha]$
Extension fields

Theorem

\[F[\alpha] = F(\alpha) \text{ is a field} \]

Proof:

- Let \(p(\alpha) \in F[\alpha] \) for some \(p(X) \in F[\alpha] \), \(\text{deg}(p) < n \)
- \(\gcd(p(X), m(X)) \in \{1, m(X)\} \) because \(m(X) \) is irreducible
- If \(\gcd = m(X) \), then \(p(X) = m(X) \) and \(p(\alpha) = 0 \)
- If \(\gcd = 1 \), then \(u(X)p(X) + v(X)m(X) = 1 \)
- \(u(\alpha) \cdot p(\alpha) = 1 \)
Factoring primes in Cyclotomic rings

- $\Phi_m(X) \in \mathbb{Z}[X]$: mth cyclotomic polynomial
- $\Phi_m(X)$ is irreducible in $\mathbb{Z}[X]$
- Let p be a prime, and assume $\gcd(m, p) = 1$
- Question: if $\Phi_m(X)$ irreducible also in $\mathbb{Z}_p[X]$?
- Answer: no, and this is very useful

Question

Question: What’s the factorization of $\Phi_m(X)$ modulo p?
Since \(\gcd(m, p) = 1 \), we have \(p \in \mathbb{Z}_m^* \)

- Let \(d = o(p) \) be the order of \(p \) in \(\mathbb{Z}_m^* \)
- \(p^d = 1 \mod m \), equivalently, \(m | (p^d - 1) \)
- Let \(GF(p^d) \) be the finite field with \(p^d \) elements
- The multiplicative group \(GF(p^d)^* \) is cyclic of order \(p^d - 1 \)
- There is an element \(\zeta \in GF(p^d) \) of order \(m \)
- \(\zeta^d = 1 \) in \(GF(p^d) \)
- \(o(\zeta^k) = m \) for all \(k \in \mathbb{Z}_m^* \)
- \(\Phi_m(X) = \prod_{k \in \mathbb{Z}_m^*} (X - \zeta^k) \) splits in \(GF(p^d) \)
Theorem

The minimal polynomials of all ζ^k over \mathbb{Z}_p have degree d

- Let $l(X) \in \mathbb{Z}_p[X]$ be the minimal polynomial of ζ
- $\mathbb{Z}_p[\zeta] \equiv \mathbb{Z}_p[X]/l(X)$ is a field
 - of size $p^{\deg(l)}$
 - containing an element ζ of order m
- $m = o(\zeta)$ divides $p^{\deg(l)} - 1 = |\mathbb{Z}_p[\zeta]^*|$
- $p^{\deg(l)} = 1 \mod m$
- by definition of $d = o(p)$ and $\deg(l) = d$
When $\gcd(m, p) = 1$ $\Phi_m(X) \in \mathbb{Z}_p[X]$ factors into a product of $\varphi(m)/d$ distinct degree $d = o(p \mod m)$ polynomials.

For arbitrary m, factorization of $\Phi_m(X)$ modulo p is obtained using the following theorem.

Theorem

For any $m' = mp^k$ with $\gcd(m, p) = 1$,

$$\Phi_{m'}(X) = (\Phi_m(X))^{\varphi(p^k)} \mod p$$
Proof

- Frobenius map \((x \mapsto x^p) : GF(p^k) \rightarrow GF(p^k)\) satisfies:
 - \((x + y)^p = x^p + y^p\) (from binomial expansion)
 - \(a^p = a\) for \(a \in \mathbb{Z}_p \subseteq GF(p^k)\) (Lagrange)

- \(\mathbb{Z}_p[X]\) is a domain:
 - \(a(X)b(X) = a(X)c(X)\) cancels to \(b(X) = c(X)\)
Using these two properties:

- \((X^{mp^k} - 1) = (X^m - 1)^{p^k} = \prod_{d | m} \Phi_d(X)^{p^k} \)
- \((X^{mp^k} - 1) = \prod_{d | m} \prod_{i \leq k} \Phi_{dp^i}(X) \)

So, by induction on \(m \):

\[
\prod_{i \leq k} \Phi_{mp^i}(X) = \Phi_m(X)^{p^k}
\]

Canceling equality for \(k - 1 \) from equality for \(k \):

\[
\Phi_{mp^k}(X) = \Phi_m(X)^{p^k - p^{k-1}} = \Phi_m(X)^{\varphi(p^k)}
\]
Factoring modulo a prime power

- $\Phi_m(X) = \prod_i F_i(X) \mod p$ with irreducible $F_i(X) \in \mathbb{Z}_p[X]$
- Lift each $F_i(X) \mod p$ to a factor $G_i(X) \mod p^k$
- $\Phi_m(X) = \prod_i G_i(X) \mod p^k$ with $F_i(X) = G_i(X) \mod p$
- $G_i(X)$ is irreducible, because any factorization $\mod p^k$ gives also a factorization $\mod p$

Theorem

(Lifting) Let $a(X)b(X) = c(X) \mod p$ with $\gcd(a(X), b(X)) = 1$. For every k, there are $a'(X) = a(X) \mod p$ and $b'(X) = b(X) \mod p$ such that $a'(X)b'(X) = c(X) \mod p^k$
Let $u(X), v(X)$ such that $a(X)u(X) + b(X)v(X) = 1 \mod p$

Assume $a(X)b(X) = c(X) + p^k d(X)$ by induction

Let $a'(X) = a(X) - p^k v(X)d(X)$ and $b'(X) = b(X) - p^k u(X)d(X)$

$$a'(X)b'(X) \mod p^{k+1} = a(X)b(X) - p^k (a(X)u(X) + b(X)v(X))d(X) = a(X)b(X) - p^k d(X) = c(X)$$
Section 11

Project Info
Implementation and Libraries

Libraries:

- SEAL
- HElib
- PALISADE
- Lattigo
- ...

Interface:

- try to hide math as much as possible
- offer encoding, decoding and SIMD operations
Project:

- Use one of the libraries
- Open ended, do anything you want
- Goal: demonstrate you managed to use the library
- Extra points: do something interesting
- Submission: pdf report describing your work + supporting code

Teams:

- You can work in pairs if you like
- Larger teams only if doing something more substantial
- Individual project required to use for master competency
Project Deadlines:

Deadlines:

- Next lecture (Tue, Dec 1): need to know what you are doing (team, library)
- End of finals week (Fri, Dec 18): project submission (canvas, pdf+code)

In the meantime:

- in class, mathematics underlying Ring LWE used by the libraries
- useful to understand/improve the libraries
- not required to use the libraries