CSE208: Advanced Cryptography (FHE)

Daniele Micciancio

UCSD

Winter 2023
Section 1

FHE!!
Bootstrapping

- Given (1-hop) \((\text{Gen,Enc,Dec,Eval})\) supporting functions
 \[f_{c,c'}(sk) = \text{Dec}(sk,c) \text{ nand } \text{Dec}(sk,c') \]

- Define (multi-hop) FHE scheme with \(\text{Func} = \{ \text{nand} \} \)

\[
\begin{align*}
\text{Gen}'() &= (sk,pk) \leftarrow \text{Gen}() \\
\text{ek} &\leftarrow \text{Enc}(pk,sk) \\
\text{return} &\quad (sk,(pk,ek)) \\
\text{Enc}'((pk,ek),m) &= \text{Enc}(pk,m) \\
\text{Eval}'((pk,ek),\text{nand},c,c') &= \text{EvalC}(pk,f_{c,c'},ek)
\end{align*}
\]
LWE Homomorphic Encryption

- **Goal:** homomorphic evaluation of
 \[f_{c,c'}(sk) = \text{Dec}(sk, c) \text{ nand } \text{Dec}(sk, c') \]

- **LWE-based cryptosystem**
 - Supports bounded depth addition and multiplication
 - Bit operations: \(x \text{ nand } y = 1 - (1-x) \cdot (1-y) \)

- **Key Switching**
 \[
 ek[i] = \text{Enc}'(sk', sk[i]) \\
 \text{KeySwitch}(ek, (a[], b)) = \text{Const}(b) - \sum_i \text{CMul}(a[i], ek[i])
 \]

- **Homomorphic evaluation of** \(\text{Dec}'(a, b) = b - Sa \)
Key switching only computes the linear part of \(\text{Dec} \).

We also need to round the result to \(\text{decode}(b - Sa) \).

Is this really needed?

- Yes, \(b - Sa = (q/p)m + e \)
- Key switching gives a noisy encryption of \((q/p)+e \)
- Without rounding, noise keeps getting bigger

Questions

- Can we express rounding as a polynomial function \((\text{mod } q)\)?
- What is the degree of the polynomial?
Error growth and bounded computation

We have seen two methods to multiply ciphertexts:

- **Tensor products**
 - error growth $\sim \beta \rightarrow \beta \sigma$
 - can evaluate arbitrary circuits with **multiplicative depth** L
 - even for $L = \log n$, requires superpolynomial modulus $q > \sigma^L \approx n^{O(\log n)}$

- **Nested Encryption / Homomorphic Decryption**
 - asymmetric error growth: $(m_0, e_0) \times (m_1, e_1) \rightarrow m_0 e_1 + e_0 \beta$
 - can evaluate arbitrary multiplication **chains** of L fresh encryptions of **binary** messages
 - even for large L, polynomial modulus $q \approx L \beta^2$ is enough
Roadmap

For each multiplication method

1. Describe/analyze a bootstrapping algorithm
2. Homomorphically evaluate the algorithm using an appropriate cryptographic data structure (encrypted accumulator)
3. Implement the cryptographic data structure using LWE
Cryptographic accumulators

- **Cryptographic Data Structure** $\text{ACC}[v]$
 - Holds a value $v \in V$ in encrypted form
 - Input Encryption scheme: Enc'
 - Output Encryption scheme: Enc''

- **Operations on** $\text{ACC}[v]$
 - Given $\text{Enc}'(x)$, update $\text{ACC}[v] \rightarrow \text{ACC}[f(v, x)]$
 - Given $\text{ACC}[v]$, output $\text{Enc}''(f(v))$

- **Bootstrapping**:
 - Bootstrapping key: $\text{Enc}'(s)$
 - Final output: $\text{Enc}''(m)$
Boosting problem

- Assume $p = 2, m \in \{0, 1\}$

- Decryption Algorithm:
 - Input: $a[1..n] \in \mathbb{Z}_q^n$, $b \in \mathbb{Z}_q$
 - Secret key: $s[1..n] \in \mathbb{Z}^n$
 - Compute $d = b - \sum_i a[i]s[i] + (q/4) \pmod q$
 - Round d to $MSB(d) = \lfloor 2d/q \rfloor$

- Homomorphic Computation:

 - Given $Enc(s[i])$
 - Compute $Enc(MSB(d))$

- Simplifying assumption:
 - $s[i] \in \{0, 1\}$
 - without loss of generality using $(a, 2a, 4a, ...)$
Ripple-carry addition

- Standard schoolbook method
 - using binary digits
 - add n numbers at a time
 - carry in $\{0, \ldots, n\}$

- Input digits are encrypted
Ripple-carry accumulator

- **Parameters:**
- Message space $V = \{v', \ldots, v''\}$
- Input: $\text{Enc}'(x) = \text{Enc}'#(x)$
- Output: $\text{Enc}''(x) = \text{LWE}(x)$
- $\text{ACC}[x] = (\text{Enc}''("x=v"): v \in V)$

- $\text{Init}(v) = \text{ACC}[v]$
- Function application: $f(\text{ACC}[v]) = \text{ACC}[f(v)]$
- Selection:
 - $\text{Enc}'(b)? \text{ACC}[v0] : \text{ACC}[v1] = \text{ACC}[b?v0:v1]$
- Output: $p(\text{ACC}[v]) = \text{Enc}''(p(b))$
Bootstrapping algorithm

\[b + q/4 = \sum_j 2^j b[j] \]
\[a[i] = \sum_j 2^j a[i,j] \]

\[
\text{ACC} \leftarrow \text{ACC}[0] \\
\text{for } h = 0..k-1 \\
\quad \text{ACC}[x] \leftarrow f(\text{ACC}[x]) \text{ where } f(x) = (x/2) + b[h] \\
\quad \text{forall } i,j \\
\quad \quad \text{if } (a[i,j] = 1) \\
\quad \quad \quad \text{ACC}[x + s[i]] \leftarrow \text{Enc}'(s[i]) ? \text{ACC}[x] : \text{ACC}[x+1] \\
\text{return } (\text{even}(\text{ACC}[x])) = \text{Enc}''(\text{even}(x))
\]
Carry-save accumulator

- Parameters: bit length k
 - $\text{ACC}[x] = (x_0, x_1)$
 - $x = x_0 + x_1 \pmod{2^k}$
 - $x_0[0,\ldots,k-1]$ and $x_1[0,\ldots,k-1]$
 - redundant representation

- Operations:
 - add y to ACC
 - compute MSB(ACC)
Carry-save addition

Add(ACC(x0, x1), y):
\[x0'[i] = (x0[i] + x1[i] + y[i]) \mod 2 \]
\[x1'[i+1] = (x0[i] + x1[i] + y[i] > 1) \]
\[\text{return } \text{ACC}(x0', x1') \]
MSB computation

- **Standard MSB computation**
 - addition $x_0 + x_1$ with carry propagation
 - $O(\log(k))$ depth circuit where $k = \log(q)$

- **Can also add in $\log(k)$ depth**
 - Compute both $\text{MSB}(\text{ACC})$ and $\text{MSB}(\text{ACC}+1)$
 - $\text{ACC}[k]$: k-bit accumulator
 - Recursive algorithm: split
 $\text{ACC}[k] = (\text{HiACC}[k/2], \text{LoACC}[k/2])$

$\text{MSBs}(\text{ACC}=(\text{HiACC}, \text{LoACC}))$: parallel:
- $\text{hi}[0,1] = \text{MSBs}(\text{HiACC})$
- $\text{lo}[0,1] = \text{MSBs}(\text{LoACC})$
- $\text{out}[0] = \text{hi}[\text{lo}[0]]$
- $\text{out}[1] = \text{hi}[\text{lo}[1]]$

`return out`
Bootstrapping algorithm

\[
\begin{align*}
\text{ACC}[0] & = b + q/4 \\
\text{for } i = 1 \ldots n \quad & \\
\quad & \text{ACC}[i] = s[i] \times a[i] \\
\text{ACC} & = \text{Sum}(\text{ACC}[0], \ldots, \text{ACC}[n]) \\
\text{return } & \text{MSB}(\text{ACC})
\end{align*}
\]

\[
\text{Sum}(\text{ACC}[0..n])
\]

\[
\begin{align*}
\text{if } n=0 \quad & \\
\quad & \text{then return ACC}[0] \\
\text{else } & h = n/2 \\
\quad & \text{ACC}0 = \text{Sum}(\text{ACC}[0..h-1]) \\
\quad & \text{ACC}1 = \text{Sum}(\text{ACC}[h..n]) \\
\quad & (x0, x1) = \text{ACC}1 \\
\text{return } & (\text{ACC}0 + x0) + x1
\end{align*}
\]
Summary

Bootstrapping functions can be computed by

1. $O(n \log q)$-long sequence of multiplications, or
2. $\log(n) + \log \log(q)$-depth arithmetic circuits

Error growth:

1. Using LWE ⊙: final error $\approx O(n) \cdot \beta$
2. Using LWE ⊗: final error $\approx \sigma^{\log n + \log \log q} = \sigma^{O(\log n)}$

Parameters $\beta(n), \sigma(n)$: fixed polynomials in n

Modulus:

1. polynomial modulus $q(n) \approx O(n) \beta = n^{O(1)}$
2. quasipolynomial $q(n) = n^{O(\log n)}$
Summary (security)

- Hardness of lattice problems within factor $\gamma \approx q/\beta$
 - LWE \circ: polynomial $\gamma = n^{O(1)}$
 - LWE \otimes: quasipolynomial $\gamma = n^{O(\log n)}$

- Circular security assumption
 - Needed by tensor product multiplication / keyswitching
 - Needed to apply bootstrapping
 - Not needed for leveled homomorphic encryption
Summary (security)

- Hardness of lattice problems within factor $\gamma \approx q/\beta$
 1. LWE \odot: polynomial $\gamma = n^{O(1)}$
 2. LWE \otimes: quasipolynomial $\gamma = n^{O(\log n)}$

- Circular security assumption
 - Needed by tensor product multiplication / keyswitching
 - Needed to apply bootstrapping
 - Not needed for leveled homomorphic encryption

Question

Remove circular security assumption:
- Can you build (unbounded) FHE from standard LWE?
- Can you build (unbounded) linearly homomorphic HE?
Efficiency

- Main security parameter $n > 100$ (typically, $n \approx 1000$)
- Modulus $q(n) < 2^n$ has bitsize $\log q < n$
- Assume 1GHz, arithmetic operations modulo q
- Bootstrapping: homomorphically evaluate decryption algorithm (once or twice per gate)

Question

Can you estimate the cost of a single FHE operation?